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Resumo: Pretende-se, com este texto, fazer uma introducao resumida ao
problema de valor inicial para as equagoes de Einstein, a um nivel bastante
elementar, sem recorrer a demonstragoes ou definiches matematicamente
técnicas, assumindo apenas conhecimentos basicos de equacoes diferenciais
parciais e geometria Riemanniana. Devido ao caracter hiperbdlico das equa-
¢oes de Einstein, comecamos por fazer uma breve revisao do problema de
valor inicial na fisica classica, com énfase na equacao das ondas. Construi-
mos a partir dai um paralelismo baseado na compreensao de algumas das
propriedades fundamentais comuns a este tipo de equacgoes, em particular
na velocidade finita de propagacao de informacao e no principio do dominio
de dependéncia, para apresentar a formulagdo do problema de valor inicial
para as equagoes de Einstein. Apesar do enquadramento profundamente
geométrico da teoria da relatividade geral, pretendemos desta forma sali-
entar muitas das analogias conceptuais com as equacoes da fisica cldssica,
assim como o papel igualmente central do problema de valor inicial para as
equacoes de Einstein. Terminamos com uma apresentacao dos resultados
classicos de Y. Choquet-Bruhat e de Y. Choquet-Bruhat com R. Geroch,
sobre a existéncia e unicidade de desenvolvimentos de Cauchy maximais
para o problema de valor inicial para as equagoes de Einstein no vacuo, e a
consequente motivacao para a conjetura da censura cosmica forte.

Abstract: The goal of this article is to present a summarized introduction
to the initial value problem for the Einstein equations, at a very elementary
level, without recourse to mathematically technical proofs or definitions, as-
suming only a basic knowledge of partial differential equations and Rieman-
nian geometry. Due to the hyperbolic character of the Einstein equations,
we start by reviewing the initial value problem in classical physics, with an
emphasis on the wave equation. Based on understading some of the funda-
mental properties for these types of equations, in particular the finite speed
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2 PVI PARA AS EQUACOES DE EINSTEIN

of propagation and the domain of dependency principle, we build a paral-
lel reasoning to present the formulation of the initial value problem for the
Einstein equations. Despite the deep geometric framework of the general
theory of relativity, we intend to highlight the many conceptual analogies
with the equations of classical physics, as well as the equally central role
of the initial value problem for the Einstein equations. We finish the pa-
per with a presentation of the classical results by Y. Choquet-Bruhat and
Y. Choquet-Bruhat with R. Geroch, on the existence and uniqueness of
maximal Cauchy developments for the initial value problem associated to
the vacuum Einstein equations, and the ensuing motivation for the strong
cosmic censorship conjecture.

palavras-chave: Relatividade geral; equacoes de Einstein; problema de
Cauchy.

keywords: General relativity; Einstein equations; Cauchy problem.

1 Introducao

O problema de valor inicial para equagoes diferenciais, também conhecido
por problema de Cauchy, é absolutamente central na fisica classica e esta
intimamente ligado ao principio do determinismo e a previsibilidade dos
fenémenos fisicos. Resumidamente, nos sistemas fisicos que sao descritos
matematicamente por equagoes diferenciais, a questao prende-se com a de-
terminacgdo da evolugdo no tempo das quantidades envolvidas, a partir do
seu conhecimento num instante de tempo de partida.

Pretende-se, neste artigo, mostrar como o problema de valor inicial é
também a formulacdo adequada para as equagoes de Einstein, tal como o é
para as equacOes da mecanica classica Newtoniana, ou para todos os outros
variadissimos exemplos de modelos matematicos da fisica em que o problema
de Cauchy para equacgoes diferenciais de evolugao é a forma mais natural de
estudo das solucoes. A complexidade inerente ao modelo matematico da
relatividade geral, com forte componente geométrica, dificultou historica-
mente, nao s6 a resolugcao, mas até simplesmente a correta clarificacdo e
formulagao das equagoes de Einstein sob a forma de um problema de va-
lor inicial, s6 tendo esse trabalho sido finalmente estabelecido por Yvonne
Choquet-Bruhat em 1952 ([I1]), quase quarenta anos apds a formulagao das
equagoes por Albert Einstein, em 1915 ([7]). Os artigos recentes [2] e [17]
incidem precisamente sobre as origens do problema de valor inicial para as
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JORGE DRUMOND SILVA 3

equacoes de Einstein, e devem ser consultados pelo leitor interessado por
essa faceta historica, a qual nao iremos aprofundar aqui.

Comegaremos por rever o problema de valor inicial nas equagoes da fi-
sica classica, comecando pelos sistemas de equacoes diferenciais ordindrias
da mecanica Newtoniana, mas prestando particular atencao a equacao das
ondas. Devido ao caracter hiperbdlico das equacoes de Einstein, muitas das
propriedades mais relevantes para a compreensao da formulagao do problema
de valor inicial ja se observam, numa forma mais simples e transparente, na
equacao das ondas linear, e por isso dedicamos algum cuidado a revé-las,
em particular a velocidade finita de propagacao de informacao, as relagoes
causais entre os valores da solugdo em diferentes pontos do espaco e do
tempo, e o correspondente principio do dominio de dependéncia. Depois
disso, faremos uma breve introducao as equacgoes de Einstein, salientando
as suas caracteristicas profundamente geométricas, em particular o facto de,
em certa medida, a solugao ser agora o préprio dominio, facto que lhes dao
uma aparéncia muito diferente das equagoes da fisica classica e que tornaram
historicamente dificil a compreensao do problema de valor inicial. Mantendo
o paralelismo conceptual com a equacao das ondas da fisica classica, tenta-
remos destacar como, apesar do formalismo geométrico, o problema de valor
inicial para as equagoes de Einstein é, no entanto, posto de forma inteira-
mente andloga na teoria da relatividade geral. Por fim, terminamos com a
apresentacao dos resultados de existéncia e unicidade de solucbes locais e
maximais para o problema de valor inicial das equagoes de Einstein no va-
cuo, obtidas nos trabalhos pioneiros de Yvonne Choquet-Bruhat ([I1]), em
1952, e posteriormente por Yvonne Choquet-Bruhat e Robert Geroch ([3]),
em 1969, concluindo com a motivacao, que deriva destes resultados, para a
formulacao da famosa conjetura da censura césmica forte, de Roger Penrose.

Abordando o mesmo tépico do presente artigo, mas de forma muito mais
aprofundada e exaustiva, com apresentacao cuidadosa das técnicas matema-
ticas necessarias ao seu estudo rigoroso, recomenda-se vivamente o livro de
Hans Ringstrom, [16], sobre o problema de Cauchy para as equagoes de
Einstein, para aqueles que queiram estudar este fascinante tema mais seri-
amente.

2 O problema de valor inicial na fisica classica

Na opinido de Einstein ([8]), a maior contribui¢cdo de Newton para a cién-
cia moderna foi precisamente a descoberta de que os sistemas fisicos sao
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4 PVI PARA AS EQUACOES DE EINSTEIN

modelados por equacoes diferenciais, as quais genericamente determinam a
evolugao desses sistemas a partir de condig¢bes iniciais apropriadas.

O paradigma do problema de valor inicial, na mecéanica classica, é preci-
samente a determinacao da trajetéria, ou seja, da posicao ao longo do tempo
x(t), de particulas materiais de massa m, a partir das suas posigoes e ve-
locidades num instante inicial ¢pg, de acordo com a segunda lei de Newton
(assumindo também o conhecimento total das forgas F' presentes, as quais
modelam o sistema mecénico em questdo). Do ponto de vista puramente
matematico este problema corresponde a resolucao de um sistema de equa-
¢oes diferenciais ordinarias de 2% ordem, com imposi¢ao de condigoes iniciais
as derivadas de ordem zero e de ordem um, da incégnita,

mx = F(t,x,%),

(1)

A existéncia de solucbes para um problema de valor inicial é, sem du-
vida, a primeira questao que sempre se impoe responder. De uma forma um
pouco mais precisa, é fundamental saber se a equacao diferencial de evolu-
¢ao tem sempre solugoes, dadas condigoes iniciais arbitrarias (ou restritas a
algum conjunto definido). O tempo de duragdo dessas solugoes também é
outra questao relevante, distinguindo-se entre solucoes locais, aquelas para
as quais sO se garante a existéncia durante um pequeno intervalo de tempo
que inclua tg, ou solugoes globais, quando é possivel estabelecer a sua exis-
téncia para a maxima duragao de tempo possivel (podendo esta ser infinita,
se a solucao existir para qualquer intervalo de tempo, ou finita, no caso em
que a ocorréncia de algum fenémeno singular impede a solucao de continuar
a evoluir indefinidamente). Mas o modelo s6 se verifica ser deterministico se,
além da existéncia de solugoes, estas forem tinicas, para as mesmas condi¢oes
iniciais, ou seja, se nao existirem varias evolugoes distintas de um mesmo
problema de valor inicial. Em resumo, o principio do determinismo obriga
a terem-se respostas afirmativas para as questoes de existéncia e unicidade
de solugoes, primordiais num problema de valor inicial.

A teoria matemadtica cldassica para equacoes diferenciais, desenvolvida
ainda no séc. XIX, em particular o teorema de Picard-Lindel6f, baseado no
principio da contracao e no teorema de ponto fixo de Banach, garante exis-
téncia de solugdes, unicidade e extensao a intervalos de tempo maximos de
definicao, para problemas de valor inicial associados a equagoes diferenciais
ordinarias, como é o caso da segunda lei de Newton , numa classe bastante
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ampla de situagoes (para fungoes continuas e localmente Lipschitzianas na
varidvel da incégnita).

Refira-se, ainda, que determinismo nao implica, s6 por si, previsibilidade:
um langamento duma moeda ou dum dado, por exemplo, sendo em principio
fenémenos deterministicos, por serem descritos com grande exatidao pela
mecanica Newtoniana, e portanto cobertos pela teoria geral de existéncia
e unicidade de solugdes de equacOes diferenciais ordinarias descrita atrés,
sdo, no entanto, altamente imprevisiveis, ao ponto de serem considerados
essencialmente aleatorios. A questao aqui é ainda outra: a estabilidade das
solugbes. Pequenas variagbes nas condigOes iniciais, como por exemplo a
velocidade e posicao exatas com que a moeda e o dado saem da mao do
langador (ou das condigdes de fronteira, como a forma precisa do dado, ou
dos ressaltos numa mesa) conduzem a resultados finais totalmente diferentes
e o sistema, ainda que deterministico, é para todos os efeitos imprevisivel
por ser fortemente sensivel a pequenas perturbagoes, as quais, na pratica,
sdo impossiveis de determinar com precisao total. Existem variadas formas
de estudar a estabilidade de um sistema descrito por equagoes diferenciais,
conduzindo a diferentes tipos de defini¢bes. A mais elementar, e que nor-
malmente se procura responder logo de inicio, recorrendo ao mesmo tipo de
teoremas que garantem existéncia e unicidade, é a dependéncia continua das
solucoes relativamente aos dados iniciais, ou a parametros das equagoes.

Ao conjunto destas trés questoes fundamentais, de existéncia, unicidade
e dependéncia continua de soluc¢bes relativamente aos dados iniciais dum
problema de valor inicial, chama-se boa coloca¢do. Um problema de Cauchy
com resposta afirmativa as trés questoes diz-se bem posto ou bem colocado,
localmente ou globalmente no tempo, consoante o intervalo de tempo de exis-
téncia €, respetivamente, apenas uma vizinhanca de tg ou arbitrariamente
grandeﬂ

A passagem dum conjunto discreto de particulas para um meio continuo
conduz & introducao de equacdes diferenciais parciais. Historicamente, os
primeiros exemplos em que isso foi feito devem-se a D’Alembert e Euler, em
meados do séc. XVIII. Para modelar a vibragao de uma corda, D’Alembert
introduziu a chamada equagdo das ondas (unidimensional)

0u 0%u
Por = oar ®

em que p representa a densidade de massa, por unidade de comprimento
da corda, e 7 a tensdo a ela aplicada. A incégnita u(t,x) representa a

Local/Global well posedness (LWP/GWP), na terminologia em inglés.
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6 PVI PARA AS EQUACOES DE EINSTEIN

posicao vertical da corda, relativamente ao nivel de referéncia em repouso,
no instante de tempo ¢ e na posicao = ao longo do seu comprimento.

