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1 Introduction
Riemannian geometry is by now a well established and fundamental area of
mathematics with most undergraduate degrees worldwide having an intro-
ductory course on it, such as one on curves and surfaces. Despite this there
is still nothing like a classification of complete Riemannian manifolds and
instead one attempts to understand them from secondary invariants such as
their holonomy.

Given a n-dimensional Riemannian manifold (X,g) its Levi-Civita con-
nection yields a notion of parallel transport of tangent vectors along paths.
This has the property that it preserves the length and angles between paral-
lel transported vectors. When one fixes a point p and a loop γp based at that
point, the parallel transport along γp is an orthogonal linear transformation
γp : TpX → TpX of the tangent space TpX to X at p. The set of all such
linear transformations Holp(X) is a subgroup of the group the orthogonal
group O(TpX) called the holonomy group at p. If one fixes an orthogonal
basis of TpX, this may viewed as a subgroup of O(n) which changes by con-
jugation upon changing the base point p. Thus, from now on we shall forget
about the base point in the notation and simply refer to the holonomy group
as Hol(X) which we think of as a conjugacy class in O(n).

The classification of possible Riemannian holonomy groups was started
by Cartan’s algebraic classification of symmetric spaces [7, 8] in 1926. In
the nosymmetric case one may, by a theorem of de Rham, restrict to the
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86 Special Holonomy: Calabi–Yau and G2-Manifolds

class of Riemannian manifolds for which the holonomy representation is
irreducible, which are thus known as irreducible Riemannian manifolds. In
1953 Berger [2] compiled a set of restrictions which may be satisfied by
any possible holonomy group of a simply connected, irreducible Riemannian
manifold. The outcome is a list of these possible holonomy groups of these
Riemannian manifolds. It is headed by SO(n) which represents the generic
holonomy group, and followed by some “rarer” subgroups of SO(n) still
acting on Rn in an irreducible manner. The full list is the following:

Hol n=dim(X) Name
SO(n) n Orientable manifold
U(k) 2k Kähler manifold
SU(k) 2k Calabi–Yau manifold

Sp(k)·Sp(1) 4k Quaternion-Kähler manifold
Sp(k) 4k Hyperkähler manifold
G2 7 G2-manifold

Spin(7) 8 Spin(7) manifold

These other possible holonomy groups are known as special holonomy
groups and except for G2 and Spin(7) they all appear in infinite families.
For this reason G2 and Spin(7) are also called as the exceptional holonomy
groups.

Berger’s technique to cut the list down to only these groups is quite indi-
rect and consists in transforming what is apparently an integro-differential
problem of computing all the holonomies round loops into a local differen-
tial problem. The idea is to instead, classify the Lie algebra of the possible
Riemannian holonomy groups which by the Ambrose-Singer theorem can be
obtained from the values of the Riemann curvature tensor. Its symmetries
give restrictions on the possible Lie algebras and these are then integrated
by a unique simply connected Lie group. Clearly, this approach solely puts
restrictions on the possible holonomy groups and, at the time Berger’s list
appeared, it was not known whether all groups featuring it could actually
be realized as Riemannian holonomy groups. Nowadays, due to the efforts
of Aubin, Bryant, Calabi, Salamon and Yau together with several contribu-
tions from many others [4, 5, 20] we know that all these groups can actually
be realized as the holonomy groups of complete Riemannian metrics. How-
ever, most intricacies of their geometry and internal classification remain to
be understood at present yielding one of most active areas of research in
Riemannian geometry.
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In a somewhat perpendicular direction several of these geometries have
also appeared in the physics literature. Since the 1990’s, and also more
recently, Calabi–Yau and G2-manifolds have been attracting the interest of
physicists working in string and M-theory respectively. The main reason for
this is the possibility of using them in compactifications of these theories
which are supposed to produce realistic 4-dimensional versions of the phys-
ical world including the standard model of particle physics together with a
quantization of gravity.

These notes are a selected part of topics that are supposed to serve
as a modern, very quick, introduction to both these classes of manifolds
from a geometric structure point of view. In this setting, calibrations and
stable forms appear naturally and we use these in our approach to both
these classes of special holonomy Riemannian manifolds. This approach
mixes the points of view of Salamon, Harvey–Lawson and Hitchin which I
find very beautiful attractive. In trying to make the material as concise as
possible I have left a lot of relevant material out. This can be found in the
references given and finish this introduction by admitting that, perhaps, the
best contribution of this note is its brevity and mixed viewpoint.
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2 Calibrated Geometry and Holonomy
In these notes Xn will denote a smooth real n-dimensional manifold and
Fr(M) its principal GL(n,R)-frame bundle. When X is equipped with a
Riemannian metric g we will denote by FO(n) its principal O(n)-bundle.

