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Resumo: Pretende-se, com este texto, fazer uma introdução resumida ao
problema de valor inicial para as equações de Einstein, a um nível bastante
elementar, sem recorrer a demonstrações ou definições matematicamente
técnicas, assumindo apenas conhecimentos básicos de equações diferenciais
parciais e geometria Riemanniana. Devido ao carácter hiperbólico das equa-
ções de Einstein, começamos por fazer uma breve revisão do problema de
valor inicial na física clássica, com ênfase na equação das ondas. Construí-
mos a partir daí um paralelismo baseado na compreensão de algumas das
propriedades fundamentais comuns a este tipo de equações, em particular
na velocidade finita de propagação de informação e no princípio do domínio
de dependência, para apresentar a formulação do problema de valor inicial
para as equações de Einstein. Apesar do enquadramento profundamente
geométrico da teoria da relatividade geral, pretendemos desta forma sali-
entar muitas das analogias conceptuais com as equações da física clássica,
assim como o papel igualmente central do problema de valor inicial para as
equações de Einstein. Terminamos com uma apresentação dos resultados
clássicos de Y. Choquet-Bruhat e de Y. Choquet-Bruhat com R. Geroch,
sobre a existência e unicidade de desenvolvimentos de Cauchy maximais
para o problema de valor inicial para as equações de Einstein no vácuo, e a
consequente motivação para a conjetura da censura cósmica forte.

Abstract: The goal of this article is to present a summarized introduction
to the initial value problem for the Einstein equations, at a very elementary
level, without recourse to mathematically technical proofs or definitions, as-
suming only a basic knowledge of partial differential equations and Rieman-
nian geometry. Due to the hyperbolic character of the Einstein equations,
we start by reviewing the initial value problem in classical physics, with an
emphasis on the wave equation. Based on understading some of the funda-
mental properties for these types of equations, in particular the finite speed

Boletim da SPM 73, Dezembro 2015, 100 Anos de Relatividade, pp. 1-39



2 PVI para as equações de Einstein

of propagation and the domain of dependency principle, we build a paral-
lel reasoning to present the formulation of the initial value problem for the
Einstein equations. Despite the deep geometric framework of the general
theory of relativity, we intend to highlight the many conceptual analogies
with the equations of classical physics, as well as the equally central role
of the initial value problem for the Einstein equations. We finish the pa-
per with a presentation of the classical results by Y. Choquet-Bruhat and
Y. Choquet-Bruhat with R. Geroch, on the existence and uniqueness of
maximal Cauchy developments for the initial value problem associated to
the vacuum Einstein equations, and the ensuing motivation for the strong
cosmic censorship conjecture.

palavras-chave: Relatividade geral; equações de Einstein; problema de
Cauchy.

keywords: General relativity; Einstein equations; Cauchy problem.

1 Introdução
O problema de valor inicial para equações diferenciais, também conhecido
por problema de Cauchy, é absolutamente central na física clássica e está
intimamente ligado ao princípio do determinismo e à previsibilidade dos
fenómenos físicos. Resumidamente, nos sistemas físicos que são descritos
matematicamente por equações diferenciais, a questão prende-se com a de-
terminação da evolução no tempo das quantidades envolvidas, a partir do
seu conhecimento num instante de tempo de partida.

Pretende-se, neste artigo, mostrar como o problema de valor inicial é
também a formulação adequada para as equações de Einstein, tal como o é
para as equações da mecânica clássica Newtoniana, ou para todos os outros
variadíssimos exemplos de modelos matemáticos da física em que o problema
de Cauchy para equações diferenciais de evolução é a forma mais natural de
estudo das soluções. A complexidade inerente ao modelo matemático da
relatividade geral, com forte componente geométrica, dificultou historica-
mente, não só a resolução, mas até simplesmente a correta clarificação e
formulação das equações de Einstein sob a forma de um problema de va-
lor inicial, só tendo esse trabalho sido finalmente estabelecido por Yvonne
Choquet-Bruhat em 1952 ([11]), quase quarenta anos após a formulação das
equações por Albert Einstein, em 1915 ([7]). Os artigos recentes [2] e [17]
incidem precisamente sobre as origens do problema de valor inicial para as
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equações de Einstein, e devem ser consultados pelo leitor interessado por
essa faceta histórica, a qual não iremos aprofundar aqui.

Começaremos por rever o problema de valor inicial nas equações da fí-
sica clássica, começando pelos sistemas de equações diferenciais ordinárias
da mecânica Newtoniana, mas prestando particular atenção à equação das
ondas. Devido ao carácter hiperbólico das equações de Einstein, muitas das
propriedades mais relevantes para a compreensão da formulação do problema
de valor inicial já se observam, numa forma mais simples e transparente, na
equação das ondas linear, e por isso dedicamos algum cuidado a revê-las,
em particular a velocidade finita de propagação de informação, as relações
causais entre os valores da solução em diferentes pontos do espaço e do
tempo, e o correspondente princípio do domínio de dependência. Depois
disso, faremos uma breve introdução às equações de Einstein, salientando
as suas características profundamente geométricas, em particular o facto de,
em certa medida, a solução ser agora o próprio domínio, facto que lhes dão
uma aparência muito diferente das equações da física clássica e que tornaram
historicamente difícil a compreensão do problema de valor inicial. Mantendo
o paralelismo conceptual com a equação das ondas da física clássica, tenta-
remos destacar como, apesar do formalismo geométrico, o problema de valor
inicial para as equações de Einstein é, no entanto, posto de forma inteira-
mente análoga na teoria da relatividade geral. Por fim, terminamos com a
apresentação dos resultados de existência e unicidade de soluções locais e
maximais para o problema de valor inicial das equações de Einstein no vá-
cuo, obtidas nos trabalhos pioneiros de Yvonne Choquet-Bruhat ([11]), em
1952, e posteriormente por Yvonne Choquet-Bruhat e Robert Geroch ([3]),
em 1969, concluindo com a motivação, que deriva destes resultados, para a
formulação da famosa conjetura da censura cósmica forte, de Roger Penrose.