A interpretacdo fisica da equacao é 6bvia: do lado esquerdo da equa-
¢do temos a massa vezes a aceleracao vertical da corda, por unidade de
comprimento; do lado direito temos a forca de restituicao interna da corda,
dada pela sua curvatura de deformagao e proporcional & tensdo com que esta
esticada. Em resumo, estamos em presenca, de novo, da segunda lei de New-
ton, numa versao continua unidimensional, por unidade de comprimento de
corda e aplicada ao seu movimento vertical. Alids, se se quiser modelar a
presenca de outras forcas transversais externas, como por exemplo o peso da
prépria corda por efeito da forga da gravidade, basta acrescenté-las ao lado
direito da equacao nos chamados termos de fonte. Esta andlise permite-nos,
em total analogia com , formular o problema de valor inicial adequado
a equagao das ondas: serd necessario, portanto, acrescentar duas condi¢oes
iniciais a equagao, correspondentes a posicao e velocidade vertical inicial em
cada ponto da corda, ou seja u e %, as quais sao agora funcoes da variavel
x, num instante de tempo inicial 5. A mais do que uma dimensao - por
exemplo para modelar a vibracdo dum tambor, no caso bidimensional, ou
das ondas sonoras, no caso tridimensional - a segunda derivada no espaco

, . . 2 2 2 .
é substituida pelo Laplaciano Au = 2% + % + .- gﬂﬁ—%, obtendo-se assim
2 n

8‘%%
o problema de Cauchy para a equagao das ondas (linear) em n dimensoes

espaciais

62u 2A o n
52~ C u=F(t,x), (t,z) e RxR
(3)
t —
aii( Oax) - UO(ZE), r eR?
5t (to,x) = wo(z),

em que o parametro ¢ (= % no caso do modelo unidimensional ) é a

velocidade de propagacao das ondas e F' é o termo de fonte, correspondente
a presencga de forcas externas. O lado esquerdo da equacao denomina-se de
operador das ondas, ou D’Alembertiano, e representa-se por

82

O=— — A

ot? ’ @)

pelo que a equacao da vibragao livre, isto é, na auséncia de quaisquer forcas
externas, pode simplesmente ser escrita como [u = 0.

Como apresentado em , o problema corresponde ao modelo de movi-
mento ondulatério transversal de todo o dominio ilimitado R™. E frequente
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também a formulacdo de um problema analogo, para dominios limitados
x € Q C R" como é o caso duma corda ou dum tambor finitos. Mas isso
obriga a imposicao de condicées de fronteira, na periferia de €2, para todo o
t > 0, e o problema passa a denominar-se de valor inicial e de fronteira.

A resolugao do problema , ou seja a prova de existéncia e de unicidade
para uma classe ampla de dados iniciais ug e vy nalgum espaco determinado
de funcoes, é bastante mais complexo que . Alids, como é bem sabido,
nao existe, no caso das equagoes diferenciais parciais, nenhum teorema ge-
ral de existéncia e unicidade, como é o caso do teorema de Picard-Lindelof
para equagoes diferenciais ordinarias. Um método especifico de resolugao
do problema de valor inicial para a equacao das ondas linear homogé-
nea, de coeficientes constantes, em qualquer dimensao (ou seja Cu = 0,
com F' = 0), comega por utilizar médias esféricas para dimensoes espaciais
impares, de forma a reduzir o problema a equacao de onda unidimensional
onde é possivel aplicar a formula de resolugdo de D’Alembert. Para as
dimensoes espaciais pares intermédias, utiliza-se depois o método da descida
de Hadamard, recorrendo a solucio obtida anteriormente para a dimensao
impar imediatamente acima. O caso da equagdo ndo homogénea, ou seja
com F' # 0, resolve-se com recurso a solu¢do homogénea correspondente e a
chamada formula de Duhamel. Os detalhes podem ser consultados em tex-
tos introdutérios de equagdes diferenciais parciais, recomendando-se, para o
caso da resolugao de o livro de G. Folland, [9]. Rapidamente, no entanto,
o problema de valor inicial para a equacao das ondas se torna de resolugao
mais dificil, quer no caso linear, se os coeficientes forem varidveis, quer no
caso geral da equacdo incluir termos nao lineares. O leitor interessado na
teoria moderna de equacdes de onda, lineares e nao lineares, encontrara
exposicoes bastante completas e atuais em [I5], [I2], [19] ou [20]. Outra
situagao na qual o problema de valor inicial para equacoes de onda, mesmo
as lineares, pode assumir um elevado grau de complexidade é no caso do do-
minio subjacente deixar de ser Euclidiano, para passar a ser uma variedade
com geometria ndo trivial: nesse caso, é através da forma como a métrica da
variedade altera os coeficientes das derivadas da equacao que ela incorpora
um acrescido grau de dificuldade o que, escrito em coordenadas locais, pode
ser equiparado a uma equacgao com coeficientes varidaveis. Esta é, alids, a
situagdo mais préxima das que sdo frequentemente encontradas na teoria
matematica da relatividade geral, em particular das equacoes de Einstein.
Um texto cldssico sobre equagbes de onda em espagos-tempo curvos é [10],
enquanto que [6] aborda especificamente o tema, de elevado interesse cien-

Boletim da SPM 73, Dezembro 2015, 100 Anos de Relatividade, pp. 1



8 PVI PARA AS EQUACOES DE EINSTEIN

tifico atual, relativo as propriedades de solu¢bes de equagdes de onda em
espagos-tempo associados a buracos negros.

Nao sendo objetivo deste artigo deter-se aprofundadamente nas equa-
¢oes de onda em geral, a sua estreita relacdo com as equacoes de Einstein
e a ubiquidade de certas propriedades fundamentais, obriga-nos no entanto
a relembrar uma dessas propriedades em particular, que serd til no que
apresentaremos a frente: trata-se do principio do dominio de dependéncia,
o qual esta intimamente associado a propriedade de propagacao de pertur-
bagbes com velocidade finita em equacoes do tipo hiperbdlico. Com efeito,
equacoes diferenciais parciais hiperbdlicas, como sao a equagao de onda
ou os sistemas de conservacao hiperbdlicos (usados nos modelos de mecénica
dos fluidos compressiveis), exibem fenémenos particulares de progressao das
solugdes, no espaco e no tempo, que tém um carater ondulatoério e que estao
matematicamente relacionados com as diregoes caracteristicas das equagcoes,
nao se verificando, em geral, noutro tipo de equagoes: sao eles que dao o
nome a equacdo. Uma forma simples de observar este efeito em u = 0
consiste em procurar solugoes da forma,

ue +(t,x) = el(&atrt) _ ei|§\(eg-:fc+‘%lt)’ 5)

denominadas de ondas planas, com frequéncia espacial ¢ € R™ e frequéncia
temporaﬂ 7 € R, as quais se propagam oscilatoriamente na dire¢ao do vetor
unitario definido por &, e = £/[¢|, e com velocidade - dita de fase - dada por
v = —7/|£|. Ora, substituindo em Ou = 0 obtém-se a chamada relagao
de dispersao da equacao

=P o T =%, (6)

que restringe as ondas planas que sao soluc¢ées de Lu = 0 apenas aquelas
que satisfazem @ Conclui-se assim que uma onda plana é solucao da
equacao de onda homogénea se e s6 se é da forma

u(t, JJ) _ ei\ﬂ(e&-m:tct)’

ou seja, para qualquer frequéncia espacial £ € R", as solugdes na forma
de ondas planas sdo apenas aquelas que se propagam com velocidade exa-
tamente igual a ¢, na diregdo positiva ou negativa definida pelo vetor &.
Usando métodos de andlise de Fourier é possivel mostrar, com alguma ge-
neralidade, que solugoes arbitrarias da equagao de onda homogénea Uu = 0

2Também conhecidos, respetivamente, por vetor de onda e frequéncia angular, na lite-
ratura fisica.
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podem ser dadas por sobreposigao (continua, na forma de um integral em &)
destas ondas planas, com diferentes amplitudes. Genericamente, portanto,
podemos dizer que as solucoes da equacao de onda homogénea consistem na
sobreposicao de ondas planas, em varias direcbes e com varias frequéncias
espaciais, mas todas propagando-se & velocidade fixa dada pelo parametro
c. Por isso se chama ao pardmetro ¢, do D’Alembertiano [, a velocidade de
propagacao das ondas.

Esta propriedade induz, no entanto, uma relagao de causalidade funda-
mental, na estrutura das solucgdes: o valor duma solu¢ao num dado ponto
(to,xog) s6 poderd influenciar a mesma solugdo num outro ponto (t1,z1),
para um instante de tempo futuro t; > tg, se a distancia espacial entre eles
conseguir ser percorrida dentro do limite da “velocidade de transmissao de
informacao” inerente a equacio, durante o intervalo de tempo que os se-
para, ou seja, se |z1 — xg| < c|t] — to|. Por outras palavras, a solu¢do em
(to, o) nado consegue afetar pontos cuja distdncia a xo seja superior aquela
permitida pela velocidade de propagacao c. Assim, geometricamente, um
ponto (tg, o) pode influenciar apenas os valores da solu¢ao em pontos no
interior dum cone com vértice nele préprio, e com abertura determinada por
¢: trata-se do chamado dominio de influéncia de (ty, o), representado na

Figura [l

Velocidad\ec/,

t

~
I

L40)

(t0 > x0)

Figura 1: Dominio de influéncia do ponto (tg, z).

Equivalentemente, os valores da solugdo num ponto (t1,x1) sé sdo influ-
enciados pelos pontos num cone para o passado, com vértice nele proprio: é o
seu dominio de dependéncz’aﬂ Ao conjunto formado pelos dois cones, o domi-
nio de influéncia e o dominio de dependéncia, num ponto (¢, z) denomina-se
cone de luz, nesse ponto. Observe-se, em particular, que se imaginarmos um

,

3Obviamente, o dominio de dependéncia dum ponto é exatamente o mesmo que o
seu dominio de influéncia para o passado, portanto os dois conceitos sdo essencialmente
idénticos, diferenciando-se apenas quando se pressupde a existéncia de uma orientacdo
temporal que permite fazer a distingdo entre passado e futuro.
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10 PVI PARA AS EQUACOES DE EINSTEIN

(t1,x1)

Velocida@

Figura 2: Dominio de dependéncia do ponto (¢, 7).

problema de valor inicial com tempo de partida em ¢, os valores da solugao
no cone com vértice em (t1,z1), representado na Figura serao exclusi-
vamente determinados pelos dados iniciais sobre o conjunto de pontos, em
t = to, que distam, no méxim(ﬂ, clty — to| de x4,

{(to, @) : | — 21| < clts —to|}- (7)

A solugao em todo o cone da Figura [2] é, portanto, totalmente indiferente a
alteracoes dos dados iniciais fora desta bola.