2.1 Geometric Structures

Definition 1. Let G ⊂ GL(n,R) be a Lie group, a G-structure on X, de-
noted by P , is a principal G-subbundle of Fr(X).
Proposition 1 (weak Holonomy Principle). There is a one to one corre-
spondence between sections of the bundle Fr(X)×GL(n,R)GL(n,R)/G and
G-structures on X.
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Proof. We shall only sketch the idea, for a full proof see page 11 in [18].
Let x ∈ X, then each point in the fibre Px gives an identification TxX ∼=
V := Rn. If η0 ∈ V ⊗r⊗ (V ∗)⊗s is G-invariant, we can define ηx ∈ (TxX)⊗r⊗
(T ∗xX)⊗s to equal η0 using any of the identifications TxX ∼= V given by the
points of Px. This gives a well defined tensor η over the whole X.
Conversely, if η is a section of the bundle Fr(X)×GL(n,R)GL(n,R)/G, then
one can define the G-structure P which stabilizes η.

Example 1. 1. A Riemannian metric defines the O(n)-structure, de-
noted FO(n).

2. An almost complex structure defines a GL(n/2,C)-structure.

When G ⊂ O(n) and P is a G-structure one defines the O(n)-bundle
FO(n) = P ×G O(n). A connection ∇ on P induces one on TX whose
torsion T∇ ∈ Ω2(X,TX) is by definition

T∇(V,W ) =∇VW −∇WV − [V,W ].

Given any two connections ∇,∇′ as above, ∇′ =∇+a with a ∈ Ω1(X,gP )
where gP = P ×G g⊂ so(TX). Then it is easy to compute that T∇′ = T∇+
δ(a), where δ is a section of Hom(T ∗X⊗gP ,Λ2X⊗TX).
Notice that since g ⊂ so(n) ∼= Λ2Rn, the map δ is injective and in order to
get rid of the dependence on the connection we can define the reduced map
[T∇] with values in coker(δ). This is usually called the intrinsic torsion (or
the structure function of the G-structure P ). The following result is an
immediate consequence of this construction.

Lemma 1. Let (X,g) be a Riemannian manifold and G ⊂ O(n) a G-
structure P ⊂ FO(n). Then, there is a connection ∇ on P inducing the
Levi–Civita connection of g on M if and only if the reduced map [T∇] van-
ishes. Such a G-structure is said to be integrable.

An immediate corollary of this construction is the next result, for which
more details can be found in page 14 of [18].

Corollary 1 (Holonomy Principle). Let (X,g) be a Riemannian manifold
and x ∈X. Then, any ηx ∈ Ω0(X,(TxX)⊗r⊗ (T ∗xX)⊗s) which is preserved
by the holonomy at x of the Levi–Civita connection ∇LC is the value at x of
a ∇LC-parallel tensor field η.
Moreover, in this situation the G = Hol-structure P determined by η via
the weak holonomy principle is equipped with a connection ∇ inducing ∇LC .
Equivalently, there is a ∇LC-parallel embedding of P into FO(n).
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Remark 1. In general, a similar principle holds for any vector bundle with
a connection.

Let G ⊂ SO(n) and P a G-structure on (X,g), then G acts on the dif-
ferential forms and splits these as irreducible representations as Λk =⊕iΛki .
Moreover, the Hodge-∗ is an isomorphism of G-representations Λki ∼= Λn−ki .
These are the essential observations leading to the following Theorem of
Chern, [9].

Theorem 1. Let P be a G-structure on (X,g) as above and assume it has
vanishing intrinsic torsion. Then, there is a metric g such that if Hk denotes
the harmonic k-forms, there is a splitting

Hk =⊕iHki ,

and isomorphisms Hki ∼= H
j
i if the corresponding Λki ∼= Λji are isomorphic

representations.

Proof. Since P has vanishing intrinsic torsion, there is a metric g whose Levi
Civita connection ∇ is induced by a connection on P . Thus, ∇ preserves
the embedding P ↪→ FSO(n) = P ×G SO(n) and so for β ∈ Ωk

i , we have
∇β ∈ Ω0(X,T ∗X ⊗Λki ) and ∇∗∇β ∈ Ωk

i . Having in mind that there is a
Weitzenböck type formula

∆β =∇∗∇β+R(β),

where R is an algebraic operator computed in terms of the curvature tensor
R ∈ Ω0(X,S2hol). Since hol ⊂ g and the fact that R ∈ Ω0(X,hol), it fol-
lows that R(β) ∈ Ωk

i . Hence, the Laplacian ∆ preserves the splitting into
irreducible representations which then passes on to the harmonic forms.
Moreover, one can show that ∇∗∇ and R only depend on the representation
in which they are acting and not on the specific degree of the differential
form which concludes the proof of the statement.

Lemma 2. If G⊂ SO(n) is simply connected any a G-structure canonically
lifts to a Spin-structure.

Proof. Since G is simply connected there is a unique lift of the inclusion
of G in SO(n) to an inclusion G ↪→ Spin(n). Using this one can construct
F̂ = P ×G Spin(n) and the projection Spin(n)→ SO(n) gives a canonical
map F̂ →FSO(n) =P×GSO(n). Hence F̂ is a Spin structure on (X,g).
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2.2 Stable Forms and Calibrations

In this section we shall review the notion of a stable form following Hitchin
in [12] and [14]. Then, we shall see how some calibrations yield examples of
such stable forms. Finally, we relate these to special Riemannian holonomy.