Abordando o mesmo tópico do presente artigo, mas de forma muito mais
aprofundada e exaustiva, com apresentação cuidadosa das técnicas matemá-
ticas necessárias ao seu estudo rigoroso, recomenda-se vivamente o livro de
Hans Ringström, [16], sobre o problema de Cauchy para as equações de
Einstein, para aqueles que queiram estudar este fascinante tema mais seri-
amente.

2 O problema de valor inicial na física clássica
Na opinião de Einstein ([8]), a maior contribuição de Newton para a ciên-
cia moderna foi precisamente a descoberta de que os sistemas físicos são
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modelados por equações diferenciais, as quais genericamente determinam a
evolução desses sistemas a partir de condições iniciais apropriadas.

O paradigma do problema de valor inicial, na mecânica clássica, é preci-
samente a determinação da trajetória, ou seja, da posição ao longo do tempo
x(t), de partículas materiais de massa m, a partir das suas posições e ve-
locidades num instante inicial t0, de acordo com a segunda lei de Newton
(assumindo também o conhecimento total das forças F presentes, as quais
modelam o sistema mecânico em questão). Do ponto de vista puramente
matemático este problema corresponde à resolução de um sistema de equa-
ções diferenciais ordinárias de 2a ordem, com imposição de condições iniciais
às derivadas de ordem zero e de ordem um, da incógnita,

m ẍ = F(t,x, ẋ),

x(t0) = x0,

ẋ(t0) = v0.

(1)

A existência de soluções para um problema de valor inicial é, sem dú-
vida, a primeira questão que sempre se impõe responder. De uma forma um
pouco mais precisa, é fundamental saber se a equação diferencial de evolu-
ção tem sempre soluções, dadas condições iniciais arbitrárias (ou restritas a
algum conjunto definido). O tempo de duração dessas soluções também é
outra questão relevante, distinguindo-se entre soluções locais, aquelas para
as quais só se garante a existência durante um pequeno intervalo de tempo
que inclua t0, ou soluções globais, quando é possível estabelecer a sua exis-
tência para a máxima duração de tempo possível (podendo esta ser infinita,
se a solução existir para qualquer intervalo de tempo, ou finita, no caso em
que a ocorrência de algum fenómeno singular impede a solução de continuar
a evoluir indefinidamente). Mas o modelo só se verifica ser determinístico se,
além da existência de soluções, estas forem únicas, para as mesmas condições
iniciais, ou seja, se não existirem várias evoluções distintas de um mesmo
problema de valor inicial. Em resumo, o princípio do determinismo obriga
a terem-se respostas afirmativas para as questões de existência e unicidade
de soluções, primordiais num problema de valor inicial.

A teoria matemática clássica para equações diferenciais, desenvolvida
ainda no séc. XIX, em particular o teorema de Picard-Lindelöf, baseado no
princípio da contração e no teorema de ponto fixo de Banach, garante exis-
tência de soluções, unicidade e extensão a intervalos de tempo máximos de
definição, para problemas de valor inicial associados a equações diferenciais
ordinárias, como é o caso da segunda lei de Newton (1), numa classe bastante
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ampla de situações (para funções contínuas e localmente Lipschitzianas na
variável da incógnita).

Refira-se, ainda, que determinismo não implica, só por si, previsibilidade:
um lançamento duma moeda ou dum dado, por exemplo, sendo em princípio
fenómenos determinísticos, por serem descritos com grande exatidão pela
mecânica Newtoniana, e portanto cobertos pela teoria geral de existência
e unicidade de soluções de equações diferenciais ordinárias descrita atrás,
são, no entanto, altamente imprevisíveis, ao ponto de serem considerados
essencialmente aleatórios. A questão aqui é ainda outra: a estabilidade das
soluções. Pequenas variações nas condições iniciais, como por exemplo a
velocidade e posição exatas com que a moeda e o dado saem da mão do
lançador (ou das condições de fronteira, como a forma precisa do dado, ou
dos ressaltos numa mesa) conduzem a resultados finais totalmente diferentes
e o sistema, ainda que determinístico, é para todos os efeitos imprevisível
por ser fortemente sensível a pequenas perturbações, as quais, na prática,
são impossíveis de determinar com precisão total. Existem variadas formas
de estudar a estabilidade de um sistema descrito por equações diferenciais,
conduzindo a diferentes tipos de definições. A mais elementar, e que nor-
malmente se procura responder logo de início, recorrendo ao mesmo tipo de
teoremas que garantem existência e unicidade, é a dependência contínua das
soluções relativamente aos dados iniciais, ou a parâmetros das equações.

Ao conjunto destas três questões fundamentais, de existência, unicidade
e dependência contínua de soluções relativamente aos dados iniciais dum
problema de valor inicial, chama-se boa colocação. Um problema de Cauchy
com resposta afirmativa às três questões diz-se bem posto ou bem colocado,
localmente ou globalmente no tempo, consoante o intervalo de tempo de exis-
tência é, respetivamente, apenas uma vizinhança de t0 ou arbitrariamente
grande1.