Este conjunto de ideias é o que se chama de principio do dominio de
dependéncia e é um dos ingredientes centrais na demonstracao de unicidade
de solucoes de equacdes de onda, aliado a estimativas de energia, que per-
mitem mostrar que, se os dados iniciais para a equagao u = 0 se anularem
no conjunto @, entdo a solugdo anula-se em todo o cone do dominio de
dependéncia de (t1,21) (consultar [9] para os detalhes). Aplicando-se este
resultado a diferenca de duas solucgoes de , com dados iniciais coincidentes
em @) obtém-se a conclusao que nao pode existir mais do que uma solucao
de , no interior do cone de dependéncia de (¢1, 1), para dados iniciais
fixos em @ Fazendo t; — o0, é possivel por fim provar a unicidade em
todo o semi-plano superior ¢ > 0, quando se impoem condi¢Oes iniciais em
t=tygexecR"

Um tltimo facto que merece ser mencionado aqui, relativamente ao pro-
blema de valor inicial para a equagao das ondas, é o da superficie onde sdo

4Para a equacio de onda no espago euclidiano R", com n > 1 impar, verifica-se
o chamado principio de Huygens, em que o dominio de dependéncia é apenas a fronteira
do cone, e ndo o seu interior, pelo que em t( seria apenas a fronteira da bola, ou seja
|x — z1| = ¢|t1 — to]. Em dimensdes espaciais pares a dependéncia, ou influéncia, estende-
se efetivamente para o interior do cone, tal como se pode verificar experimentalmente
atirando uma pedra para um lago em repouso e observando a superficie ondulatéria da
dgua, nao s6 na circunferéncia da frente de onda, em expansdo, como em todo o seu
interior.
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JORGE DRUMOND SILVA 11

dadas as condic¢oOes iniciais nao ter de ser, necessariamente, um plano de
R x R™ com t = ty fixo. No entanto, ao contrario do que é a percecio
geral com que normalmente se fica num estudo introdutério sobre equa-
goes diferenciais parciais, também néao é suficiente que a (hiper)superficie
das condigOes iniciais apenas seja nao caracteristica. Com efeito, devido a
estrutura causal descrita atras das solugdes da equagio, se uma superficie
¥ C R x R™ tiver geometria tal que, algum dos seus pontos (tj,z1) € ¥
esteja no dominio de influéncia de algum outro (to, z) € X entao, as condi-
¢oOes iniciais ndo poderao ser dadas de forma arbitraria em (¢;, 1) visto os
valores da solugao nesse ponto estarem causalmente influenciados pelos de
(to, o). Por outro lado, como as superficies caracteristicas da equagao das
ondas sdo s6 aquelas que sdao tangentes aos cones de luz, em cada ponto,
uma superficie da forma x; = const., por exemplo, perpendicular & direcao
da coordenada 7 de x € R", ndo sendo portanto caracteristica, ainda assim
conduziria a um problema de valor inicial mal posto dado que os seus pon-
tos estdo nos dominios de influéncia e de dependéncia uns dos outros (ver
exemplo explicito em [9]). E necessério, por isso, que a hipersuperficie gené-
rica onde sao impostos os dados iniciais de um problema de Cauchy seja tal
que nao intersete os cones de luz dos seus préprios pontos. Consideram-se,
por isso, de forma mais geral, problemas de valor inicial dados em hiper-
superficies ditas do tipo espaco, que satisfazem em todos os seus pontos a
condicao || > c|vg|, onde (v, v,) € R x R™ é a normal a 3 em cada ponto.
E possivel mostrar que problemas de valor inicial para a equacdo das ondas,

Figura 3: Superficie ¥ do tipo espaco.

com condigOes iniciais em hipersuperficies do tipo espago - nesse caso sao
impostos o valor da solugdo u e da sua derivada d,u, na diregdo v normal a
superficie inicial - estdo sempre bem postos.

Para terminar esta breve descricao do problema de valor inicial para as
equacoes de evolucao da fisica classica, refira-se que a equagao da segunda
lei de Newton ou a equacao das ondas estdo longe de ser os tnicos casos
relevantes onde o problema de Cauchy ¢é a formulagao mais apropriada a sua
resolucao. A equacdo do calor, que descreve a evolucao da temperatura no
espaco e no tempo, por difusdo num meio condutor; o sistema das equagoes
de Maxwell, do eletromagnetismo (que se reduzem a duas equagoes de onda,
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12 PVI PARA AS EQUACOES DE EINSTEIN

para o campo elétrico e para o campo magnético, no viacuo); a equagao de
Schrédinger, da mecénica quantica; o sistema de Navier-Stokes, da meca-
nica dos fluidos incompressivel; etc... todos eles sao exemplos de equacoes
diferenciais de evolucao da fisica classica, onde a formulagdo do problema
de valor inicial para a sua resolugao é a norma.

Restringimo-nos, nesta secgao, a equagao das ondas dado que as equagoes
de Einstein, quando escritas em coordenadas adequadas, também podem ser
vistas como equagoes de onda nao lineares e partilham, por isso, varias das
propriedades descritas atras para , como iremos ver de seguida.

3 O problema de valor inicial para as equacgoes de
Einstein

3.1 Espacgo-tempo e as equagoes de Einstein

O conceito central da teoria da relatividade geral é o de espago-tempo. E é
através da geometria do espaco-tempo, em especial da sua curvatura, que se
refletem as interacoes gravitacionais causadas pela presenca, ou pela ausén-
cia, de matéria e energia. As trajetérias de particulas materiais em queda
livre, assim como da luz, seguem geodésicas do espaco-tempo, e estdo por
isso sujeitas a geometria ambiente criada pela gravidade, cujo efeito se faz
sentir deste modo sobre elas.

Do ponto de vista do modelo matematico, trata-se duma variedade
pseudo-Riemanniana conexa de quatro dimensoes (M, g), com métrica g Lo-
rentzianaEl, que convencionamos ter assinatura (—,+,+,+). Como habitu-
almente, um vetor tangente v € T, M designa-se do tipo tempo se g(v,v) < 0;
do tipo espago se g(v,v) > 0; do tipo luz se g(v,v) = 0, com v # 0; do tipo
nulo se g(v,v) = 0 (ou seja, se v for do tipo luz ou se for v = 0); e causal
se for do tipo luz ou do tipo tempo (ou seja, se v # 0 e g(v,v) < 0). Uma
curvay: I CR — M, com I = ]a,b], —o0 < a < b < +o0, é, em cada um
dos seus pontos, classificada como sendo do tipo tempo, espaco, luz, nulo ou
causal de acordo com o seu vetor tangente nesse ponto. As geodésicas nao
alteram o seu tipo de ponto para ponto, facto que é consequéncia simples dos
seus vetores tangentes serem, por definicao, transportados paralelamente ao
longo delas. Por fim, uma hipersuperficie (diferenciavel) ¥ C M diz-se do

°0 conceito de variedade pseudo-Riemanniana é inteiramente anilogo ao da, mais
usual, variedade Riemanniana, exceto que nao se exige que a métrica seja definida positiva,
mas apenas ndo-degenerada. Chama-se Lorentziana ao caso particular em que um dos
valores proprios da métrica pseudo-Riemanniana tem o sinal oposto dos restantes.
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tipo espaco, nula ou do tipo tempo, se a sua normal (na métrica g) em cada
ponto for, respetivamente, do tipo tempo, nula ou do tipo espago.
Assumiremos sempre, também, a existéncia duma orientacao temporal
em (M, g), a qual corresponde a escolha dum campo vetorial © nao nulo, do
tipo tempo em cada ponto p € M. Obstrugoes topolégicas podem impedir a
existéncia de um tal campo vetorial global nao nulo do tipo tempo em cada
ponto, por isso nem todas as variedades Lorentzianas sdo temporalmente
orientaveis. Mas quando essa orientagao é possivel, o campo © permite que
se faga a definigdo, de uma forma diferenciavel ao longo da variedade, de um
dos dois cones causais, no espago tangente a cada ponto, como sendo aquele
cujos vetores apontam para o futurdﬂ Diremos entao que um qualquer vetor
tangente a variedade v € T, M (ou curva 7, usando nesse caso o seu vetor
tangente ), causal, estd orientado para o futuro se g(v,©,) < 0, ou seja, se
se encontra no mesmo cone causal em T, M que ©,,.
O exemplo mais simples dum espago-tempo é
(Rg’;l, 9) com g = —c*dt* + da? + dx3 + da? (8)
e orientado para o futuro por %. Trata-se do espaco-tempo de Minkowski,
que serve de cendrio para a teoria da relatividade restrita, mas que além disso
tem uma importancia que permeia toda a relatividade geral visto ser possivel
provar que, na vizinhanca de qualquer ponto dum espago-tempo arbitrario,
a estrutura causal é idéntica & de Minkowski. E por isso o paradigma local
de qualquer espago-tempo. O parametro c é a velocidade da luz, e observe-
se que uma curva v, quando parametrizada por t, é causal precisamente

quando satisfaz g(?j—z, Z—Z) < 0, ou seja

9 d.%‘l 2 dl‘z 2 d.%’g 2 da:l 2 d.i?z 2 d333 2 2

() () H(T) =0 (T) +( ) +(3) =&
Se supusermos que temos um referencial de inércia no qual as coordena-
das sao identificadas com as de , entdo as curvas causais sao aquelas
cuja velocidade é igual ou inferior a da luz nesse referencial, ou seja, sao
as trajetérias fisicamente admissiveis. Destas, as que sao retas correspon-
dem precisamente as geodésicas da variedade e representam o movimento
de particulas materiais livres, no caso de serem do tipo tempo, ou da luz,

no caso de terem velocidade exatamente igual a c. Estas propriedades de
curvas causais estendem-se a qualquer espaco-tempo.

5Quando uma variedade Lorentziana é temporalmente orientdvel, existem sempre duas
alternativas de escolha de orientacdo: uma das duas classes de equivaléncia de campos
vetoriais ndo nulos do tipo tempo, com a mesma orientacdo em cada ponto p € M.
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14 PVI PARA AS EQUACOES DE EINSTEIN

Daqui para a frente assumiremos que as unidades sao escolhidas de forma
a terem-se valores unitdrios para a velocidade da luz no vacuo e para a
constante de gravitagdo universal, ou seja, c =1 e G = 1. Designam-se por
unidades geometrizadas.

Sendo verdade que todo o espago-tempo é modelado por uma variedade
Lorentziana orientada temporalmente, tal nao significa que qualquer vari-
edade Lorentziana corresponde a um espacgo-tempo com significado fisico.
Albert Einstein introduziu as equagdes que hoje associamos ao seu nome,
em 1915 ([7]), exatamente como as leis que determinam a geometria do
espaco-tempo através da interacdo gravitacional causada pela presenca, ou
auséncia, de matéria e energia, de acordo com a sua teoria geral da relativi-
dade. Trata-se duma equacao tensorial, envolvendo a curvatura associada a
métrica, naturalmente invariante sob isometrias de modo a ser uma relacao
intrinsecamente geométrica.

No vécuo, as equagoes apresentam a sua forma mais simples

1

Ruy - §g,u,1/R = O, (9)
em que R, sdo as componentes do tensor de Ricci associado a métrica g
e R = g"R,, ¢éa curvatura escalalﬂ Relembrando que o tensor de Ricci
resulta do trago do tensor da curvatura, R, = R,,, e que este ultimo,
quando escrito em coordenadas locais, envolve derivadas de segunda ordem
das componentes da métrica g, estamos entdo em presenca, em @D, dum
sistema nao-linear de 10 equagoes diferenciais parciais de segunda ordem
para as 10 componentes independentes de g. Calculando o trago de @D (ou
seja, contraindo com ¢g"”, a inversa das componentes do tensor da métrica)
obtém-se R = 0, donde as equagoes de Einstein no vacuo sido equivalentes
ao anulamento do tensor de Ricci

Ry, = 0. (10)

Alids, designam-se os espacos-tempo que sao solugao de @D ou como
sendo Ricci-planos, por consistirem precisamente de variedades Lorentzianas
com curvatura de Ricci nula.