Definition 2. Let V n be a real n dimensional vector space, η ∈ ΛpV ∗ is a
stable p-form if its GL(V )-orbit in ΛpV is open.

Example 2. 1. n = 2m, m ∈ N and p = 2. Then, (V,η) is a symplectic
vector space and the stabilizer of η is Sp(2m,R).

2. n= 6 and p= 3. There is an open orbit of GL(6,R) on Λ3V such than
all η lying on it have stabilizer SL(3,C). Such an η induces a complex
structure on V with respect to which η is of type (3,0) + (0,3).

3. n = 7 and p = 3. There are two open orbits of the GL(7,R) on Λ3V ,
for η in one of those the stabilizer is compact group G2.

4. n= 8 and p= 3, there is an open orbit with stabilizer PSU(3).

In all the examples above the stabilizer preserves a volume form on the
respective vector space. In fact, as observed by Hitchin in [12, 14], one has
the following result.

Proposition 2. There is a GL(V )-equivariant homogeneous function

φ : ΛpV ∗→ ΛnV ∗,

of degree n
p . For each η ∈ΛpV ∗, there is a unique η̂, such that the derivative

dηφ : ΛpV ∗→ ΛnV ∗ is given by

dηφ(η̇) = η̂∧ η̇,

for η̇ ∈ ΛpV ∗ and moreover φ(η) = p
nη∧ η̂.

Proof. The existence of the GL(V ) equivariant function φ follows from the
fact that all isotropy subgroups of such η preserve a volume form on V . The
GL(V ) invariance for scalar matrices λ1, with λ ∈ R, shows that φ(λpη) =
λnφ(η) and so φ is homogeneous of degree n/p.
The derivative dφ is linear and an element of (ΛpV ∗)∗⊗ΛnV ∗ ∼= Λn−pV ∗.
Hence, there is a unique η̂ with the properties stated, and the last statement
that φ(η) = p

nη∧ η̂ follows from Euler’s formula

dφ= n

p
φ

for homogeneous functions.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 85-104



Gonçalo Oliveira 91

Example 3. 1. n= 2m and p= 2, η is a symplectic form and η̂= ηm−1

(m−1)! .

2. n= 6 and p= 3, η+iη̂ is a form of type (3,0), for the complex structure
determined by η.

3. n = 7 and p = 3, the stabilizer of η is G2, which is a compact group.
So the volume form φ(η) preserved by G2 is the volume form of an
invariant metric on V . Using this metric one obtains η̂ = ∗η.

4. n = 8 and p = 3, the stabilizer PSU(3) is also compact and the same
discussion goes on with η̂ =−∗η.

Definition 3. If g is a metric on an oriented vector space V and {ei}ni=1
an orthonormal basis, then a p-form θ ∈ ΛpV ∗ is said to be a calibration if

|θ(ei1 , ...,eik)| ≤ 1,

for all i1, ..., ik ∈ {1, ...,n}, i.e. if its comass is smaller or equal than 1.

Equivalently, θ is a calibration on (V,g), if and only if for all p-
dimensional oriented subspaces W ⊂ V

θ|W ≤ volW , (1)

where volW is the volume form of the metric g|W induced on W , by g.

Definition 4. Let (V,g) be a vector space with metric and θ ∈ ΛpV ∗ a
calibration on V . A subspace W ⊂ V is said to be calibrated by θ is θ|W =
volW , i.e. if equality is attained in the inequality 1.

This discussion can be globalized in Harvey–Lawson’s notion of a cali-
bration [13].

Definition 5. Let Xn be a real n-dimensional smooth manifold and η ∈
Ω(X,R) a p-form is said to be stable if for all p ∈X ηp ∈ ΛpTpX is a stable
form.
If (X,g) is an oriented Riemannian manifold and θ ∈ Ωp(X,R) is closed,
then θ is called a calibration on (X,g), if for all x ∈X, θx is a calibration
on (TxX,gx). A submanifold N ⊂X is said to be calibrated by θ is for all
x ∈N , TxN ⊂ TxX is calibrated by θx.

The construction from proposition 2 gives a volume form on M , whose
volume defines the Hitchin functional

Φ(η) =
∫
X
φ(η) ∈ R∪∞. (2)
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Notice that the existence of a stable p form η on Mn reduces the structure
group of the tangent bundle to the isotropy subgroup of the form η. A natu-
ral question is if there is any relation between these reductions and possible
reductions of the holonomy group of a special metric on M , determined by
η.

Proposition 3. If X is compact, and [η] ∈Hp(X,R) is a fixed cohomology
class. Then Hitchin’s functional gives a well defined function

Φ : [η]→ R,

whose critical points are the η ∈ [η] with dη̂ = 0.

Proof. Let η ∈ [η] be a critical point, since the variation is in the fixed
cohomology class [η] all tangent vectors are exact forms dα. So for all
α ∈ Ωp−1(X,R)

0 = dΦη(dα) =
∫
X
η̂∧dα=

∫
X
dη̂∧α,

which shows that if η̂ is a critical point then dη̂ = 0. Conversely, the same
computation also shows that if dη̂ = 0, then η̂ is a critical point.