A passagem dum conjunto discreto de partículas para um meio contínuo
conduz à introdução de equações diferenciais parciais. Historicamente, os
primeiros exemplos em que isso foi feito devem-se a D’Alembert e Euler, em
meados do séc. XVIII. Para modelar a vibração de uma corda, D’Alembert
introduziu a chamada equação das ondas (unidimensional)

ρ
∂2u

∂t2
= τ

∂2u

∂x2 , (2)

em que ρ representa a densidade de massa, por unidade de comprimento
da corda, e τ a tensão a ela aplicada. A incógnita u(t, x) representa a

1Local/Global well posedness (LWP/GWP), na terminologia em inglês.
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posição vertical da corda, relativamente ao nível de referência em repouso,
no instante de tempo t e na posição x ao longo do seu comprimento.

A interpretação física da equação (2) é óbvia: do lado esquerdo da equa-
ção temos a massa vezes a aceleração vertical da corda, por unidade de
comprimento; do lado direito temos a força de restituição interna da corda,
dada pela sua curvatura de deformação e proporcional à tensão com que está
esticada. Em resumo, estamos em presença, de novo, da segunda lei de New-
ton, numa versão contínua unidimensional, por unidade de comprimento de
corda e aplicada ao seu movimento vertical. Aliás, se se quiser modelar a
presença de outras forças transversais externas, como por exemplo o peso da
própria corda por efeito da força da gravidade, basta acrescentá-las ao lado
direito da equação nos chamados termos de fonte. Esta análise permite-nos,
em total analogia com (1), formular o problema de valor inicial adequado
à equação das ondas: será necessário, portanto, acrescentar duas condições
iniciais à equação, correspondentes à posição e velocidade vertical inicial em
cada ponto da corda, ou seja u e ∂u

∂t , as quais são agora funções da variável
x, num instante de tempo inicial t0. A mais do que uma dimensão - por
exemplo para modelar a vibração dum tambor, no caso bidimensional, ou
das ondas sonoras, no caso tridimensional - a segunda derivada no espaço
é substituída pelo Laplaciano ∆u = ∂2u

∂x2
1

+ ∂2u
∂x2

2
+ · · · ∂2u

∂x2
n
, obtendo-se assim

o problema de Cauchy para a equação das ondas (linear) em n dimensões
espaciais 

∂2u

∂t2
− c2∆u = F (t, x), (t, x) ∈ R× Rn

u(t0, x) = u0(x),
∂u
∂t (t0, x) = v0(x),

x ∈ Rn
(3)

em que o parâmetro c (=
√

τ
ρ no caso do modelo unidimensional (2)) é a

velocidade de propagação das ondas e F é o termo de fonte, correspondente
à presença de forças externas. O lado esquerdo da equação denomina-se de
operador das ondas, ou D’Alembertiano, e representa-se por

� = ∂2

∂t2
− c2∆, (4)

pelo que a equação da vibração livre, isto é, na ausência de quaisquer forças
externas, pode simplesmente ser escrita como �u = 0.

Como apresentado em (3), o problema corresponde ao modelo de movi-
mento ondulatório transversal de todo o domínio ilimitado Rn. É frequente
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também a formulação de um problema análogo, para domínios limitados
x ∈ Ω ⊂ Rn, como é o caso duma corda ou dum tambor finitos. Mas isso
obriga à imposição de condições de fronteira, na periferia de Ω, para todo o
t > 0, e o problema passa a denominar-se de valor inicial e de fronteira.

A resolução do problema (3), ou seja a prova de existência e de unicidade
para uma classe ampla de dados iniciais u0 e v0 nalgum espaço determinado
de funções, é bastante mais complexo que (1). Aliás, como é bem sabido,
não existe, no caso das equações diferenciais parciais, nenhum teorema ge-
ral de existência e unicidade, como é o caso do teorema de Picard-Lindelöf
para equações diferenciais ordinárias. Um método específico de resolução
do problema de valor inicial (3) para a equação das ondas linear homogé-
nea, de coeficientes constantes, em qualquer dimensão (ou seja �u = 0,
com F = 0), começa por utilizar médias esféricas para dimensões espaciais
ímpares, de forma a reduzir o problema à equação de onda unidimensional
(2) onde é possível aplicar a fórmula de resolução de D’Alembert. Para as
dimensões espaciais pares intermédias, utiliza-se depois o método da descida
de Hadamard, recorrendo à solução obtida anteriormente para a dimensão
ímpar imediatamente acima. O caso da equação não homogénea, ou seja
com F 6= 0, resolve-se com recurso à solução homogénea correspondente e à
chamada fórmula de Duhamel. Os detalhes podem ser consultados em tex-
tos introdutórios de equações diferenciais parciais, recomendando-se, para o
caso da resolução de (3) o livro de G. Folland, [9]. Rapidamente, no entanto,
o problema de valor inicial para a equação das ondas se torna de resolução
mais difícil, quer no caso linear, se os coeficientes forem variáveis, quer no
caso geral da equação incluir termos não lineares. O leitor interessado na
teoria moderna de equações de onda, lineares e não lineares, encontrará
exposições bastante completas e atuais em [15], [12], [19] ou [20]. Outra
situação na qual o problema de valor inicial para equações de onda, mesmo
as lineares, pode assumir um elevado grau de complexidade é no caso do do-
mínio subjacente deixar de ser Euclidiano, para passar a ser uma variedade
com geometria não trivial: nesse caso, é através da forma como a métrica da
variedade altera os coeficientes das derivadas da equação que ela incorpora
um acrescido grau de dificuldade o que, escrito em coordenadas locais, pode
ser equiparado a uma equação com coeficientes variáveis. Esta é, aliás, a
situação mais próxima das que são frequentemente encontradas na teoria
matemática da relatividade geral, em particular das equações de Einstein.
Um texto clássico sobre equações de onda em espaços-tempo curvos é [10],
enquanto que [6] aborda especificamente o tema, de elevado interesse cien-
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tífico atual, relativo às propriedades de soluções de equações de onda em
espaços-tempo associados a buracos negros.