O exemplo mais 6bvio de solugao para as equacoes de Einstein no vacuo
é o espaco-tempo de Minkowski , que tem métrica com componentes
constantes nas coordenadas (t, z1, z2, z2) e portanto tem curvatura de Ricci
nula em todos os pontos. E a solucao trivial de @D ou . No entanto,

"Usamos, como habitualmente, a convencio de Einstein, em que a repeticio de indices
‘o . 3
. v < pv
representa um somatorio, por exemplo g"” R, significa E w09 Ruv.
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Figura 4: Einstein escrevendo as suas equagoes para o VACUO.

tal como a solucdo nula, u = 0, é a solucao trivial da equagao das ondas
livre Ou = 0, e isso ndo a impede de ter muitas outras solugdes nao obvias,
também as equagoes de Einstein no vacuo conduzem a variadissimos outros
espagos-tempo Ricci-planos, com uma grande diversidade e complexidade de
solucgoes, para além de Minkowski. Por exemplo, a métrica de Schwarzschild

2 2m\ !
g=— (1 - ;”) 2 + (1 - ;") dr? + rdog, (11)

em que dog: = df* + sin? 0 dp? é a métrica da esfera unitaria, também é
solugdo de (9) para t € ] — oo, +oo[ e r € ]0,2m[ ou r € |2m,+oc[. Na
verdade, a singularidade aparente em r = 2m, apenas devida a escolha das
coordenadas aqui usadas, ¢ um exemplo histérico famoso que ilustra bem as
dificuldades iniciais com que se defrontaram os primeiros investigadores, na
teoria geral de relatividade, sem terem ao seu dispor um desenvolvimento
paralelo ja maduro dos conceitos mais abstratos de geometria diferencial.
Com efeito, K. Schwarzschild descobriu esta solucao explicita das equagoes
de Einstein no vacuo logo em 1915, tendo sido publicada no ano seguinte,
como a analogia relativista do campo gravitacional Newtoniano criado no
exterior duma massa pontual ou com simetria esférica, com massa total m.
Como tal, é uma solucao esfericamente simétrica de @D ou , e pretendia-
se que tivesse significado fisico s6 para raios correspondentes a regiao exterior
da massa esférica - uma estrela ou um planeta - os quais sao tipicamente
muito superiores a r = 2m. A singularidade matematica de emr =2m
encontrar-se-ia normalmente, portanto, no interior da estrela, onde a solugao
nao teria sentido fisico. Foi s6 ao longo de varias décadas de investigacao que
se percebeu que esta singularidade era simplesmente um artefacto matema-
tico causado pela escolha de coordenadas em que se escrevia ([11]), mas que,
usando outras coordenadas, era possivel obter representacdes isométricas
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16 PVI PARA AS EQUACOES DE EINSTEIN

da mesma variedade, totalmente regulares através de r = 2m, com topolo-
gia global M = R x R x S?. A singularidade genuinamente intrinseca do
espago-tempo de Schwarzschild situa-se s6 em r = 0. Mais importante que
isso, percebeu-se que na regidao r € |0, 2m| algumas propriedades invulgares
tinham lugar: enquanto que % e % sd0, como a intuicdo leva a assumir,
respetivamente do tipo tempo e do tipo espaco em r > 2m, os seus tipos
invertem-se em r < 2m; geodésicas causais, ou seja, aquelas que correspon-
dem fisicamente a particulas materiais em queda livre, ou a luz, que tenham
inicio em r < 2m sdo incompletas, terminando numa singularidade em r = 0
e nunca conseguindo escapar, para futuro ou para o passado - nem a prépria
luz - da regiao r < 2m. Tinha-se assim a primeira solu¢gao matematica das
equagoes de Einstein no vacuo exibindo uma regiao que se denominou de
buraco negro (assim como um correspondente buraco branco) cuja fronteira,
chamada de horizonte de eventos, se situa precisamente em r = 2m. Um te-
orema importante devido a Birkhoff mostra ainda que a familia de solugoes
de Schwarzschild é, na verdade, a solugdo mais geral possivel de @D ou
sob condigoes de simetria esférica, concluindo que qualquer solugao com essa
simetria é localmente isométrica a . Em particular, a propria métrica
de Minkowski é um desses casos: corresponde evidentemente a m = 0. Dito
doutra forma, a simetria esférica impoe um grau de rigidez as equagoes de
Einsteirﬁ no vacuo, que nao permite qualquer liberdade dindamica, pelo que
todas as solugdes se restringem a familia de Schwarzschild.

Mais recentemente, em 2009, num trabalho de extrema profundidade
([]), Demetrios Christodoulou provou que é mesmo possivel a formagcao di-
namica de buracos negros para as equacoes de Einstein no vacuo, ou seja,
criados apenas pela evolucao gravitacional atuando sobre si mesma - natu-
ralmente sem simetria esférica, pelo que acabamos de ver acerca do teorema
de Birkhoff - questdao que até essa data estava completamente em aberto.

Em resumo, queremos sublinhar que mesmo as equagoes de Einstein na
sua forma mais simples, no vacuo, com total auséncia de matéria ou ener-
gia, em que os efeitos gravitacionais sobre a geometria do espago-tempo sao
apenas resultantes da dindmica autonoma interna, sao ja de si suficiente-
mente complexas para serem motivo de alguma da investigacdo atual mais
avancada, mesmo no que concerne questoes aparentemente basicas. O que
nao é de surpreender, alids, em face da sua estrutura fortemente nao linear,
aliada a um contexto geométrico altamente nao trivial.

8 As solucdes esfericamente simétricas assumem particular relevincia em relatividade
geral porque servem de modelos astrofisicos para o campo gravitacional de corpos celestes
isolados.
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A introducdo de matéria ou energia no modelo gravitacional torna o
problema ainda mais complexo. Com efeito, tal como as forcas externas sao
uma fonte do movimento ondulatorio, adicionadas ao lado direito da equagao
das ondas , também a forma como se incorpora a presenca da matéria e
energia nas equacoes de Einstein é através dum termo tensorial adicionado ao
lado direito de @D, que pode identicamente ser interpretado como uma fonte
externa de curvatura do espaco-tempo: trata-se do denominado tensor da
energia-momento, habitualmente designado em componentes por 7),,. Mas
o problema nao termina ai, porque agora 7}, terd de ser dado em termos
de quantidades que modelam a matéria, as quais obedecem por sua vez as
suas préprias equacdes constitutivas. Deixamos de ter apenas um sistema
de equacoes de Einstein, para a geometria do espago-tempo, para ter agora
um sistema de equacoes de Einstein e equagoes de matéria, que se acoplam
mutuamente, de forma altamente nao-linear: a geometria do espago-tempo
afeta as equacoes estruturais da matéria, a qual por sua vez afeta as equagoes
de Einstein pelo tensor da energia-momento. Para completar o sistema, é
ainda habitual acrescentar um outro termo de fonte, externo ao tensor da
energia-momento: trata-se da denominada constante cosmoldgica A, que
fisicamente pode ser interpretada como a densidade de energia do Vzicuﬂ
Um sistema completo de equagoes de Einstein e matéria serd assim algo da
forma,

Rp,l/ - %gm/R = _Ag;w + 87 T;w:
(12)
Equagoes da matéria/energia.

Observe-se que, pelas identidades de Bianchi, o lado esquerdo de ((12)) tem
divergéncia nula pelo que, obrigatoriamente, o tensor da energia-momento
para qualquer modelo de matéria e energia terd que necessariamente satis-
fazer também a seguinte restricao

VAT, = 0.

9Foi o préprio Einstein o primeiro a introduzir a constante cosmolégica, de forma a
compensar o que ele imaginava ser o inerente colapso gravitacional e consequente contracio
do universo dado pelas suas equagodes, e assim produzir um universo estdtico, que se
suponha a época ser a realidade. No entanto, pouco tempo depois, apds as observagoes
iniciais de Hubble que demonstraram a expansdo aparente do universo, Einstein removeu
a constante cosmoldgica, tendo entdao dito uma das suas frases mais famosas, de que a sua
introducdo nas equagdes tinha sido o maior erro da sua vida. Mas na verdade, verifica-se
atualmente que a presenca da constante cosmoldgica parece ser de facto a melhor forma
de modelar a expansao acelerada do universo.
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Mas nao iremos, neste texto, aprofundar esta forma mais geral do problema,
visto que ela requer especificacées concretas para cada um dos modelos de
matéria. Restringir-nos-emos essencialmente, portanto, ao problema das
equagoes de Einstein no vacuo @[), as quais formam um sistema fechado,
passivel de ser resolvido autonomamente sem serem necessarias mais equa-
¢Oes para o completar, e que s por si ja contém a esséncia das propriedades
- e das dificuldades também - associadas a formulagdo e resolugao do pro-
blema mais geral. Faremos apenas comentarios acessorios relativos a ,
quando isso for relevante.

3.2 Hiperbolicidade global e formulagao do problema de va-
lor inicial

Em face do que foi exposto até agora, e dado o contexto fortemente geo-
métrico, a impressao com que se fica, relativamente a obtencao de espacos-
tempo com significado fisico, é que o processo passara por tentar construir
explicitamente variedades Lorentzianas globais cujas métricas, quando escri-
tas num sistema de coordenadas locais, satisfacam as equagoes de Einstein.
E, de facto, foi esse o procedimento seguido ao longo de véarias décadas, apds
a formulacao de teoria da relatividade geral e das correspondentes equagcoes,
por Einstein, em 1915, com a construcao de variadas solugoes explicitas, e
a sua interpretacao fenomenoldgica fisica, de que sdo exemplos a solugao de
Schwarzschild descrita na seccao anterior, os espacos de de Sitter e anti-de
Sitter, os modelos cosmolédgicos de Friedmann-Lemaitre-Robertson-Walker,
os espacos-tempo de Kerr que generalizam a solucdo de Schwarzschild ao
descreverem buracos negros em rotagao, etc.

A formulagdo adequada do problema de valor inicial para as equacoes
de Einstein, e a sua posterior resolucao, foi algo que levou décadas a ser
devidamente compreendido e estabelecido. Isso deve-se, naturalmente, a ra-
dical diferenca que distingue as equacoes da relatividade geral das outras
equacgoes diferenciais parciais da fisica classica, quer na sua complexidade
quer, acima de tudo, no seu teor geométrico intrinseco. Com efeito, em
qualquer das equagoes da fisica cldssica, como as descritas na Secgdo 2] a
geometria do dominio onde se procura a solucdo esté prescrito e é conhecido
a priori, mesmo nos casos mais complexos onde a equacao é dada em domi-
nios nao euclidianos (como por exemplo, se se quiser resolver a equagao do
calor com vista a obter a evolucao, no tempo, da temperatura numa super-
ficie esférica). Ou seja, nas equagoes da fisica cldssica, buscam-se solugoes
desconhecidas, mas que evoluem sobre um dominio com uma geometria pre-
viamente dada e conhecida. Nas equagoes de Einstein, no entanto, a solugao
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- a métrica do espaco-tempo - é ela propria o fator essencial que descreve o
dominio, pelo que este é, no fundo, dado pela propria solucdo desconhecida.
Por outras palavras, resolver as equacoes de Einstein consiste precisamente
em determinar a geometria do dominio da solugao, como se este fosse sendo
revelado a medida que a evolucao da solugao vai sendo obtida.

Uma segunda dificuldade, inerente ainda a formulagao geométrica intrin-
seca das equagoes de Einstein, advém do facto de, consoante as coordenadas
locais escolhidas, as equacbes poderem assumir naturezas aparentemente
muito diferentes: trata-se da chamada liberdade de gauge. Por isso, até o
carater evolutivo das equagoes foi uma propriedade obscurecida ao longo de
varios anos pela falta de compreensao dos conceitos abstratos de geometria
diferencial, no inicio do séc. XX, em particular no que toca a invaridncia
das equagoes sob difeomorfismos, ou mudanca de coordenadas locais. Alids,
foi o proprio Albert Einstein o primeiro que, na tentativa de deduzir que o
campo gravitacional se propaga a velocidade da luz, recorrendo a uma per-
turbacao linear das suas equagcoes em torno da solucao de Minkowski, obteve
um sistema de equacgoes de onda quando escritas em coordenadas locais es-
pecificas. Ainda assim, a dificuldade em compreender totalmente o conceito
de invariancia geométrica, aliada a nao existéncia de uma teoria estabele-
cida de equacgdes hiperbdlicas, levou Einstein a hesitar acerca do carater
dindmico das equagoes, insistindo mais na ideia errada de que a distribui-
¢ao de matéria, através do tensor energia-momento 7),,, devia determinar
de forma unica a métrica do espaco-tempo. Numa perspetiva geométrica
moderna, sabemos hoje que se forem escolhidas coordenadas adequadas, as
chamadas coordenadas de onda (ou coordenadas harménicas para a métrica
Lorentziana), que satisfazem

gz =0, (13)

onde L1, = V?V, designa o operador das ondaﬂ sobre uma variedade
Lorentziana de métrica g, as equagoes de Einstein assumem a forma dum

ONa verdade O, = V*V,, nio é mais do que o Laplaciano associado & métrica Lorent-
ziana ¢, dado em coordenadas locais por

VoVaf = —=0a Vil 051 ),
Val

onde |g| = |detgap|- Normalmente designado como operador de Laplace-Beltrami,
em variedades Riemannianas, a sua definicdo extende-se a qualquer variedade pseudo-
Riemanniana. Quando a métrica é Lorentziana, o operador deixa de ser eliptico, como no
caso Riemanniano, para passar a ser hiperbdlico, e generaliza assim a definicdo habitual
do operador das ondas [J visto em @, o D’Alembertiano, o qual portanto é simplesmente
o Laplaciano no espago de Minkowski correspondente Rf’f.
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sistema geral do tipo

Dg Juv = Q,uu(ga Gg),
onde () é um termo quadratico nas derivadas de primeira ordem da métrica
g.