Example 4. 1. n = 2m and p = 2, (X,η) is a symplectic manifold and
dη̂ = 0 always. (X,ω) with ω = η can be equipped with a metric g and
compatible almost complex structure I. Then, for all k ≤ n, ωk

k! has
comass ≤ 1 and is closed and so a calibration. Submanifolds N2k cal-
ibrated by ωk

k! are symplectic (or almost complex) submanifolds.
If ∇I = 0 the complex structure is integrable and the metric has holon-
omy contained in U(n). Then (X,I,η) is a Kähler manifold and the
ωk

k! -calibrated submanifolds are complex submanifolds.

2. n= 6 and p= 3, then η+ iη̂ equips X with an almost complex structure
for which η+ iη̂ is of type (3,0). If η is a critical point of Hitchin’s
functional, then ∂(η+ iη̂) = 0 and so the complex structure is inte-
grable. Since η+ iη̂ is a nonvanishing holomorphic volume form, X
has trivial canonical bundle.
If (X,ω,Ω = Ω1 + iΩ2) is a Calabi–Yau 3-fold, then in particular it
is Kähler and choosing η = ω the example above gives a reduction of
the holonomy to U(3). Moreover, choosing η = Ω1, gives this precise
example and ∇Ω = 0, which reduces the holonomy to SL(3,C) and so
the holonomy of the metric is contained in SU(3) = U(3)∩SL(3,C).
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In this case both Ω1 = η and Ω2 = η̂ are calibrations and submanifolds
N3 calibrated by them are called special Lagrangian submanifolds of
phase 0, π2 respectively.

3. n= 7 and p= 3, the stable form η is a critical point of Hitchin’s func-
tional if

dη = d∗η = 0,
for the metric on M determined by η. Indeed, by a result of Fernández
and Gray [11] this is equivalent to ∇η = 0, which is to say the Holon-
omy of the metric is contained in G2, by the Holonomy principle. In
this case one usually uses the notation η = φ, η̂ = ∗φ= ψ and (X,φ) is
called a G2-manifold. Both φ and ψ are calibrations and submanifolds
calibrated by them are respectively called associative and coassociative.

In the examples above only for the case n = 7, the stable form η deter-
mines a metric with reduced holonomy (in fact G2 which an exceptional Lie
group appearing in Berger’s list). This is because the holonomy group of any
oriented Riemannian manifold must be a subgroup of SO(n) by the holon-
omy principle, and both Sp(2m,R) and SL(3,C) are non-compact groups.
Proposition 4. Let (Xn,g) be a Riemannian manifold equipped with a cal-
ibration θ ∈ Ωp(X,R). If Np ⊂X is compact and calibrated by θ, then N is
volume minimizing in its homology class [N ] ∈Hp(X,R).
Proof. LetN ′ ∈ [N ] be cohomologous toN , then there is Sp+1 with ∂S=N∪
(−N ′) (with orientations) and Stokes theorem gives

∫
N θ−

∫
N ′ θ =

∫
S dθ = 0.

Now the result follows from applying this and the definition of calibration
to the following one line calculation

vol(N ′) =
∫
N ′
volN ′ ≥

∫
N ′
θ =

∫
N
θ =

∫
N
volN = vol(N). (3)

Notice that the equation for a calibrated submanifold is a first order
PDE, while being minimal is a second order one (the Euler Lagrange equa-
tions for critical points of the volume functional). This is an analogous
situation to that of many gauge theories as for example the relation be-
tween ASD connections and the Yang Mills equations for connections on
bundles over 4 manifolds. See [10, 19] for some higher dimensional gauge
theories mimicking these.

We shall now change gears and focus on the more concrete cases of
Calabi–Yau and G2-manifolds. The interested reader can find a lot more
about these for example in [6, 17, 18] and references therein.
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3 Calabi–Yau Manifolds
On a Kähler manifold (Xn,g,ω) we shall implicitly always consider complex
structure I determined by g and ω. The next proposition relates the Ricci
tensor and the holomorphic triviality of the canonical bundle KX = Λn,0C X
to the holonomy of the underlying Kähler metric.

Proposition 5. A Kähler manifold (Xn,g,ω) with n= 2m is Ricci flat with
trivial canonical bundle KX if and only if the holonomy of the Kähler metric
on X is contained in SU(m).

In any case X is a Ricci flat Kähler manifold with trivial canonical bun-
dle KX and there is a unique (up to phase) holomorphic volume form Ω
satisfying

ωm

m! = (−1)
m(m−1)

2

(
i

2

)m
Ω∧Ω, (4)

which trivializes KX .