Não sendo objetivo deste artigo deter-se aprofundadamente nas equa-
ções de onda em geral, a sua estreita relação com as equações de Einstein
e a ubiquidade de certas propriedades fundamentais, obriga-nos no entanto
a relembrar uma dessas propriedades em particular, que será útil no que
apresentaremos à frente: trata-se do princípio do domínio de dependência,
o qual está intimamente associado à propriedade de propagação de pertur-
bações com velocidade finita em equações do tipo hiperbólico. Com efeito,
equações diferenciais parciais hiperbólicas, como são a equação de onda (3)
ou os sistemas de conservação hiperbólicos (usados nos modelos de mecânica
dos fluidos compressíveis), exibem fenómenos particulares de progressão das
soluções, no espaço e no tempo, que têm um caráter ondulatório e que estão
matematicamente relacionados com as direções características das equações,
não se verificando, em geral, noutro tipo de equações: são eles que dão o
nome à equação. Uma forma simples de observar este efeito em �u = 0
consiste em procurar soluções da forma,

uξ,τ (t, x) = ei(ξ·x+τt) = e
i|ξ|
(
eξ·x+ τ

|ξ| t
)
, (5)

denominadas de ondas planas, com frequência espacial ξ ∈ Rn e frequência
temporal2 τ ∈ R, as quais se propagam oscilatoriamente na direção do vetor
unitário definido por ξ, eξ = ξ/|ξ|, e com velocidade - dita de fase - dada por
v = −τ/|ξ|. Ora, substituindo (5) em �u = 0 obtém-se a chamada relação
de dispersão da equação

τ2 = c2|ξ|2 ⇔ τ = ±c|ξ|, (6)

que restringe as ondas planas que são soluções de �u = 0 apenas àquelas
que satisfazem (6). Conclui-se assim que uma onda plana (5) é solução da
equação de onda homogénea se e só se é da forma

u(t, x) = ei|ξ|(eξ·x±ct),

ou seja, para qualquer frequência espacial ξ ∈ Rn, as soluções na forma
de ondas planas são apenas aquelas que se propagam com velocidade exa-
tamente igual a c, na direção positiva ou negativa definida pelo vetor ξ.
Usando métodos de análise de Fourier é possível mostrar, com alguma ge-
neralidade, que soluções arbitrárias da equação de onda homogénea �u = 0

2Também conhecidos, respetivamente, por vetor de onda e frequência angular, na lite-
ratura física.
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podem ser dadas por sobreposição (contínua, na forma de um integral em ξ)
destas ondas planas, com diferentes amplitudes. Genericamente, portanto,
podemos dizer que as soluções da equação de onda homogénea consistem na
sobreposição de ondas planas, em várias direções e com várias frequências
espaciais, mas todas propagando-se à velocidade fixa dada pelo parâmetro
c. Por isso se chama ao parâmetro c, do D’Alembertiano �, a velocidade de
propagação das ondas.

Esta propriedade induz, no entanto, uma relação de causalidade funda-
mental, na estrutura das soluções: o valor duma solução num dado ponto
(t0, x0) só poderá influenciar a mesma solução num outro ponto (t1, x1),
para um instante de tempo futuro t1 > t0, se a distância espacial entre eles
conseguir ser percorrida dentro do limite da “velocidade de transmissão de
informação” inerente à equação, durante o intervalo de tempo que os se-
para, ou seja, se |x1 − x0| ≤ c|t1 − t0|. Por outras palavras, a solução em
(t0, x0) não consegue afetar pontos cuja distância a x0 seja superior àquela
permitida pela velocidade de propagação c. Assim, geometricamente, um
ponto (t0, x0) pode influenciar apenas os valores da solução em pontos no
interior dum cone com vértice nele próprio, e com abertura determinada por
c: trata-se do chamado domínio de influência de (t0, x0), representado na
Figura 1.

(t0 , x0)

t = t0

Velocidade c

t

Figura 1: Domínio de influência do ponto (t0, x0).

Equivalentemente, os valores da solução num ponto (t1, x1) só são influ-
enciados pelos pontos num cone para o passado, com vértice nele próprio: é o
seu domínio de dependência3. Ao conjunto formado pelos dois cones, o domí-
nio de influência e o domínio de dependência, num ponto (t, x) denomina-se
cone de luz, nesse ponto. Observe-se, em particular, que se imaginarmos um

3Obviamente, o domínio de dependência dum ponto é exatamente o mesmo que o
seu domínio de influência para o passado, portanto os dois conceitos são essencialmente
idênticos, diferenciando-se apenas quando se pressupõe a existência de uma orientação
temporal que permite fazer a distinção entre passado e futuro.
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(t1 , x1)

t = t0

Velocidade c

t

Figura 2: Domínio de dependência do ponto (t1, x1).

problema de valor inicial com tempo de partida em t0, os valores da solução
no cone com vértice em (t1, x1), representado na Figura 2, serão exclusi-
vamente determinados pelos dados iniciais sobre o conjunto de pontos, em
t = t0, que distam, no máximo4, c|t1 − t0| de x1,

{(t0, x) : |x− x1| ≤ c|t1 − t0|}. (7)

A solução em todo o cone da Figura 2 é, portanto, totalmente indiferente a
alterações dos dados iniciais fora desta bola.