Estamos, portanto, em presenca dum sistema de equacoes que deve ser
visto como tendo um carater evolutivo hiperbdlico, nao linear, andlogo ao
das equagoes das ondas descritas na Secgao[2] Poe-se agora a questao do sig-
nificado, e da forma que tera, o problema de valor inicial para um tal sistema.
Nas equagoes da fisica cldssica, essa formulacdo é razoavelmente intuitiva:
existe uma variavel preferencial, que habitualmente descreve o tempo, para
a qual se escolhe um instante de partida da evolugdo, num dominio conhe-
cido; a restricdo do dominio a esse instante de partida é normalmente uma
hipersuperficie, na qual se impdem os dados iniciais da solu¢ao. Mais geral-
mente, o problema de Cauchy pode ser formulado com dados iniciais sobre
uma hipersuperficie do tipo espaco, como se viu a proposito da equacao das
ondas, na Secg¢ao[2], fazendo evoluir a solugao a partir daf, ao longo da varia-
vel tempo. Mas para as equacoes de Einstein, uma tal formulacao parece ser
totalmente impraticavel. Por um lado, dada a invaridancia geométrica, nao
existe nenhuma coordenada preferencial candénica que se possa eleger como
aquela que representa o tempo e cujo valor fixo seria o instante de partida.
Por outro lado, mesmo que isso fosse possivel, a situagao é extremamente
confusa: como se pode selecionar um instante inicial, ou uma hipersuperficie
do tipo espaco, numa variedade Lorentziana que ainda nao existe, porque a
métrica que a descreve é precisamente a solugdo que se procura obter pela
resolucao do problema de valor inicial?

Parece assim ser necessario conhecer-se todo o espaco-tempo a priori,
para se poder formular adequadamente o problema de valor inicial. Mas
como o espago-tempo é a prépria solugao, se o conhecermos a priori, entao
a solucao estd desde logo determinada e o problema de valor inicial torna-se
totalmente irrelevante. Nao admira que tenham sido precisos tantos anos
para, corretamente, formular o problema de Cauchy para as equagoes de
Einstein e estabelecer o seu lugar central na relatividade geral, como o é
para as outras equagoes da fisica cldssica.

Para fazer frente as dificuldades acabadas de descrever e resolver este
imbroglio, fazem-se duas coisas: primeiro, recorre-se a uma abordagem, e
a definicao de conceitos, duma forma geométrica invariante, para que nao
haja qualquer tipo de dependéncia nalguma escolha especifica de sistema
de coordenadas; segundo, imagina-se, de facto, o espago-tempo completo
a priori... sem realmente ainda ter sido obtido. E, do fim para o inicio,
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analisa-se qual a formulagdo correta dum problema de valor inicial que lhe
daria origem. Assim, tendo presente as propriedades de propagacao para
as equagoes das ondas, bem como as relagoes de causalidade e o principio
do dominio de dependéncia, teremos de ter, em analogia com o que vimos
na Secg¢do [2] ndo um tempo inicial - porque nao existe nenhuma varidvel
preferencial que represente o tempo - mas uma hipersuperficie inicial do
tipo espaco, sobre a qual serdo impostos os dados iniciais, ou seja, o valor da
solugao, assim como da sua derivada na dire¢do ortogonal a hipersuperficie.

Na descricao efetuada na Secgdo [2] percebeu-se que a necessidade da
superficie inicial ser do tipo espago prende-se com o facto de evitar que os
dados iniciais se propaguem a prépria superficie pela evolucao, coisa que po-
deria causar restrigoes na imposicao desses dados, ou contradi¢bes no caso
de dados arbitrarios, que levariam a mé colocagao do problema de valor ini-
cial. Diz-se, em relatividade geral, que se tem um subconjunto acausal se
nenhum ponto desse conjunto puder ser ligado a outro, por uma curva cau-
sal. A ideia desta definicao é exatamente a mesma: excluir conjuntos para
os quais a informagao se propague - e ja sabemos que s6 ha propagacao de
informacao ao longo de curvas causais - a outros pontos do mesmo conjunto.
Mas ao contrario da equacao das ondas no espago euclidiano, em que a ge-
ometria plana do correspondente espaco-tempo de Minkowski RZ;H garante
que, ao ser do tipo espago, isso é condicao suficiente para uma superficie
inicial ser acausal, no caso duma variedade Lorentziana geral a sua topolo-
gia nao trivial pode levar curvas causais, que partem da superficie inicial do
tipo espago 3, a intersetd-la varias - até infinitas - vezes. Com efeito, ser do
tipo espago é uma condigao apenas local, e ndo evita a ocorréncia deste tipo
de patologias numa escala global. Um exemplo simples onde este problema
ocorre consiste em “enrolar” o espago-tempo de Minkowski ]RZ;H na variavel
t, transformando-o num cilindro. Faz-se isso, por exemplo, através da iden-
tificacio t ~ ¢ + 1 com a métrica de Minkowski g = —dt? + dz? + dz3 + dz?
induzida sobre a variedade quociente RZ;LI /t ~ t+1. Qualquer curva causal
7, do tipo tempo, evoluindo para o futuro a partir de ¥ = {t = 0} even-
tualmente voltara a superficie inicial quando t = 1, como se representa na
figura seguinte. A superficie do tipo espaco ¥ = {t = 0}, que no espago
de Minkowski plano é acausal, aqui deixa de o ser. Uma patologia mais
dramaética, no mesmo exemplo, consiste em considerar uma curva do tipo
tempo com coordenada z fixa: uma tal particula material evoluiria para o
futuro a partir de ¢t = 0 e chegaria ao seu passado quando ¢t — 1.

Queremos evitar este tipo de patologias cronolégicas, em particular esta
ultima, de particulas materiais poderem viajar para o seu passado, ao longo
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Figura 5: Superficie 3 do tipo espaco nao acausal.

de curvas de tipo tempo percorridas para o futuro (dando origem ao fa-
moso “paradoxo do av6”)El Mas também queremos evitar ainda outra
situacao, na qual pontos do espago tempo possam nao comunicar com a
superficie inicial. Na verdade, devido ao principio do dominio de dependén-
cia, que é o ingrediente fundamental da garantia de unicidade de solucoes
do problema de valor inicial para equacdes do tipo hiperbdlico, como vi-
mos na Seccao [2], pretende-se que toda a informagdo causal de qualquer
ponto do espago-tempo provenha da superficie inicial. Designa-se assim por
desenvolvimento de Cauchy futuro (passado) de uma superficie acausal 3
duma variedade Lorentziana, e representa-se por D' (X) (D~ (X)), o con-
junto dos pontos tais que, qualquer curva causal inextensivel para o passado
(futuro) a partir deles, interseta XE Naturalmente chama-se desenvol-
vimento de Cauchy (total) de ¥ & reunido dos desenvolvimentos futuro e
passado, D(X) = D*(X) U D™(X). Observe-se, na Figura [6] que todas as
curvas causais para o passado, com inicio no ponto P intersetam . Ja o
mesmo nao ¢ verdade relativamente ao ponto O, que é causalmente depen-
dente de informacao proveniente, nao s6 de ¥, mas também da fronteira de
M. Donde P € DT(X) mas O ¢ DT(X). As regides a branco nessa figura
sao, portanto, pontos do espago-tempo em que a previsibilidade da solugao
nao decorre exclusivamente da evolucdo a partir de ¥: dado o caracter hi-

"Diz-se que um espaco-tempo é cronoldgico ou que satisfaz a condicdo cronoldgica
quando esta patologia ndo ocorre, ou seja, quando nao existem curvas fechadas do tipo
tempo.

12Na teoria matematica da relatividade geral, também se chama dominio de dependéncia
de X ao seu desenvolvimento de Cauchy. No entanto, como vimos na Secgao [2] a mesma
terminologia ja é usada na teoria de equagées hiperbélicas para designar algo ligeiramente
diferente, podendo causar alguma confusdo: observando a Figura [2] o que af se chama
dominio de dependéncia do ponto (t1,z1) é o que, em relatividade, se chama de passado
causal desse ponto, ou seja, o conjunto de pontos no seu passado que o podem causalmente
afetar e, portanto, dos quais o valor da solu¢do em (¢1,21) depende. Na terminologia da
relatividade matematica esse conjunto é o desenvolvimento de Cauchy futuro - ou também
dominio de dependéncia futuro - da bola , sobre a superficie t = tg. Para evitar esta
confusdo de nomenclatura, usaremos exclusivamente a designagdo de desenvolvimento de
Cauchy dum conjunto, no &mbito da relatividade geral.
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Figura 6: Desenvolvimento de Cauchy de ¥ num espago-tempo M.

perbdlico das equagoes de Einstein, é de novo possivel seguir um argumento
de dominio de dependéncia para provar que os dados em Y garantem unici-
dade da solugdo, mas apenas no desenvolvimento de Cauchy D(X), tal como
na Figura os dados na bola garantem unicidade da solugao da equagao
das ondas apenas no cone com vértice em (t1,x1).

Do ponto de vista da formulacdo dum problema de valor inicial, é assim
razoavel s6 definir como solucao das equagoes de Einstein um espago-tempo
M no qual a superficie inicial ¥ seja acausal e cujos dados iniciais garantam
previsibilidade global, ou seja, tal que M = D(X). Nesse sentido, define-se
entdo o conceito de (hiper)superficie de Cauchy, como sendo uma hipersu-
perficie ¥ C M, do tipo espaco, tal que qualquer curva causal inextensivel
em M interseta Y uma e uma sé VezEl E diz-se que um espacgo-tempo M
é globalmente hiperbolico se possui uma superficie de Cauchy ¥ C M. De
acordo com estas defini¢Oes, tem-se que, quando o espago-tempo M é glo-
balmente hiperbdlico e 3 é uma sua superficie de Cauchy, necessariamente
D(X) = M. Ou seja, toda a variedade Lorentziana M globalmente hiper-
bélica esta sujeita ao principio de dominio de dependéncia duma evolugao a
partir da superficie de Cauchy X: a solucao das equagoes de Einstein sera,

13Em rigor, é habitual definir-se uma superficie de Cauchy a partir duma condicio um
pouco mais fraca: apenas como um subconjunto do espago-tempo tal que qualquer curva
do tipo tempo, inextensivel, o interseta uma e uma s6 vez. L possivel provar-se que,
nesse caso, essas superficies de Cauchy sao apenas hipersuperficies topolégicas (ou seja,
sem estrutura diferencidvel e portanto possivelmente ndo suaves) tais que M = D(X) e
acronais - ou seja, tais que curvas do tipo tempo a intersetam uma tinica vez, podendo
as do tipo luz intersetar em infinitos pontos. No entanto, esta definicdo mais fraca de
superficie de Cauchy conduz exatamente a mesma defini¢cdo de hiperbolicidade global do
espago-tempo, no qual é sempre possivel obter superficies de Cauchy suaves (pelo menos
C"), do tipo espago, como optdmos por definir para simplificar a apresentacio (ver [I3]
ou [I6] para uma exposicao cuidadosa das hierarquias de causalidade de espagos-tempo).
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portanto, inica em todo M para dados iniciais devidamente impostos so-
bre ¥. Além disso, num espago-tempo globalmente hiperbdlico é sempre
possivel definir uma fungao temporal de Cauchy: uma funcao diferenciavel
7: M — R, tal que o seu gradiente V7 ¢é do tipo tempo, para o passadﬂ e
cujas superficies de nivel . = 771(c), ¢ € R, sdo hipersuperficies de Cauchy,
difeomorfas entre si. Alias, dada uma superficie de Cauchy ¥ C M também
é sempre possivel escolher essa fungdo temporal 7 tal que ¥ = 771(0), e o
espaco-tempo ¢ difeomorfo a R x X. A existéncia de funcoes temporais é a
garantia que as patologias cronolédgicas, como o caso da existéncia de cur-
vas do tipo tempo fechadas, estao excluidas dos espagos-tempo globalmente
hiperbélicos.