Proof. The Ricci form ρ(·, ·) = Ric(·, I·) is the curvature of the connection
on KX induced via the Levi Civita connection on the holomorphic tangent
bundle. First suppose that X is Ricci flat and KX trivial (this a necessary
assumption if X is not simply connected). Ricci flatness gives that ρ = 0,
while the triviality of KX guarantees not only that c1(X) = 0 ∈H2(X,Z),
but that the element in the Jacobian representing KX is trivial. Hence, the
connection has no periods and there is an holomorphic trivializing section
of KX , i.e. there is a (n,0)-form Ω such that ∂Ω = 0. This implies it is
parallel and so by the holonomy principle (corollary 1) the Kähler metric
has holonomy contained in SU(m).
The converse statement also follows from the holonomy principle since if
the holonomy is contained in SU(m), then there are nonzero parallel forms
ω ∈Ω2(X,R) and Ω∈Ω3,0(X,C) (unique up to phase) satisfying the relation
4 in the statement. Since ∇Ω = 0, then also ∂Ω = 0 and so it is holomorphic
and trivializes KX . Then, c1(X) = 0 and the definition of curvature also
gives ρ(Ω) = d∇∇Ω = 0, and as Ω is nonvanishing ρ = 0, i.e. the metric is
Ricci flat, which is the same thing as saying that the connection on KX

induced by the Levi Civita one is flat.

Remark 2. If X is Ricci-flat Kähler and simply connected, then KX is au-
tomatically trivial and the holonomy contained in SU(m). This follows from
the fact that ρ= 0 and so the Levi Civita connection equips KX with a flat
connection. These are parametrized by Hom(π1(X),U(1)), which vanishes
as X is simply connected. Then KX is trivial and proposition 5 shows the

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 85-104



Gonçalo Oliveira 95

holonomy is in SU(m).
When X is not simply connected there are counterexamples to this state-
ment. For example an Enriques surface is a Ricci flat Kähler manifold
with c1(X) a torsion class in H2(X,Z). In this case KX is not trivial
and the flat connection can be seen as an element of Hom(π1(X),U(1)) =
Hom(H1(X),U(1)) = H1(X,U(1)), uniquely determined by the Hermitian
metric on KX via Chern’s construction.

Definition 6. A Calabi–Yau manifold (X,ω,Ω) is a Ricci flat, Kähler man-
ifold (X,ω) with trivial canonical bundle and a choice of holomorphic volume
form Ω ∈ Ω3,0(X,C) satisfying equation 4.

According to this definition Calabi–Yau manifolds will have holonomy
contained in SU(m). Some authors require the holonomy to be exactly
SU(m) and here these will be called irreducible Calabi–Yau manifolds. The
question of existence of Calabi–Yau manifolds can be attacked directly by
explicitly constructing the metric as is done in several noncompact examples
or by PDE methods in both cases compact and noncompact. In line with
the second of these, we have Yau’s proof of the Calabi conjecture, [20], which
states the following.

Theorem 2. Let X be a compact complex manifold with c1(X) = 0 in
H2(X,R), then in all Kähler classes in X, there is a unique Ricci-flat Kähler
metric.

The Calabi Conjecture, so called by having been proposed by Calabi
years before Yau completed its proof in [20], asserts the existence of many
compact Calabi–Yau manifolds. For example, if X is a complex manifold
with c1(X) = 0, π1(X) = 0 and which admits Kähler classes, then combining
the Calabi conjecture 2 with proposition 5, there is a Calabi–Yau structure
on each Kähler class of X.

Remark 3. The Enriques surface from remark 2 is not a Calabi–Yau man-
ifold according to definition 6, as it has nontrivial canonical bundle. How-
ever, the Calabi conjecture stated as Theorem 2, proves the existence of a
Ricci-flat Kähler metric on the Enriques surface.

The next results explore some properties of Calabi–Yau manifolds.

Proposition 6. Let (X,ω,Ω) be a compact Calabi–Yau manifold. Then
there is a finite cover X̃ of X, which is biholomorphic to the product of
T 2k×Y , where T 2k is a real 2k dimensional torus and Y a complex mani-
fold with c1(Y ) = 0.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 85-104



96 Special Holonomy: Calabi–Yau and G2-Manifolds

If (X,ω,Ω) is further assumed to be irreducible, then it has finite fundamen-
tal group.

Proof. Calabi–Yau manifolds are Ricci flat and so the Cheeger Gromoll split-
ting theorem applies and for each 2k linearly independent parallel 1 forms,
there is a T 2k splitting off. As both the complex torus and X have vanishing
first Chern class so must be for Y .
Now suppose X is irreducible, then it cannot have any parallel 1 form as this
would make the Holonomy to be strictly contained in SU(m). Moreover, for
Ricci flat manifolds there is a Weitzenböck formula

‖∇α‖= 〈α,∆α〉,

which shows that each harmonic 1 form gives rise to a parallel 1 form. Hence
there can be no harmonic 1-forms and this forces the fundamental group of
X to be finite.

Remark 4. A version of this result also holds in the noncompact case, there
one may have to let some of the torus directions to be noncompact (i.e. R)
and Y may be noncompact as well.

Proposition 7. Let (X,ω,Ω) be a compact Calabi–Yau manifold, then for
i ∈ {1, ...,m−1}

dim(H i,0(X,C))≤ m!
i!(m− i)! .

If (X,ω,Ω) is further assumed to be irreducible, then

H0,0(X,C) = 1
Hm,m(X,C) = 1
H i,0(X,C) = 0, i ∈ 1, ...,m−1.