Este conjunto de ideias é o que se chama de princípio do domínio de
dependência e é um dos ingredientes centrais na demonstração de unicidade
de soluções de equações de onda, aliado a estimativas de energia, que per-
mitem mostrar que, se os dados iniciais para a equação �u = 0 se anularem
no conjunto (7), então a solução anula-se em todo o cone do domínio de
dependência de (t1, x1) (consultar [9] para os detalhes). Aplicando-se este
resultado à diferença de duas soluções de (3), com dados iniciais coincidentes
em (7) obtém-se a conclusão que não pode existir mais do que uma solução
de (3), no interior do cone de dependência de (t1, x1), para dados iniciais
fixos em (7). Fazendo t1 → ∞, é possível por fim provar a unicidade em
todo o semi-plano superior t > 0, quando se impõem condições iniciais em
t = t0 e x ∈ Rn.

Um último facto que merece ser mencionado aqui, relativamente ao pro-
blema de valor inicial para a equação das ondas, é o da superfície onde são

4Para a equação de onda (3) no espaço euclidiano Rn, com n > 1 ímpar, verifica-se
o chamado princípio de Huygens, em que o domínio de dependência é apenas a fronteira
do cone, e não o seu interior, pelo que em t0 seria apenas a fronteira da bola, ou seja
|x− x1| = c|t1 − t0|. Em dimensões espaciais pares a dependência, ou influência, estende-
se efetivamente para o interior do cone, tal como se pode verificar experimentalmente
atirando uma pedra para um lago em repouso e observando a superfície ondulatória da
água, não só na circunferência da frente de onda, em expansão, como em todo o seu
interior.
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dadas as condições iniciais não ter de ser, necessariamente, um plano de
R × Rn com t = t0 fixo. No entanto, ao contrário do que é a perceção
geral com que normalmente se fica num estudo introdutório sobre equa-
ções diferenciais parciais, também não é suficiente que a (hiper)superfície
das condições iniciais apenas seja não característica. Com efeito, devido à
estrutura causal descrita atrás das soluções da equação, se uma superfície
Σ ⊂ R × Rn tiver geometria tal que, algum dos seus pontos (t1, x1) ∈ Σ
esteja no domínio de influência de algum outro (t0, x0) ∈ Σ então, as condi-
ções iniciais não poderão ser dadas de forma arbitrária em (t1, x1) visto os
valores da solução nesse ponto estarem causalmente influenciados pelos de
(t0, x0). Por outro lado, como as superfícies características da equação das
ondas são só aquelas que são tangentes aos cones de luz, em cada ponto,
uma superfície da forma xi = const., por exemplo, perpendicular à direção
da coordenada i de x ∈ Rn, não sendo portanto característica, ainda assim
conduziria a um problema de valor inicial mal posto dado que os seus pon-
tos estão nos domínios de influência e de dependência uns dos outros (ver
exemplo explícito em [9]). É necessário, por isso, que a hipersuperfície gené-
rica onde são impostos os dados iniciais de um problema de Cauchy seja tal
que não intersete os cones de luz dos seus próprios pontos. Consideram-se,
por isso, de forma mais geral, problemas de valor inicial dados em hiper-
superfícies ditas do tipo espaço, que satisfazem em todos os seus pontos a
condição |νt| > c|νx|, onde (νt, νx) ∈ R×Rn é a normal a Σ em cada ponto.
É possível mostrar que problemas de valor inicial para a equação das ondas,

Σ

Figura 3: Superfície Σ do tipo espaço.

com condições iniciais em hipersuperfícies do tipo espaço - nesse caso são
impostos o valor da solução u e da sua derivada ∂νu, na direção ν normal à
superfície inicial - estão sempre bem postos.

Para terminar esta breve descrição do problema de valor inicial para as
equações de evolução da física clássica, refira-se que a equação da segunda
lei de Newton (1) ou a equação das ondas estão longe de ser os únicos casos
relevantes onde o problema de Cauchy é a formulação mais apropriada à sua
resolução. A equação do calor, que descreve a evolução da temperatura no
espaço e no tempo, por difusão num meio condutor; o sistema das equações
de Maxwell, do eletromagnetismo (que se reduzem a duas equações de onda,
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12 PVI para as equações de Einstein

para o campo elétrico e para o campo magnético, no vácuo); a equação de
Schrödinger, da mecânica quântica; o sistema de Navier-Stokes, da mecâ-
nica dos fluidos incompressível; etc... todos eles são exemplos de equações
diferenciais de evolução da física clássica, onde a formulação do problema
de valor inicial para a sua resolução é a norma.

Restringimo-nos, nesta secção, à equação das ondas dado que as equações
de Einstein, quando escritas em coordenadas adequadas, também podem ser
vistas como equações de onda não lineares e partilham, por isso, várias das
propriedades descritas atrás para (3), como iremos ver de seguida.