Exemplo 6bvio de um espago tempo globalmente hiperbdlico é o espago
de Minkowski , sendo que qualquer plano ¢ = ¢ € R é uma superfi-
cie de Cauchy. A fungdo temporal natural é a prépria variavel ¢, ou seja,
7(t, x1, 2, x3) = t, cujas hipersuperficies de nivel sdo precisamente os planos
de t constante. O espaco-tempo de Schwarzschild também ¢é global-
mente hiperbélico, com superficie de Cauchy, por exemplo, correspondendo
at = 0. Neste caso nao se trata dum plano, mas duma hipersuperficie
do tipo espaco com duas terminacoes assimptoticamente planas, como se
representa na Figura [7}

[ S 2\

ﬂrﬂﬁl lrr )

1; :.1“ ;1,',-;
4-_‘

W

1 r ‘
,4;, )nm‘;:' =<\
JECEAE ),
"'f.-‘ =\

Figura 7: Configuracao topoldgica da superficie de Cauchy t = 0 para o
espago-tempo de Schwarzschild.

Espagos-tempo nao globalmente hiperbodlicos também sao faceis de obter.
Além de exemplos esqueméticos, como o da Figura[6, um exemplo ja visto é
0 espaco quociente de Minkowski R"+1 /t ~ t+ 1 representado na Figura
Outro, bastante natural consiste em simplesmente remover um ponto, por

MDevido ao sinal negativo da métrica Lorentziana para vetores causais orientados para
o futuro, isso significa que 7 cresce ao longo de curvas causais percorridas para o futuro,
. . dr (s .
pois se v é uma tal curva, tem-se % =dr(§(s)) = g(7(s), V1) > 0.
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exemplo a origem, ao espaco-tempo de Minkowski, como se representa na
Figura[§]

A
O

D(X)

/\ >

Figura 8: O espaco-tempo de Minkowski sem a origem, R3*+1\ (0,0,0,0),
nao é globalmente hiperbdlico. Representa-se o desenvolvimento de Cauchy
D(Y) duma superficie ¥ do tipo espago que passa abaixo da origem, mas o
problema seria o simétrico se passasse acima.

Os espagos-tempo, portanto, podem nao ser globalmente hiperbdlicos
por duas razbdes: ou porque nao é possivel obter uma hipersuperficie
acausal, apesar de qualquer curva causal a intersetar (necessariamente mais
que uma vez, nalguns casos) como ¢é a situagdo da Figura [5f ou porque
existirdo sempre pontos do espago-tempo cuja dependéncia causal nao é
garantida exclusivamente por X, qualquer que seja essa hipersuperficie, como
é o caso das Figuras [f] e Nesta ultima situacdo, em analogia com a
teoria classica de equagoes diferenciais parciais, seria necessario acrescentar
condigoes de fronteira, para além das condic¢Oes iniciais em X: na fronteira
de M, no caso da Figura [0 ou na origem, no caso da Figura [8]

Os espacos-tempo globalmente hiperbdlicos sdao assim aqueles que tém a
estrutura precisamente adequada para a formulacao dum problema de valor
inicial. No fundo, é aquilo que se tem habitualmente no espaco euclidiano,
da teoria de equacoes diferenciais parciais de evolucao classica. Em resumo:
existe uma superficie inicial, dita de Cauchy, do tipo espaco, a partir da qual
a evolucao dos dados iniciais permite controlar a previsibilidade da solugao
sobre todo o espaco-tempo, pelo que este estd assim globalmente sujeito ao
principio do dominio de dependéncia, assegurando portanto unicidade de
solugbes em todo o dominio; existe uma fungdo (ndo canénica) que desem-
penha um papel andlogo ao do tempo, crescente ao longo de curvas causais
orientadas para o futuro, e cujos conjuntos de nivel folheiam o espago-tempo
por superficies do tipo espaco, difeomorfas a superficie de Cauchy inicial, a
qual corresponde ao conjunto de nivel onde esse tempo vale zero.
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Mas somos de novo confrontados com o problema ja descrito atras: esta
estrutura de hiperbolicidade global, e superficies de Cauchy, requer a existén-
cia prévia de um espago-tempo (M, g), sendo que na formulacao do problema
de valor inicial esse espacgo-tempo é a solugdo e, portanto, é desconhecido
a partida. Como determinar entdao uma superficie de Cauchy dum espaco-
tempo globalmente hiperbdlico que ainda nao existe, onde queremos impor
as condigoes iniciais? Numa variedade Lorentziana (M, g) a restrigdo da sua
métrica g a uma hipersuperficie ¥ C M do tipo espaco é definida positiva,
pelo que (%, g|2) serd sempre uma variedade Riemannianalﬂ Claro que, a
partida, nao existe M nem a métrica global g, pelo que ndo poderemos falar
da sua restricdo a . Por isso, seguindo a estratégia de analisar o sistema
do fim para o inicio, para formular convenientemente um problema de valor
inicial que daria origem ao espago-tempo idealizado, o que faremos é partir
duma variedade Riemanniana (3, g) isolada a qual, a posteriori, depois de
obtida uma solugao globalmente hiperbdlica (M, g), possa ser identificada
(isometricamente) com uma hipersuperficie de Cauchy de M, e portanto §
com a restrigdo de g a essa hipersuperficie.

A métrica g corresponde ao valor da solugdo sobre a superficie Rieman-
niana inicial. Mas tratando-se as equagoes de Einstein dum sistema do tipo
das equagoes de onda, vistos na Seccao[2] falta ainda impor a derivada da so-
lucdo, na direcao ortogonal a superficie, para completar as condigoes iniciais
dum problema de valor inicial bem posto. De novo assumindo que se tem a
posteriori a solucao completa, ou seja, um espaco-tempo globalmente hiper-
bélico (M, g), no qual ¥ é uma superficie de Cauchy, o andlogo a derivada da
solucdo na direcao normal a hipersuperficie é a segunda forma fundamen-
tal de . Relembramos que, para uma hipersuperficie > duma variedade
Riemanniana, ou pseudo-Riemanniana, (M, g), a segunda forma fundamen-
tal K é um campo tensorial simétrico 2-covariante em ¥ (ou seja, em cada
ponto p € ¥ definida em pares de vetores tangentes a ¥ nesse ponto), que
corresponde a (metade da) derivada de Lie da métrica na direcdo de um
(dos dois possiveis) vetor unitério ortogonal a superficie:

K(u,v) = %(ﬁNg)(u, v).

Naturalmente, a segunda forma fundamental muda de sinal consoante o

5Entende-se aqui por restricio g)s, da métrica g a hipersuperficie ¥ como o pullback
g, = t"g em que i : ¥ — M é o mergulho de ¥ em M, como subvariedade, através
da identidade. Por outras palavras, a restricdo da métrica ndo é simplesmente a métrica
ambiente g de M restringida aos pontos do subconjunto ¥, mas é também restringida a
uma métrica em X, ou seja, definida apenas sobre os vetores do fibrado tangente 7%, e
portanto reduzida s6 as componentes relativas aos vetores tangentes a hipersuperficie.
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sentido da normal unitaria N convencionado para a sua definicdo. Em rigor,
para que a derivada de Lie, Lyg, esteja bem definida, esta formula exige
que N seja um campo vetorial em M, portanto teria de ser estendido dum
campo vetorial ortogonal, apenas definido sobre Y, para uma vizinhanca da
superficie na variedade ambiente M. Nao é, no entanto, dificil provar que
esta definicdo é independente da extensao e que, na verdade, depende s6
mesmo dos valores pontuais dos vetores u,v e N em cada p € X, podendo
ser dada simplesmente por

Kp(u,v) = —gp(Vyv, Np), (14)

para u,v € 1,3, onde v, no lado direito da definigao, designa uma qualquer
extensao arbitrdria de v € T,X a um campo vetorial na vizinhanca de p e V
designa a conexao de Levi-Civita em M, ou seja, V,v é a derivada covariante
de v na direcdo u na variedade ambiente M. Para espacos-tempo em que
¥ é do tipo espago, convenciona-se que N, é a normal (portanto, do tipo
tempo) que aponta no sentido futurﬂ Invertendo de novo o raciocinio,
tal como fizemos para o proprio valor da métrica sobre a hipersuperficie de
Cauchy inicial, o que faremos agora é definir também um campo tensorial
simétrico 2-covariante K sobre a variedade Riemanniana (3, 3), que ja esta-
mos a usar para representar isoladamente a superficie inicial. A posteriori,
depois de obtida a solu¢ao globalmente hiperbdlica (M, g) e feita a identi-
ficacdo de ¥ com uma hipersuperficie de Cauchy em M, K corresponderd
a segunda forma fundamental K de ¥ como uma subvariedade mergulhada
em M, desempenhando assim o papel correspondente a derivada ortogonal
a superficie de Cauchy, para os dados iniciais duma equagao do tipo das
ondas.

Apesar de ja suficientemente complexa toda esta construcao, e parecendo
que a imposicao dos valores de g e da segunda forma fundamental K sobre
a hipersuperficie inicial seriam suficientes para encerrar a escolha dos dados
iniciais do problema de valor inicial, tal como u e d,u sdo suficientes para
uma equagao classica das ondas sobre uma hipersuperficie do tipo espaco,
de acordo com o que vimos na Sec¢ao [2] ainda assim as dificuldades para
a correta formulacdo do problema de Cauchy para a equacdo de Einstein
nao terminam aqui. As equagoes de Gauss-Codazzi relacionam a curvatura
de subvariedades com a da variedade ambiente, através da segunda forma
fundamental e, por isso, impoem restricoes a estes dados iniciais, visto que

De acordo com (14]), é possivel fazer uma outra interpretacio da segunda forma fun-
damental duma hipersuperficie ¥ do tipo espago: como a componente ortogonal a ¥ (na
métrica g), para o passado, da derivada covariante ambiente de v na diregdo u, V,v.
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a curvatura do espago ambiente, no caso dum espaco-tempo, estd condici-
onada a satisfazer as equacoes de Einstein. Obtém-se assim o sistema de
equagoes de restricao aos dados iniciais, para o sistema acoplado de equagoes
de Einstein com modelo de matéria

R+ (K!)? = Ki;K7 = 167 T, N"N" + 24, (15)

V] -V = 16T as

em que ReK representam, respetivamente, a curvatura escalar e a segunda
forma fundamental da hipersuperficie X, com a métrica induzida pela mé-
trica ambiente g = g, e V é a conexdo em ¥ compativel com §. Do lado
direito de e , T é o tensor de energia-momento, que modela a pre-
senca de matéria e energia nas equacoes de Einstein, como visto na Seccao
A é a constante cosmoldgica, N é a normal unitaria a > de (14) e II é
o pullback da variedade ambiente, o espago-tempo (M, g), para a hipersu-
perficie . Observe-se, para concluir, que os indices romanos, relativos as
componentes dos tensores em ¥ percorrem apenas trés indices, i, j = 1, 2, 3,
visto que a hipersuperficie é tridimensional, enquanto os indices gregos, rela-
tivos as componentes tensoriais no espago-tempo, percorrem quatro indices
w,v=20,1,2,3.

No caso de vacuo, e na auséncia de constante cosmoldgica, ou seja, para
as equacoes de Einstein @D ou , o sistema de restrigoes as condi¢oes
iniciais reduz-se a

R+ (K)?— K ;K9 = o, (17)
VK] - VK = 0. (18)
Quer e , quer e , formam dificeis sistemas de equagoes

diferenciais parciais de tipo eliptico, e mesmo s6 a sua resolucao é motivo
de alguma da investigacdo matematica atual. Donde podemos concluir que
a formulagdo do problema de valor inicial para o sistema das equacoes de
Einstein, acoplado a modelos de matéria, ou mesmo s6 em vacuo, é de uma
complexidade tao grande que se torna um problema em si mesmo, s6 para
a escolha dos dados iniciais, antes mesmo da tentativa de resolugao das
equacoes propriamente ditas, para a obtencdo do espago-tempo.