Proof. For i = 1, ...,m− 1, let α ∈ Ωi,0 be a representative of a class in
H i,0(X,C) and recall that Calabi–Yau manifolds are Ricci flat. Then as
in the proof of proposition 6, the Weitzenböck formula is ‖∇α‖ = 〈α,∆α〉.
Moreover, the Kähler identities imply that ∆α= 2∂∗∂α= 01 and α is then
parallel. In the general case, the maximum number of linearly independent
of these is then the dimension of Λi,0Cn, which is precisely m!

i!(m−i)! . In the
irreducible case there can be no nonzero parallel (i,0) forms as this would
reduce the holonomy to be strictly contained in SU(m).

1Notice that ∂∗
α= 0 as α is of type (i,0).
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Remark 5. There is an alternative argument using the maximum princi-
ple which can be used in noncompact Ricci flat manifolds. This proves for
example for noncompact irreducible Calabi–Yau manifolds there can be no
decaying harmonic (i,0) forms.

Proposition 8. Let (X,ω,Ω) be a compact and irreducible Calabi–Yau man-
ifold of real dimension n= 2m≥ 6. Then Xm is a projective algebraic vari-
ety.

Proof. Since m ≥ 3 and (X,ω,Ω) is irreducible, proposition 7 gives that
h2,0 = 0 and so H2(X,C) = H1,1(X,C). Then, the image of H2(X,Z)→
H1,1(X,C) is nonempty and one can pick a positive class α there. Associated
to this class there is a positive holomorphic line bundle L with c1(L) =α and
the Kodaira Embedding theorem provides an embedding X ↪→CPh0(X,Lk)−1,
for sufficiently large k ∈ N.

4 G2-Manifolds
Let X7 be a 7 dimensional manifold and denote by Λ3

+ the bundle of stable
3 forms over X and by Ω3

+ its sections. Given φ ∈ Ω3
+, then at any point

p ∈X the stabilizer of φp in GL(7,R) is conjugate to G2 (as defined in the
third item of example 2). Given such a section, it determines via the weak
holonomy principle a G2 structure, which itself determines via lemma 2 a
Spin-structure on (X7,g). In fact, for G2-structures the converse also holds.

Proposition 9. A 7-dimensional oriented Riemannian manifold (X7,g) ad-
mits a G2-structure if and only if it is Spin.

Proof. Since G2 is simply connected, given a G2-structure lemma 2 guaran-
tees the existence of a Spin structure F̂ . To prove the converse let F̂ denote
a Spin bundle and ∆ the standard irreducible Spin(7) representation, then
rkR∆ = 8. Moreover, Spin(7) acts transitively on S7 with stabilizer G2, so
it is enough to find a unit section of the bundle of spinors S = F̂ ×Spin(7) ∆.
Since this bundle has rank 8> 7 there is a nowhere vanishing section of S,
which we can normalize to have norm 1. Then the weak holonomy principle
determines a G2-structure.

Definition 7. Let (X7,φ) be as above and φ ∈ Ω3
+. Then φ and g are

compatible if for all vector fields V,W , ιV φ∧ ιWφ∧φ= 6g(V,W )gdvolg.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 85-104



98 Special Holonomy: Calabi–Yau and G2-Manifolds

Definition 8. A G2-manifold (X,φ) is a real 7 dimensional Riemannian
manifold (X7,g), equipped with a compatible G2-structure φ ∈ Ω3

+ such that
∇φ= 0.

From the Holonomy Principle a G2-manifold has holonomy contained in
G2, when the holonomy is the full G2 one says that (X,φ) is an irreducible
G2-manifold. We shall now go on to investigate some topological and geo-
metric properties of (irreducible) G2-manifolds starting with the following
of Fernández and Gray [11].

Theorem 3. Let (X7,g) be a Riemannian 7 dimensional manifold equipped
with a stable 3 form φ compatible with g, the following are equivalent

1. ∇φ= 0,

2. dφ= d∗φ= 0,

3. The holonomy of g is contained in G2.

Proof. The holonomy principle (corollary 1) implies that the holonomy
of g is in G2 if and only if ∇φ = 0; and so it is enough to prove that
the first two items are equivalent. In one direction this is obvious since
∇φ ∈ Ω0(X,T ∗X ⊗T ∗X) and both dφ and d∗φ are obtained from ∇φ by
composition with algebraic operators, respectively the anti-symmetrization
map ∧ ∈ Hom(T ∗X ⊗T ∗X,Λ2X) and the trace with respect to metric g,
trg ∈Hom(T ∗X⊗T ∗X,Λ0). So if ∇φ= 0, then both dφ and d∗φ vanish.
In the opposite direction, suppose dφ= d∗φ= 0, and to proceed we need to
investigate ∇φ with more scrutiny. The intrinsic torsion of the G2-structure
determined by φ is ∇φ, seen as a section of coker(δ), where δ is the map de-
fined in the discussion preceeding Lemma 1. Recall that this bundle is mod-
eled on V ∗⊗g⊥2 , where g⊥2 ⊂ so(7) and V ∼=R7 is the standard 7 dimensional
representation of g2. By an abuse of language we shall say ∇φ is modeled
on V ∗⊗g⊥2 . Notice that so(7)∼= Λ2V ∼= Λ2

7⊕Λ2
14 with Λ2

7
∼= V ∗ and Λ2

14
∼= g2.