3 O problema de valor inicial para as equações de
Einstein

3.1 Espaço-tempo e as equações de Einstein

O conceito central da teoria da relatividade geral é o de espaço-tempo. E é
através da geometria do espaço-tempo, em especial da sua curvatura, que se
refletem as interações gravitacionais causadas pela presença, ou pela ausên-
cia, de matéria e energia. As trajetórias de partículas materiais em queda
livre, assim como da luz, seguem geodésicas do espaço-tempo, e estão por
isso sujeitas à geometria ambiente criada pela gravidade, cujo efeito se faz
sentir deste modo sobre elas.

Do ponto de vista do modelo matemático, trata-se duma variedade
pseudo-Riemanniana conexa de quatro dimensões (M, g), com métrica g Lo-
rentziana5, que convencionamos ter assinatura (−,+,+,+). Como habitu-
almente, um vetor tangente v ∈ TpM designa-se do tipo tempo se g(v, v) < 0;
do tipo espaço se g(v, v) > 0; do tipo luz se g(v, v) = 0, com v 6= 0; do tipo
nulo se g(v, v) = 0 (ou seja, se v for do tipo luz ou se for v = 0); e causal
se for do tipo luz ou do tipo tempo (ou seja, se v 6= 0 e g(v, v) ≤ 0). Uma
curva γ : I ⊂ R → M , com I = ]a, b[, −∞ ≤ a < b ≤ +∞, é, em cada um
dos seus pontos, classificada como sendo do tipo tempo, espaço, luz, nulo ou
causal de acordo com o seu vetor tangente nesse ponto. As geodésicas não
alteram o seu tipo de ponto para ponto, facto que é consequência simples dos
seus vetores tangentes serem, por definição, transportados paralelamente ao
longo delas. Por fim, uma hipersuperfície (diferenciável) Σ ⊂ M diz-se do

5O conceito de variedade pseudo-Riemanniana é inteiramente análogo ao da, mais
usual, variedade Riemanniana, exceto que não se exige que a métrica seja definida positiva,
mas apenas não-degenerada. Chama-se Lorentziana ao caso particular em que um dos
valores próprios da métrica pseudo-Riemanniana tem o sinal oposto dos restantes.
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tipo espaço, nula ou do tipo tempo, se a sua normal (na métrica g) em cada
ponto for, respetivamente, do tipo tempo, nula ou do tipo espaço.

Assumiremos sempre, também, a existência duma orientação temporal
em (M, g), a qual corresponde à escolha dum campo vetorial Θ não nulo, do
tipo tempo em cada ponto p ∈M . Obstruções topológicas podem impedir a
existência de um tal campo vetorial global não nulo do tipo tempo em cada
ponto, por isso nem todas as variedades Lorentzianas são temporalmente
orientáveis. Mas quando essa orientação é possível, o campo Θ permite que
se faça a definição, de uma forma diferenciável ao longo da variedade, de um
dos dois cones causais, no espaço tangente a cada ponto, como sendo aquele
cujos vetores apontam para o futuro6. Diremos então que um qualquer vetor
tangente à variedade v ∈ TpM (ou curva γ, usando nesse caso o seu vetor
tangente γ̇), causal, está orientado para o futuro se g(v,Θp) < 0, ou seja, se
se encontra no mesmo cone causal em TpM que Θp.

O exemplo mais simples dum espaço-tempo é

(R3+1
t,x , g) com g = −c2dt2 + dx2

1 + dx2
2 + dx2

3 (8)

e orientado para o futuro por ∂
∂t . Trata-se do espaço-tempo de Minkowski,

que serve de cenário para a teoria da relatividade restrita, mas que além disso
tem uma importância que permeia toda a relatividade geral visto ser possível
provar que, na vizinhança de qualquer ponto dum espaço-tempo arbitrário,
a estrutura causal é idêntica à de Minkowski. É por isso o paradigma local
de qualquer espaço-tempo. O parâmetro c é a velocidade da luz, e observe-
se que uma curva γ, quando parametrizada por t, é causal precisamente
quando satisfaz g(dγdt ,

dγ
dt ) ≤ 0, ou seja

−c2+
(
dx1
dt

)2
+
(
dx2
dt

)2
+
(
dx3
dt

)2
≤ 0⇔

(
dx1
dt

)2
+
(
dx2
dt

)2
+
(
dx3
dt

)2
≤ c2.

Se supusermos que temos um referencial de inércia no qual as coordena-
das são identificadas com as de (8), então as curvas causais são aquelas
cuja velocidade é igual ou inferior à da luz nesse referencial, ou seja, são
as trajetórias fisicamente admissíveis. Destas, as que são retas correspon-
dem precisamente às geodésicas da variedade e representam o movimento
de partículas materiais livres, no caso de serem do tipo tempo, ou da luz,
no caso de terem velocidade exatamente igual a c. Estas propriedades de
curvas causais estendem-se a qualquer espaço-tempo.

6Quando uma variedade Lorentziana é temporalmente orientável, existem sempre duas
alternativas de escolha de orientação: uma das duas classes de equivalência de campos
vetoriais não nulos do tipo tempo, com a mesma orientação em cada ponto p ∈M .
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14 PVI para as equações de Einstein

Daqui para a frente assumiremos que as unidades são escolhidas de forma
a terem-se valores unitários para a velocidade da luz no vácuo e para a
constante de gravitação universal, ou seja, c = 1 e G = 1. Designam-se por
unidades geometrizadas.

