Pharyngeal Hairy Polyp Causing Respiratory Distress in Neonate

Maria Ana Serrado¹, João Lopes Dias², Ana Nunes², Eugénia Soares¹

Abstract

Pharyngeal hairy polyps are rare lesions that arise from the nasopharynx or oropharynx. It occurs predominantly in females, with predilection for the left side. Its etiology remains poorly understood. It typically presents in the neonatal period with respiratory distress and feeding difficulties. Imaging is fundamental to identify the high fat content of the lesion. Surgical resection is the treatment of choice. We report a case of a nasopharyngeal hairy polyp causing respiratory distress since birth.

Keywords

Neck; Nasopharynx; Oropharynx; Congenital, hereditary, and neonatal diseases and abnormalities; Pharyngeal neoplasms.

Introduction

Despite being globally rare, hairy polyps are the most common congenital tumors of the naso- oropharynx. Imaging is fundamental in the differential diagnosis of neonatal pharyngeal masses. In the case of hairy polyps, the high fat content is the key.

We report the case of a 1-day-old girl with respiratory distress diagnosed with a nasopharyngeal hairy polyp after performing ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI).

English language texts of the last 6 years (January 2011 to January 2017) were collected from PubMed/medline database using hairy polyp as key-word. Of 35 records, 29 full-text articles (mostly case reports/series) were selected, incorporating clinical data from 38 patients.

Case report

A new-born girl was delivered by caesarean section at 39 weeks and 6 days of gestation due to acute foetal distress. At birth, she presented with respiratory distress. APGAR scores at 1, 5 and 10 minutes were 6, 7 and 7, respectively. She was intubated at 5 minutes of life and extubated 5 minutes later. New intubation had to be performed and after several difficult attempts of extubation, steroid therapy was initiated, given the possibility of edema of the glottis. On the 4th day, a left, rounded, supraglottic mass was identified during laryngoscopy.

US showed a well-defined, ovoid, pharyngeal lesion with mixed echogenicity, adjacent to the endotracheal tube. No vascularity was seen on colour Doppler (Fig. 1a and 1b). A contrast-enhanced CT was performed, showing a 35-mm, large lesion occupying the nasopharynx, displacing the endotracheal tube forward and to the left, and enveloping and displacing the nasso-gastric tube to the left, extending from the base of the skull to the supra-glottis. It was hypodense, with a median density of 3 Hounsfield units (HU) and a minimum density of - 80 HU. No bony changes were identified (Fig. 2).

MRI confirmed the previous findings, depicting a cystic nasopharyngeal lesion, insinuating anteriorly into the choanae, and extending inferiorly to the level of the valleculae. It was hyperintense on T2-weighted images (T2WI). At the lower part of the lesion, spontaneous hyperintense content was found on T1-weighted images (T1WI), loosing signal intensity with fat suppression. No intracranial extension was identified (Fig. 3a, 3b, 3c and 3d). Complete surgical resection was performed. The postoperative period was complicated by reopening of the ductus arteriosus. Favourable evolution with closure of the ductus arteriosus was achieved after conservative therapy. Macroscopically, a pink, pedunculated, polypoid lesion was documented. Histological examination showed a polypoid lesion covered by keratinizing stratified squamous epithelium, with hair follicles, sebaceous glands and a central core with adipose tissue, mature muscle tissue and...
cartilage. The distal margin of the tubular fragment was lined by respiratory epithelium, consistent with complete excision. These findings confirmed the diagnosis of hairy polyp.

Discussion

Hairy polyps are the most common congenital tumors of the naso-oropharynx. It derives from two germ layers, ectoderm and mesoderm. Ectoderm-derived tissues include keratinizing stratified squamous epithelium and skin appendages. Mesoderm component may include fibro-adipose tissue, muscle or cartilage. They are benign masses, with limited growth potential. Malignant transformation has never been reported. The incidence of hairy polyp is 1/40000 live births. It occurs predominantly in females, as seen in our case. Among cases in which there is reference to the laterality, a predilection by the left side was found.\(^1\)\(^-\)\(^4\)

It remains debatable whether hairy polyps are congenital defects like development malformations or primitive teratomas, or belong to the spectrum of neoplastic disorders.\(^1\) Several theories about its origin have been proposed, including development malformations, mesodermal rests, and epithelial rests. The proposed theories also include the term teratoma, indicating the presence of tissues of multiple embryonic derivations, including epiblastic tissues.

![Figure 1](image1.png)

Figure 1 – (a, b) Transverse, oblique US image of the neck using a 13.5 MHz linear probe shows a well-defined ovoid lesion with mixed echogenicity within the pharynx (arrows), adjacent to the endotracheal tube (white asterisk). Mylo-hyoid muscles (white points); Tongue (red asterisks); Vertebral body (red circle).

![Figure 2](image2.png)

Figure 2 – Axial contrast-enhanced CT image shows a lesion occupying the nasopharynx (arrows), displacing the endotracheal tube forward and to the left, and enveloping and displacing the naso-gastric tube to the left.