We conclude that g⊥2 ∼= V ∗ and so ∇φ is a section of V ∗⊗V ∗ ∼= Λ2V ⊕S2V .
In fact this further decomposes into

V ∗⊗V ∗ ∼= (V ∗⊕g2)⊕
(
S2

0V ⊕R
)
, (5)

where R is the trivial representation, and it follows from highest weight
theory that S2

0V is irreducible of dimension 27. Hence, the decomposition
above is irreducible.
Next, dφ is modeled on Λ4V ∼= Λ3V , which decomposes into irreducible
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components as R⊕V ⊕S2
0V . Since 0 = dφ= ∧◦∇φ and ∧ is a morphism of

representations and is surjective, it follows that ∇φ has values in the the g2
component of the decomposition in 5.
Next we analyse the vanishing of d∗φ which is modeled on Λ2V ∼= V ⊗ g2.
In the same way as before 0 = d∗φ= trg(∇φ) and since trg is also a surjec-
tive morphism of representations the component of ∇φ in g2 also vanishes.
Combined with dφ = 0 this shows that ∇φ = 0 and completes the proof of
the statement.

Comparing the second point above with proposition 3, more specifically
the third item in example 4 shows that G2-manifolds are (in the compact
case) critical points of Hitchin’s functional. In fact, they have maximal
volume with respect to local variations of the 3 form φ. Next, we shall give
a modern proof of the following Theorem of Bonan [3].

Theorem 4. Let (X7,g) be a G2-manifold, then g is Ricci flat.

Proof. Denote by P ⊂ FSO(n) the G2 structure and by R ∈ Ω0(X,S2gP )
the Riemann curvature tensor of g. Using highest weight theory we can
decompose the space of algebraic curvature tensors into irreducible repre-
sentations. We start by decomposing

S2g2 ∼=W0,0⊕W2,0⊕W0,2, (6)

where W0,0 ∼= R is the trivial irreducible representation and the (n,k) ∈ Z2

are labeling the weights, so that W1,0 ∼= V and W0,1 ∼= g2. Moreover, the
first Bianchi identity states that R ∈ ker(b), where

b : S2(V ∗)→ Λ3V ∗⊗V ∗

is the Bianchi map which antisymmetrizes the first three entries. However
ker(b) = ker(b : S2(g2)→ Λ4V ). Decompose the right hand side into irre-
ducibles Λ4V ∼=W0,0⊕W1,0⊕W2,0 and compare with the relation 6. In fact,
the Bianchi map is a morphism of G2-representations and is injective on
W0,0 and W2,0 ∼= S2

0V
∗, so we conclude that the kernel of the Bianchi map is

the 77 simensional piece W0,2. Hence the Riemannian curvature tensor has
values on W0,2 (this result is attributed to Alexeevski [1]).
We now use this information in order to analyze the Ricci tensor Ric, which
has values on S2(V ∗). It is obtained from R via Ric= r(R), where

r :W0,2→ S2(V ∗)
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is the Ricci contraction, mapping a curvature tensor to a symmetric, bilin-
ear form. This is also a morphism of G2 representations and since S2(V ∗)
decomposes into irreducible components as W0,0⊕W2,0, r must vanish iden-
tically and so does Ric.

G2-manifolds are Ricci flat (theorem 4) and a similar application of the
Cheeger-Gromoll splitting theorem and the Böchner technique, to the one
used for Calabi–Yau manifolds in Prposition 6 gives the following two propo-
sitions

Proposition 10. Let (X,g) be a compact G2-manifold. Then, there is a
finite cover X̃ of X, which is isometric to T 7−k × Y k, where T 7−k is a
torus and Y k is k dimensional manifold equipped with a Ricci flat metric.
Moreover, if (X,φ) is further supposed to be irreducible, then it has finite
fundamental group.

Proposition 11. Let (X,g) be a simply connected G2-manifold, then (X,g)
is irreducible, i.e. Hol =G2 if and only if there are no parallel 1-forms.

Proof. Since (X,g) is a G2-manifold the holonomy is contained in G2 and g
is Ricci flat. Hence, if there is a parallel one form one can use the flow of
the associated Killing field, which is parallel by the Bochner formula, to find
a line and use the Cheeger-Gromoll splitting theorem to write X = Rt×Y 6

with the cylindrical metric g = dt2 + g6. In this case Hol(g) = Hol(g6) ⊂
G2∩ (1×SO(6))∼= 1×SU(3), which is properly contained in G2.
In the opposite direction we prove that if the holonomy Hol is properly
contained in G2 then there is a parallel 1-form. First we analyze the case
where (X,g) is locally symmetric. If this is the case, then since from Bonan’s
theorem 4 is Ricci flat and locally symmetric it must actually be flat. If
(X,g) is not locally symmetric and Hol is a proper subgroup of G2 we
can invoke Berger’s theorem [2] to conclude that Hol is either 1×SU(3),
SO(3)×SU(2), 13×SU(2) or 17. In each of these cases there is a local
splitting U = U1×U2 and g|U = g1 +g2, where U1 is at most 3 dimensional
and Ricci flat and so flat. So the case SO(3)×SU(2) actually has to reduce
to 13×SU(2) and in all the cases there is a locally flat factor, then since X
is simply connected there is a global parallel one form.