Sendo verdade que todo o espaço-tempo é modelado por uma variedade
Lorentziana orientada temporalmente, tal não significa que qualquer vari-
edade Lorentziana corresponde a um espaço-tempo com significado físico.
Albert Einstein introduziu as equações que hoje associamos ao seu nome,
em 1915 ([7]), exatamente como as leis que determinam a geometria do
espaço-tempo através da interação gravitacional causada pela presença, ou
ausência, de matéria e energia, de acordo com a sua teoria geral da relativi-
dade. Trata-se duma equação tensorial, envolvendo a curvatura associada à
métrica, naturalmente invariante sob isometrias de modo a ser uma relação
intrinsecamente geométrica.

No vácuo, as equações apresentam a sua forma mais simples

Rµν −
1
2gµνR = 0, (9)

em que Rµν são as componentes do tensor de Ricci associado à métrica g
e R = gµνRµν é a curvatura escalar7. Relembrando que o tensor de Ricci
resulta do traço do tensor da curvatura, Rµν = Rαµαν , e que este último,
quando escrito em coordenadas locais, envolve derivadas de segunda ordem
das componentes da métrica g, estamos então em presença, em (9), dum
sistema não-linear de 10 equações diferenciais parciais de segunda ordem
para as 10 componentes independentes de g. Calculando o traço de (9) (ou
seja, contraindo com gµν , a inversa das componentes do tensor da métrica)
obtém-se R = 0, donde as equações de Einstein no vácuo são equivalentes
ao anulamento do tensor de Ricci

Rµν = 0. (10)

Aliás, designam-se os espaços-tempo que são solução de (9) ou (10) como
sendo Ricci-planos, por consistirem precisamente de variedades Lorentzianas
com curvatura de Ricci nula.

O exemplo mais óbvio de solução para as equações de Einstein no vácuo
é o espaço-tempo de Minkowski (8), que tem métrica com componentes
constantes nas coordenadas (t, x1, x2, x2) e portanto tem curvatura de Ricci
nula em todos os pontos. É a solução trivial de (9) ou (10). No entanto,

7Usamos, como habitualmente, a convenção de Einstein, em que a repetição de índices
representa um somatório, por exemplo gµνRµν significa

∑3
µ,ν=0 g

µνRµν .
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Figura 4: Einstein escrevendo as suas equações para o vácuo.

tal como a solução nula, u = 0, é a solução trivial da equação das ondas
livre �u = 0, e isso não a impede de ter muitas outras soluções não óbvias,
também as equações de Einstein no vácuo conduzem a variadíssimos outros
espaços-tempo Ricci-planos, com uma grande diversidade e complexidade de
soluções, para além de Minkowski. Por exemplo, a métrica de Schwarzschild

g = −
(

1− 2m
r

)
dt2 +

(
1− 2m

r

)−1
dr2 + r2dσS2 , (11)

em que dσS2 = dθ2 + sin2 θ dϕ2 é a métrica da esfera unitária, também é
solução de (9) para t ∈ ] − ∞,+∞[ e r ∈ ]0, 2m[ ou r ∈ ]2m,+∞[. Na
verdade, a singularidade aparente em r = 2m, apenas devida à escolha das
coordenadas aqui usadas, é um exemplo histórico famoso que ilustra bem as
dificuldades iniciais com que se defrontaram os primeiros investigadores, na
teoria geral de relatividade, sem terem ao seu dispor um desenvolvimento
paralelo já maduro dos conceitos mais abstratos de geometria diferencial.
Com efeito, K. Schwarzschild descobriu esta solução explícita das equações
de Einstein no vácuo logo em 1915, tendo sido publicada no ano seguinte,
como a analogia relativista do campo gravitacional Newtoniano criado no
exterior duma massa pontual ou com simetria esférica, com massa total m.
Como tal, é uma solução esfericamente simétrica de (9) ou (10), e pretendia-
se que tivesse significado físico só para raios correspondentes à região exterior
da massa esférica - uma estrela ou um planeta - os quais são tipicamente
muito superiores a r = 2m. A singularidade matemática de (11) em r = 2m
encontrar-se-ia normalmente, portanto, no interior da estrela, onde a solução
não teria sentido físico. Foi só ao longo de várias décadas de investigação que
se percebeu que esta singularidade era simplesmente um artefacto matemá-
tico causado pela escolha de coordenadas em que se escrevia (11), mas que,
usando outras coordenadas, era possível obter representações isométricas
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da mesma variedade, totalmente regulares através de r = 2m, com topolo-
gia global M = R × R × S2. A singularidade genuinamente intrínseca do
espaço-tempo de Schwarzschild situa-se só em r = 0. Mais importante que
isso, percebeu-se que na região r ∈ ]0, 2m[ algumas propriedades invulgares
tinham lugar: enquanto que ∂

∂t e ∂
∂r são, como a intuição leva a assumir,

respetivamente do tipo tempo e do tipo espaço em r > 2m, os seus tipos
invertem-se em r < 2m; geodésicas causais, ou seja, aquelas que correspon-
dem fisicamente a partículas materiais em queda livre, ou à luz, que tenham
início em r < 2m são incompletas, terminando numa singularidade em r = 0
e nunca conseguindo escapar, para futuro ou para o passado - nem a própria
luz - da região r < 2m. Tinha-se assim a primeira solução matemática das
equações de Einstein no vácuo exibindo uma região que se denominou de
buraco negro (assim como um correspondente buraco branco) cuja fronteira,
chamada de horizonte de eventos, se situa precisamente em r = 2m. Um te-
orema importante devido a Birkhoff mostra ainda que a família de soluções
de Schwarzschild é, na verdade, a solução mais geral possível de (9) ou (10)
sob condições de simetria esférica, concluindo que qualquer solução com essa
simetria é localmente isométrica a (11). Em particular, a própria métrica
de Minkowski é um desses casos: corresponde evidentemente a m = 0. Dito
doutra forma, a simetria esférica impõe um grau de rigidez às equações de
Einstein8 no vácuo, que não permite qualquer liberdade dinâmica, pelo que
todas as soluções se restringem à família de Schwarzschild.