Podemos finalmente enunciar o problema de valor inicial para as equa-
¢oes de Einstein, no vacuo.

Problema de Valor Inicial: Seja > uma variedade tridimensional, § uma
métrica Riemanniana em ¥ e K um tensor simétrico 2-covariante. Cha-
mamos a (X, g, K) dados iniciais para as equagoes de Einstein no vacuo,
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sem constante cosmoldgica, se satisfazem as equacgoes de restricao e
(18). Nesse caso, designa-se por solu¢ao do problema de valor inicial, ou de-
senvolvimento de Cauchy dos dados iniciais, um espago-tempo globalmente
hiperbdlico (M, g), cuja métrica satisfaz as equagoes @D ou e tal que
existe um mergulho i : ¥ — M em que i(X) é uma superficie de Cauchy de
M, e g, K coincidem, respetivamente, com a métrica induzida por (M, g)
na subvariedade i(X) e com a correspondente segunda forma fundamental
K, ouseja, j =i*g e K = i*K.

Para encerrar esta secgao, fazemos notar apenas dois detalhes:

e No caso do sistema acoplado das equagoes de Einstein com um modelo
de matéria ou energia , é necessario também acrescentar aos dados
iniciais geométricos (3, g, K ), para o espago tempo, dados iniciais para
a evolucdo dindmica do modelo de matéria sobre a superficie inicial
>, os quais dependem do tipo de modelo de matéria considerado e
das correspondentes equacdes de evolugdo acopladas as equagoes de
Einstein. De qualquer forma, os dados iniciais para a matéria, conjun-
tamente com os do espago-tempo, terdo agora de satisfazer as equagodes

de restricao e .

e Dois espagos-tempo (M,g) e (M',¢') consideram-se como sendo a
mesma solucao do problema de valor inicial para as equagoes de Eins-
tein, se existir uma isometria entre eles ¢ : M — M’ ou seja, um
difeomorfismo que satisfaz ¢ = ¢*¢/, e que além disso, preserva a
superficie inicial. Este dltimo facto significa que, se i : ¥ — M e
i+ ¥ — M’ forem os mergulhos dos dados iniciais, de acordo com a
definicao anterior de solucao para o problema de valor inicial, entao
i = ¢ oi. Esta identificacao de solucoes, a menos de isometrias, torna
as questoes de unicidade particularmente delicadas e dificeis, como
veremos na seccao seguinte.

3.3 Existéncia e unicidade de solucgoes

Nao é objetivo deste texto, nem seria aqui possivel, fazer uma exposicao ade-
quada, mesmo que superficial, da teoria de existéncia e unicidade de solugoes
para as equacoes de Einstein. Recomendamos, mais uma vez, a excelente
apresentacao em [I6], para os leitores interessados em aprofundar os conhe-
cimentos necessarios a compreensao detalhada e completa do problema de
valor inicial para as equacdes de Einstein, assim como dos métodos mate-
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maticos usados para obter os resultados mais fundamentais de existéncia e
unicidade de solugoes. Outros livros de referéncia sao [1] ou [14].

Por um lado, uma abordagem minimamente cuidadosa dos resultados
de existéncia e unicidade, até evitando entrar nos detalhes completos das
demonstracoes, requereria um nivel técnico matematico muito superior ao
que se pretende aqui, visto envolver uma combinacao ji avancada de teoria
de equacoes diferenciais parciais hiperbélicas, assim como de geometria Ri-
emanniana. Por outro lado, ndo existe nenhum teorema geral que englobe
todos, ou pelo menos uma classe suficientemente ampla, de modelos de ma-
téria e energia acoplados as equagoes de Einstein . E preciso relembrar
que esses modelos acrescentam as equacoes de Einstein novas equagdes para
descrever a evolucao da matéria sob o efeito da gravidade, as quais sao tipica-
mente complexas ao ponto de, mesmo de forma isolada, merecerem estudo
dedicado. A tecnologia matematica atual estd longe de conseguir tratar
de forma exaustiva um sistema altamente nao linear de equacées de tipo
hiperbdlico, como sdo as equagoes de Einstein, com as dificuldades ja des-
critas anteriormente relativamente a sua forte componente geométrica, além
disso acopladas a equacdes para a evolucao dindmica de matéria que podem
ser suficientemente dificeis, até separadas do efeito gravitacional. Se bem
que existe hoje em dia um conhecimento bastante completo das questoes
de existéncia local, muitas das respostas relativas ao comportamento global
das solugbes continuam em aberto. Como também ja referimos, mesmo as
equacoes de Einstein no vacuo, @ ou , na auséncia de qualquer matéria,
onde a evoluc¢ao dinamica da gravidade se da s6 sob o seu préprio efeito au-
ténomo, sao ainda assim de analise muito dificil, de tal modo que respostas
a questodes aparentemente basicas, como a estabilidade do espaco-tempo de
Minkowski ou a formagao de singularidades, foram s6 recentemente respon-
didas em trabalhos de extrema profundidade e complexidade, como [4] ou
5.

Ora, o que se faz para conseguir obter problemas trataveis, é abordar
sistemas especificos de matéria, normalmente acrescidos de simplifica¢des
em termos de simetrias. E preciso lembrar também que a simetria, s por
si, introduz muita rigidez no problema, facto de que o teorema de Birkhoff
mencionado na Sec¢ao [3.1]é um exemplo, pelo que quando se quer introduzir
algum grau de liberdade na evolucao dinamica das equagdes, mantendo a
simetria, é necessario acoplar as equagoes de Einstein a modelos particulares
de matéria. Por sua vez, visto que os fenémenos singulares ou patologicos,
que se desenvolvem pela evolucao gravitacional das solucdes, sdo aqueles
que mais interesse despertam, é importante assegurar que eles sejam causa-
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dos pela propria evolugao gravitacional e ndo por propriedades intrinsecas do
modelo de matéria que sejam, ja a partida, propensas a formacao de singula-
ridades. Por exemplo, as solugoes das equagoes que descrevem o escoamento
de fluidos compressiveis, no espago euclidiano, tipicamente desenvolvem cho-
ques: trata-se duma formacao de singularidades bem conhecida, intrinseca
a este modelo especifico da mecéanica de meios continuos, mesmo sem qual-
quer efeito gravitacional. Pelo que, quando se quer estudar fenémenos de
colapso gravitacional, por exemplo, é preciso ter um cuidado especial na
escolha de modelo de matéria a acoplar as equagoes de Einstein, para nao
ofuscar os efeitos puramente gravitacionais com os resultantes da dindmica
material. Por tudo isto, existe uma riquissima literatura dedicada ao estudo
de variados exemplos de combinacoes de equagoes de Einstein, com modelos
de matéria e hipdteses de simetria, cada um dos quais normalmente aborda
a existéncia e unicidade de solugbes para o seu préprio problema de valor
inicial.

Vamos, por tudo isto, e como ja referimos antes, centrar-nos apenas nas
equacoes de Einstein no vacuo e nos resultados pioneiros de Yvonne Choquet-
Bruhat ([II]), para a questdo de existéncia local, e de Yvonne Choquet-
Bruhat e Robert Geroch ([3]), para a posterior questdo da existéncia de
solucao maximal tnica.

O trabalho de Choquet-Bruhat ([I1]), em 1952, é fundamental porque,
pela primeira vez, quase 40 anos apds a publicacdo das equacbes para o
campo gravitacional, de acordo com a teoria da relatividade geral, por Albert
Einstein ([7]), o problema de valor inicial foi devidamente considerado e
resolvido, tendo sido obtidas solugoes locais. A sua demonstracao recorreu
ao uso de coordenadas locais do tipo e a teoria de existéncia e unicidade
para equagoes hiperbdlicas nao lineares (coisa que facilmente se depreende
pelo titulo do artigo). Mas, em rigor, a formulagdo do resultado, neste
trabalho, ainda foi feita em coordenadas locais. A invaridncia geométrica
da definicao de solucao do problema de valor inicial, tal como a enuncidmos
na Secgao s6 foi finalmente clarificada no trabalho seguinte ([3]). De
qualquer modo, e a luz do formalismo geométrico atual, podemos enunciar o
teorema de existéncia e unicidade local de desenvolvimentos de Cauchy, para
o problema de valor inicial das equacoes de Einstein no vacuo, da seguinte
forma.

Teorema (Existéncia e Unicidade Locais [I1]): Sejam (X, §, K) dados
iniciais para as equacdes de Einstein no vacuo, sem constante cosmolégica,
de acordo com a definicdo do problema de valor inicial, do final da Secgao

B2 Entao:
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1. Existe um espago tempo (M, g) que é solugao do correspondente pro-
blema de valor inicial para as equagoes @D ou .

2. Se (M', ¢') for outra solugdo do mesmo problema de valor inicial, existe
um terceiro espago-tempo (N, gﬁ), também solucao do mesmo pro-
blema de valor inicial, tal que, se 7 : > — N for o mergulho da
superficie inicial em N, tém-se duas isometrias (ndo necessariamente
sobrejetivas) ¢ : N — M e ¢/ : N — M', que satisfazem i = ¢ o j e
i = ¢ oj, em que i e 7' designam os mergulhos de ¥ em M e M/,
respetivamente.

O ponto 2 do teorema anterior corresponde, evidentemente, ao resultado
de unicidade local. A sua forma aparentemente rebuscada resulta da dificul-
dade inerente ao conceito de solucdo geometricamente invariante, a menos
de isometrias. Com efeito, um resultado analogo, para equagoes de evolucao
num dominio do espaco euclidiano, corresponderia a intersetar os dominios
de duas solucbes que partilham os mesmos dados iniciais, afirmando que
nessa intersecao as solucoes coincidem. Mas, no problema de valor inicial
para as equagoes de Einstein, duas solugoes correspondem a dois objetos di-
ferentes, duas variedades Lorentzianas distintas, (M, g) e (M’,¢') digamos.
Como intersetar entdo dois objetos diferentes, para afirmar que as soluc¢oes
coincidem na intersecdo? A resolucdo desta dificuldade passa por construir
uma terceira variedade (N, gﬁ) que, por isometrias em M e M’', ¢ : N — M
e ¢ : N — M, representa essa intersecao, de acordo com a identificacao
de solucdes a menos de isometrias, estabelecendo assim a equivaléncia entre
os correspondentes subconjuntos locais dos espagos-tempo. Diz-se que (a
menos de isometrias) (M, g) e (M', ¢") sdo extensdes do desenvolvimento de
Cauchy comum (N, ¢g*), quando satisfazem as condicdes do ponto 2 do teo-
rema anterior. O resultado de unicidade local pode assim ser enunciado, de
forma sucinta, dizendo que dois desenvolvimentos de Cauchy quaisquer dos
dados iniciais (3, g, K ) sdo sempre extensoes dum mesmo desenvolvimento
comum. Uma representaciao esquematica dessas relagoes encontra-se na Fi-
gura [9] Sublinhe-se, curiosamente, que do ponto de vista técnico, é mais
dificil provar este resultado de unicidade local, do que a prépria existéncia
de solugoes, do ponto 1 do teorema.

O segundo passo da teoria de existéncia e unicidade, para o problema
de valor inicial, consiste na obtencao de solugées maximais ou globais. De
novo, a situacao é bastante mais simples de formular e entender (mas nao
necessariamente de provar) nas equagoes da fisica classica: trata-se ai de sa-
ber se as solugoes existem para qualquer intervalo de tempo arbitrariamente
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Figura 9: Unicidade local dos desenvolvimentos de Cauchy de 3.

grande, ou se existe alguma obstrugdo em tempo finito, normalmente sob a
forma de ocorréncia de singularidades, que impedem a solugao de existir até
tempo infinito. Mais uma vez, estas ideias sao impossiveis de transpor para
o contexto geométrico das equacoes de Einstein, por nao podermos falar
duma coordenada canénica de tempo ao longo da qual se averigua se a so-
lucdo evolui em intervalos arbitrariamente longos. Por outro lado, do ponto
de vista de teoria de conjuntos, visto que as solugdes sao agora variedades
Lorentzianas identificadas por isometrias, a forma de definir uma solugao
global acaba por ser de uma simplicidade surpreendente: uma solugao glo-
bal sera uma solucao maximal, extensao de qualquer outra. Evidentemente,
esta definicao evoca imediatamente o lema de Zorn, e é esse precisamente o
mecanismo matematico usado para obter o resultado. No entanto, ao con-
trario dos resultados de existéncia global de solugoes nas equacoes da fisica
cléssica, a natureza de teoria de conjuntos deste resultado maximal para as
equacoes de Einstein ndao da qualquer informagcao sobre a obstrucao a exten-
sao das solugdes a dominios ainda maiores. Uma representacdo esquematica
de dois desenvolvimentos de Cauchy, a partir dos dados iniciais triviaiﬂ SO-
bre dois subconjuntos do plano ¢ = 0 no espaco de Minkowski, encontra-se
na Figura[I0} o desenvolvimento de ¥; é maximal e o de X3 nao é.

