On simple bounds for eigenvalues of symmetric tridiagonal matrices
Resumo
How much can be said about the location of the eigenvalues of a symmetric tridiagonal matrix just by looking at its diagonal entries? We use classical results on the eigenvalues of symmetric matrices to show that the diagonal entries are bounds for some of the eigenvalues regardless of the size of the off-diagonal entries. Numerical examples are given to illustrate that our arithmetic-free technique delivers useful information on the location of the eigenvalues.