Remark 6. Notice that in the first direction the condition that X is simply
connected is not used. Hence it is true that for (X,g) an irreducible G2-
manifold there are no parallel 1-forms.
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Proposition 12. Let (X,φ) be a G2-manifold, then the exterior bundle
splits orthogonally as

Λ1 = Λ1
7

Λ2 = Λ2
7⊕Λ2

14

Λ3 = Λ3
1⊕Λ3

7⊕Λ3
27,

where the subscript indicates the rank of the component and these compo-
nents are such that for ψ = ∗φ

Λ2
7 = {ιV φ,V ∈ Γ(TX)}= {β | ∗ (β∧φ) = 2ω}

Λ2
14 = {β | β∧ψ = 0}= {β | ∗ (β∧φ) =−β}

Λ3
1 = 〈φ〉

Λ2
7 = {ιV ψ,V ∈ Γ(TX)}

Λ3
27 = {β | β∧ψ = 0 and β∧φ= 0}.

Moreover if β is a 2-form and π7,π14 denote the respective projections on
the irreducible components, then the following algebraic identities hold

∗(∗(β∧ψ)∧ψ) = 3π7(β) (7)
∗(β∧φ) = 2π7(β)−π14(β). (8)

It follows from Chern’s theorem 1 that on a G2-manifold the Laplacian
∆φ preserves the decomposition of the spaces of differential forms into irre-
ducible G2 representations. Hence, the decomposition above still holds at
the level of Harmonic forms.

Corollary 2. Let (X,φ) be a G2-manifold, then the spaces of harmonic
forms H∗ decompose into irreducible representations as

H1 = H1
7

H2 = H2
7⊕H2

14

H3 = H3
1⊕H3

7⊕H3
27,

and there are isomorphisms H1 ∼=H2
7
∼=H3

7. In particular, if X is compact
this induces a splitting of the de Rham cohomology.

We can combine corollary 2 to Chern’s theorem with proposition 11 to
investigate further the topology of irreducible G2-manifolds.
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Proposition 13. Let (X7,g) be an irreducible G2-manifold, then the spaces
of harmonic forms H∗ decompose into irreducible representations as

H1 = 0
H2 = H2

14

H3 = H3
1⊕H3

27.

In particular, if X is compact then b1 = 0, b2 = b2
14 and b3 = 1 + b3

27.

Proof. The irreducibility condition, i.e. that Hol = G2 implies via remark
6 that there are no parallel 1 forms. Since Ric = 0 by Bonan’s theorem 4,
there is a Weitzenböck formula ∇∗∇α = ∆α for all 1-forms α. Combining
this with corollary 2 gives the decomposition of the harmonic forms in the
statement. In the particular case when X is compact, the result follows from
Hodge theory.

Remark 7. In particular, this further proves that a compact, irreducible
G2-manifold has finite fundamental group.

Now we will focus on compact G2-manifolds which were first constructed
by Dominic Joyce [15, 16], see also [17] for a summary of this first construc-
tion. On these we shall construct a quadratic form on the second cohomol-
ogy which can be used to identify a constraint on the first Pontryagin class
p1(X) ∈H4(X,R) of a compact, irreducible G2-manifold.

Definition 9. Let (X,g) be a compact G2-manifold and define the bilinear
form Q on H2(X,R) given by

Q(α,β) = 〈α∪β∪ [φ], [X]〉.

Lemma 3. Let (X,g) be a compact, irreducible G2-manifold. Then, the
quadratic form on H2(X,R) given by α 7→Q(α,α) is negative definite.

Proof. Let a ∈ α 6= 0 be the harmonic representative, then by proposition
13 it follows that a= π14(a), i.e. π7(a) = 0. Moreover, using equation 8 one
has

a∧a∧φ=−π14(a)∧∗π14(a) =−|a|2 dvol,

hence Q(α,α) =−
∫
X |a|2 dvol< 0.

Proposition 14. Let (X,g) be a compact, irreducible G2-manifold, then
〈p1(X)∪ [φ], [X]〉 ≤ 0.
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Proof. Let R denote the curvature of the Levi-Civita connection of g. In a
local trivialization R ∈ Ω2

14⊗g2 and g2 ⊂ so(4), i.e. it is represented by an
antisymmetric matrix Rij of forms in Ω2

14. Then, p1(X)∪ [φ] is represented
by

tr(R∧R)∧φ=
∑
i,j

Rij ∧Rji∧φ=−
∑
i,j

Rij ∧Rij ∧φ=−|R|2 dvol .

Hence as in the previous lemma (or rather as in its proof) 〈p1(X)∪ [φ], [X]〉=
−
∫
X |R|2 dvol≤ 0.
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