Em 1969, dezassete anos depois da obteng¢ao do primeiro resultado de
existéncia local de solugdes para as equacdes de Einstein no vacuo, Yvonne

"Dados iniciais triviais para o espaco-tempo de Minkowski, para uma superficie inicial
¥ correspondente a um subconjunto aberto de R, consistem em fazer § = (-, )3 e K =0.
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Figura 10: Desenvolvimento de Cauchy maximal de ¥; e ndo maximal de
3.

Choquet-Bruhat e Robert Geroch finalmente estabeleceram o seguinte re-
sultado de existéncia de desenvolvimentos maximais, encerrando assim o
conjunto de ideias que confirmam o papel central do problema de valor ini-
cial para as equagoes de Einstein, na teoria da relatividade geral.

Teorema (Existéncia e Unicidade de Desenvolvimentos Maximais
[8]): Sejam (X, §, K) dados iniciais para as equacdes de Einstein no vicuo,
sem constante cosmoldgica, de acordo com a definicdo do problema de valor
inicial, do final da Secc¢ao[3.2] Entéo, existe um desenvolvimento de Cauchy
destes dados iniciais que é maximal, ou seja, que é uma extensao de qualquer
outro desenvolvimento dos mesmos dados. Esta solu¢cdo maximal é tnica, a
menos de isometrias.

E s6 no artigo [3], em que este resultado é publicado, que os concei-
tos de problema de valor inicial, de solucao globalmente hiperbdlica e de
unicidade, sdo finalmente definidos e clarificados de forma geometricamente
invariante, como apresentados na Secgao O ingrediente essencial da
demonstragao é a aplicacdo do lema de Zorn@ ao conjunto de desenvolvi-
mentos globalmente hiperbdlicos dos dados iniciais. Um detalhe técnico de
demonstracao particularmente dificil é o da unicidade da solu¢do maximal:
ao contrario da unicidade local, agora é necessario provar-se que, dados dois
desenvolvimentos de Cauchy dos mesmos dados iniciais, existe um terceiro
desenvolvimento de Cauchy que é extensao desses dois (no fundo, o analogo

'8Um resultado recente de Jan Sbierski ([I8]) evita a utilizagio do lema de Zorn nesta
construcao.
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de reunir os dois dominios, para construir uma solugao com dominio maior).
Sublinhe-se também a importancia crucial, neste resultado, das solugoes se-
rem espacos-tempo globalmente hiperbélicos: sem essa propriedade nao seria
possivel obter solu¢bes maximais tnicas, facto que se deve, conceptualmente,
ao principio de dominio de dependéncia e que assim assegura a previsibili-
dade de toda a solugdo maximal a partir dos dados iniciais. As dificuldades
técnicas associadas a clarificacao das defini¢es e das demonstragoes foram a
razao do longo intervalo de tempo que separou os dois resultados anteriores.

Para terminar este artigo, queremos apenas mencionar um dos mais im-
portantes problemas em aberto da teoria matematica da relatividade geral,
que decorre diretamente destes resultados de existéncia e unicidade de de-
senvolvimentos de Cauchy maximais, para o problema de valor inicial associ-
ado as equacoes de Einstein. Trata-se da conjetura da censura césmica forte,
originalmente enunciada por Roger Penroseﬂ De forma simples, a questao
pode podr-se da seguinte forma: existird solucdo, ou espago-tempo, para la
do desenvolvimento de Cauchy maximal dos dados iniciais? Ou, usando as
defini¢oes mais técnicas, existirdo extensoes estritas (necessariamente ja nao
globalmente hiperbdlicas) do desenvolvimento de Cauchy maximal de dados
iniciais?

A resposta parece ser simples e afirmativa: basta observar, por exemplo,
as Figuras [2[ ou para, com certeza, afirmar que no exterior dos cones
representados nessas figuras continua a existir solucdo. Mas a razao desse
fenémeno é facil de entender pois, de alguma forma, nas duas figuras, as
superficies iniciais sdo apenas pequenos subconjuntos de todo o plano, pelo
que a solugdo no exterior dos cones nao é mais do que o desenvolvimento
maximal do plano completo. Ou seja, a questao posta no paragrafo anterior
s6 assume um carater nao trivial se se considerarem superficies iniciais tao
grandes quanto possivel. Nesse caso, se se considerar o plano todo, na Figura
[2] o desenvolvimento maximal da solugao da equagdo de onda serd toda a
regiao ¢ > 0, enquanto na Figura [10| o desenvolvimento de Cauchy maximal
de ¥ = R? serd todo o espaco de Minkowski: num caso e noutro, as solucoes
maximais serdo entao inextensiveis.

Para superficies iniciais ¥, que sao variedades Riemannianas, como as
que usamos nos dados do problema de valor inicial, ser “tdo grande quanto
possivel” tem uma tradugao rigorosa simples do ponto de vista matematico:
serem geodesicamente completas. Trata-se duma propriedade importante

9Existe uma outra conjetura de censura césmica, dita fraca, igualmente famosa e tam-
bém devida a Roger Penrose, a qual, apesar do nome, ndo estd logicamente relacionada
com a conjetura de censura césmica forte.

Boletim da SPM 73, Dezembro 2015, 100 Anos de Relatividade, pp. 1



36 PVI PARA AS EQUACOES DE EINSTEIN

em geometria Riemanniana, que consiste precisamente no facto de qualquer
geodésica ter parametro afim definido até ao infinito e, portanto, a varie-
dade ser inextensivel de forma geometricamente invariante. Nao é possivel,
nesse caso, considerar-se uma superficie inicial maior, da qual X seja um
pequeno subconjunto, como acontece nos exemplos 6bvios das Figuras 2] e
Outra condigdo que se exige é que X seja assimptoticamente plana, o
que significa vagamente que, a medida que nos afastamos para infinito ao
longo de geodésicas, a variedade Riemanniana se assemelha cada vez mais
a superficie inicial trivial do espaco-tempo de Minkowskﬂ (caso contrario
é possivel construir exemplos de desenvolvimentos de Cauchy maximais fa-
cilmente extensiveis). E esta a situagdo que se verifica obviamente, se se
considerar o plano todo como superficie inicial, nas Figuras[2 e
Curiosamente, mesmo para superficies iniciais geodesicamente completas
e assimptoticamente planas, sdo conhecidos exemplos explicitos particulares
em que o desenvolvimento de Cauchy maximal é extensivel, ou seja, existe
um espagco-tempo nao globalmente hiperbdlico que é uma extensao estrita
dessa solucdo maximal. Evidentemente, o principio do determinismo falha
nesses casos: os pontos da extensao, no exterior do desenvolvimento global-
mente hiperbdlico maximal, deixam de depender exclusivamente dos dados
na superficie inicial X e, portanto, nao é possivel aplicar um argumento de
dominio de dependéncia. Tal como no exterior dos cones das figuras[2] e [I0]a
solucdo deixa de ser Uinica, também nestes exemplos a extensao nao global-
mente hiperbdlica perde a unicidade. Um exemplo importante em que este
fenémeno acontece é na solucdo de Reissner-Nordstrom, que se obtém, em
simetria esférica, acoplando as equagcoes de Einstein as equagoes de Maxwell
do eletromagnetismo, de forma a introduzir o efeito dum campo eletromag-
nético no viacuo no tensor da energia-momento. A superficie inicial desta
solucao é analoga a de Schwarzschild, portanto como na Figura El (continua
a ser uma solucao de vacuo e, por isso, ndo existe matéria carregada ele-
tricamente, pelo que o campo eletromagnético é puramente topoldgico), e
verifica-se também a formagdo de um buraco negro nesta solucdo. S6 que,
ao contrario dos buracos negros da solucdo de Schwarzschild, dentro dos

20Rigorosamente, diz-se que uma superficie Riemanniana inicial ¥ tem n terminacdes
assimptoticamente planas se existe um compacto K C X tal que ¥ \ K = Uj_;Uj;, em
que cada U; é um aberto difeomorfo ao exterior da bola unitdria R\ B;(0) e tal que,
nas coordenadas induzidas por esse difeomorfismo, existe algum m > 0 - denominada
massa ADM - para o qual se tem §;; = (1 + 277") Oab + o(r_l), onde d,p designa a métrica
euclidiana. Assim, ¥ = R com os dados iniciais triviais de Minkowski é assimptoticamente
plana com uma s6 terminagdo e m = 0, enquanto que a Figura[7]é assimptoticamente plana
com duas terminagdes e m é a massa da solugdo de Schwarzschild .
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quais as geodésicas causais sdo incompletas e colapsam numa singularidade
em r = (0, nos buracos negros de Reissner-Nordstrom nao ha singularida-
des: as geodésicas causais continuam a ser incompletas dentro do dominio
globalmente hiperbélico maximal, mas podem ser continuadas para além do
que se denomina de horizonte de Cauchy, para regides que ja fazem parte
de extensoes estritas do espago-tempo maximal. Por um lado, a situacao
parece 6tima: nao ha singularidades dentro dos buracos negros de Reissner-
Nordstrom e um viajante que atravesse o horizonte de eventos, e caia no
buraco negro, nao serd esmagado pela gravidade em r = 0, como no buraco
negro de Schwarzschild. Mas, por outro lado, do ponto de vista filoséfico
e do determinismo esperado das equacoes de Einstein, o problema ¢é mais
grave: o futuro do viajante espacial é imprevisivel quando ele alcancar o
horizonte de Cauchy, porque podera atravessa-lo para uma infinidade de
extensoes possiveis do espacgo-tempo original, no futuro.

Roger Penrose, baseado nalgumas anédlises heuristicas, achou que estes
casos, como o da solucao de Reissner-Nordstrom, eram excecionais, causados
por arranjos matematicos muito particulares, como a simetria esférica. Mas
que qualquer perturbacao destas solucdes eventualmente introduziria sin-
gularidades na fronteira da solucao maximal globalmente hiperbédlica, como
acontece no buraco negro de Schwarzschild, impedindo a existéncia de exten-
sOes estritas e assim garantindo, genericamente, o determinismo das equa-
¢oes de Einstein. E foi baseado nestas ideias que ele formulou a seguinte
conjetura.

Conjetura da censura césmica forte: Condic¢oes iniciais genéricas para
superficies completas assimptoticamente planas, em modelos de matéria ra-
zoaveis, dao origem a desenvolvimentos de Cauchy maximais, globalmente
hiperbélicos, que sdao inextensiveis como variedades Lorentzianas regulares.

Esta conjetura deve ser vista mais como um programa de investigacao,
do que como um problema matematico especifico. Muitos dos conceitos sao
deixados vagos, como o que se entendem por condic¢oes iniciais genéricas, mo-
delos de matéria razoaveis ou a regularidade das possiveis extensoes. Fxiste
uma extensa literatura, na teoria matematica recente da relatividade geral,
que tem abordado precisamente este problema, especificando estes concei-
tos em casos particulares, de modo a poder dar respostas sob diferentes
hipdteses.

De qualquer forma, e dum ponto de vista menos técnico e detalhado, o
que torna esta questao absolutamente fascinante é o facto duma resposta
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negativa para esta conjetura implicar a quebra de determinismo, a uma
escala global, do modelo de gravitacdo das equacoes de Einstein.
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