![Figure 3](image3.png)

Figure 3 – (a, b) Sagittal and axial T2WI show a hyperintense lesion with epicenter in the nasopharynx (arrows), insinuating anteriorly through the choanae and extending inferiorly to the level of the valleculae. (c, d) Axial T1WI without and with fat-suppression show hyperintense fat content within the lesion, which loses signal intensity after fat suppression.
Hyperechogenic lesion, often with central low echogenicity, corresponding to its fibrous core, high fat content of the lesion. However, it often shows predominant high echogenicity due to the high fat content of the lesion. US is operator-dependent and does not allow accurate visualization of deep structures. Hairy polyps do not represent any syndromic disorder nor have familiar predisposition, but are occasionally associated with cleft palate, uvalar agenesis, ankyloglossia, facial hemihypertrophy, low-set ears, osteopetrosis, osteoporosis, hypospadias, left carotid artery atresia, agenesis of external auricle, bifurcation of tongue, branchial arch sinuses, and congenital hypotahalamic hamartoma. Clinical presentation depends on the size, location, shape and level of the hairy polyp, but it usually presents with respiratory distress and feeding difficulties in the neonatal period. It can also be identified as a clinically detectable oral mass. Occasionally hairy polyp presents as masses with ischemic or hemorrhagic changes, presumably due to torsion.

Respiratory difficulties owing to blockage of upper respiratory tract can cause respiratory distress, cyanosis, stridor and acute airway emergency. Feeding problems often occur in cases when it impinges the esophagus, thus leading to drooling, vomiting, coughing and gagging attacks. When the Eustachian tube is involved, chronic ear drainage, recurrent otitis media and hearing loss may occur. Neurological complications may occur secondary to vascular compressions and ischemia. Moreover, it is believed that the obstruction in fetal swallowing mechanisms may lead to polyhydramnios.

Koike et al. stated that polyps smaller than 3 cm in diameter have a higher risk of respiratory distress than do those bigger than 3 cm. Small hairy polyps are more difficult to diagnose and may be lethal because of delayed diagnosis. In the workup of oropharynx or nasopharynx masses, imaging is essential to assess the origin and extent of the lesion, determine possible intra-cranial extension, exclude neurological and otohyolaryngological complications, and plan surgery.

In newborns, US remains the first-line examination for the study of cervical masses. It is a safe and fast method of imaging that does not require sedation or anesthesia. However, US is operator-dependent and does not allow accurate visualization of deep structures. Hairy polyps typically show predominant high echogenicity due to the high fat content of the lesion. However, it often shows central low echogenicity, corresponding to its fibrous core, which may reveal vascularity on colour doppler. CT has the advantage of allowing for rapid acquisition times, thus avoiding deep sedation. Its main disadvantage is the use of ionizing radiation. Characteristic imaging features on CT include a smooth polypoid lesion with fat attenuation and a central linear soft tissue attenuation, that corresponds to the fibro-vascular stalk. It can also show bony changes.

MRI provides excellent depiction of soft tissues and does not use ionizing radiation. The main disadvantage is the need of sedation or anesthesia. On MRI, a hairy polyp usually presents as a well-defined, non-enhancing mass with a relatively homogeneous matrix, surrounded by a smooth capsule. It is predominantly hyperintense on T1WI and T2WI, with loss of signal intensity with fat suppression techniques. The fibro-vascular stalk appears as a linear structure with intermediate signal on T2WI, which can enhance after intravenous contrast administration. MRI is useful to delineate soft tissue extension and exclude intra-cranial involvement.

Typical imaging features can help narrow the differential diagnosis (Table 1). The high fat content is useful to exclude lesions such as neuroblastoma, meningo-encephaloceles, vascular anomalies, and embryonic cysts. At the same time, MRI narrows the differential diagnosis of a neonatal oropharyngeal or nasopharyngeal mass to hairy polyps, hamartomas, teratomas – which tend to be more heterogeneous –, and lipomas and their variants – which very infrequently occur not only in the pharynx but also in the neonate.

Cases of auto-amputation have rarely been reported. After ensuring the airway safety, the treatment of choice is surgical excision at the base of the stalk. The recurrence of hairy polyps is not usual. A case of progressive growth due to incomplete resection 6 years before was described.

<table>
<thead>
<tr>
<th>Table 1 – Characteristic imaging features of hairy polyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion</td>
</tr>
<tr>
<td>US/Doppler</td>
</tr>
<tr>
<td>CT</td>
</tr>
<tr>
<td>MR</td>
</tr>
</tbody>
</table>

Conclusion

Although rare, hairy polyps should be considered in cases of respiratory distress at birth. In the workup of oropharynx or nasopharynx masses, imaging is essential to assess the origin and extent of the lesion, narrow the differential diagnosis, determine intra-cranial extension, exclude complications, and plan surgery. We believe that MRI is an excellent imaging method for characterizing nasopharyngeal lesions in neonates and assessing for their potential complications. After an initial US, which remains the first-line method in the study of cervical masses, MRI is preferable over CT due to lack of ionizing radiation and better depiction of soft tissues.
Recebido / Received 13/05/2017
Aceite / Acceptance 03/10/2017

Divulgações Éticas / Ethical disclosures
Conflitos de interesse: Os autores declaram não possuir conflitos de interesse.
Confidentialidade dos dados: Os autores declaram ter seguido os protocolos do seu centro de trabalho acerca da publicação dos dados de doentes.
Confidencialidade dos dados: The authors declare that they have followed the protocols of their work center on the publication of data from patients.