Mais recentemente, em 2009, num trabalho de extrema profundidade
([4]), Demetrios Christodoulou provou que é mesmo possível a formação di-
nâmica de buracos negros para as equações de Einstein no vácuo, ou seja,
criados apenas pela evolução gravitacional atuando sobre si mesma - natu-
ralmente sem simetria esférica, pelo que acabámos de ver acerca do teorema
de Birkhoff - questão que até essa data estava completamente em aberto.

Em resumo, queremos sublinhar que mesmo as equações de Einstein na
sua forma mais simples, no vácuo, com total ausência de matéria ou ener-
gia, em que os efeitos gravitacionais sobre a geometria do espaço-tempo são
apenas resultantes da dinâmica autónoma interna, são já de si suficiente-
mente complexas para serem motivo de alguma da investigação atual mais
avançada, mesmo no que concerne questões aparentemente básicas. O que
não é de surpreender, aliás, em face da sua estrutura fortemente não linear,
aliada a um contexto geométrico altamente não trivial.

8As soluções esfericamente simétricas assumem particular relevância em relatividade
geral porque servem de modelos astrofísicos para o campo gravitacional de corpos celestes
isolados.
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A introdução de matéria ou energia no modelo gravitacional torna o
problema ainda mais complexo. Com efeito, tal como as forças externas são
uma fonte do movimento ondulatório, adicionadas ao lado direito da equação
das ondas (3), também a forma como se incorpora a presença da matéria e
energia nas equações de Einstein é através dum termo tensorial adicionado ao
lado direito de (9), que pode identicamente ser interpretado como uma fonte
externa de curvatura do espaço-tempo: trata-se do denominado tensor da
energia-momento, habitualmente designado em componentes por Tµν . Mas
o problema não termina aí, porque agora Tµν terá de ser dado em termos
de quantidades que modelam a matéria, as quais obedecem por sua vez às
suas próprias equações constitutivas. Deixamos de ter apenas um sistema
de equações de Einstein, para a geometria do espaço-tempo, para ter agora
um sistema de equações de Einstein e equações de matéria, que se acoplam
mutuamente, de forma altamente não-linear: a geometria do espaço-tempo
afeta as equações estruturais da matéria, a qual por sua vez afeta as equações
de Einstein pelo tensor da energia-momento. Para completar o sistema, é
ainda habitual acrescentar um outro termo de fonte, externo ao tensor da
energia-momento: trata-se da denominada constante cosmológica Λ, que
fisicamente pode ser interpretada como a densidade de energia do vácuo9.
Um sistema completo de equações de Einstein e matéria será assim algo da
forma, 

Rµν − 1
2gµνR = −Λ gµν + 8π Tµν ,

Equações da matéria/energia.
(12)

Observe-se que, pelas identidades de Bianchi, o lado esquerdo de (12) tem
divergência nula pelo que, obrigatoriamente, o tensor da energia-momento
para qualquer modelo de matéria e energia terá que necessariamente satis-
fazer também a seguinte restrição

∇µTµν = 0.
9Foi o próprio Einstein o primeiro a introduzir a constante cosmológica, de forma a

compensar o que ele imaginava ser o inerente colapso gravitacional e consequente contração
do universo dado pelas suas equações, e assim produzir um universo estático, que se
suponha à época ser a realidade. No entanto, pouco tempo depois, após as observações
iniciais de Hubble que demonstraram a expansão aparente do universo, Einstein removeu
a constante cosmológica, tendo então dito uma das suas frases mais famosas, de que a sua
introdução nas equações tinha sido o maior erro da sua vida. Mas na verdade, verifica-se
atualmente que a presença da constante cosmológica parece ser de facto a melhor forma
de modelar a expansão acelerada do universo.
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Mas não iremos, neste texto, aprofundar esta forma mais geral do problema,
visto que ela requer especificações concretas para cada um dos modelos de
matéria. Restringir-nos-emos essencialmente, portanto, ao problema das
equações de Einstein no vácuo (9), as quais formam um sistema fechado,
passível de ser resolvido autonomamente sem serem necessárias mais equa-
ções para o completar, e que só por si já contêm a essência das propriedades
- e das dificuldades também - associadas à formulação e resolução do pro-
blema mais geral. Faremos apenas comentários acessórios relativos a (12),
quando isso for relevante.

3.2 Hiperbolicidade global e formulação do problema de va-
lor inicial

Em face do que foi exposto até agora, e dado o contexto fortemente geo-
métrico, a impressão com que se fica, relativamente à obtenção de espaços-
tempo com significado físico, é que o processo passará por tentar construir
explicitamente variedades Lorentzianas globais cujas métricas, quando escri-
tas num sistema de coordenadas locais, satisfaçam as equações de Einstein.
E, de facto, foi esse o procedimento seguido ao longo de várias décadas, após
a formulação de teoria da relatividade geral e das correspondentes equações,
por Einstein, em 1915, com a construção de variadas soluções explícitas, e
a sua interpretação fenomenológica física, de que são exemplos a solução de
Schwarzschild descrita na secção anterior, os espaços de de Sitter e anti-de
Sitter, os modelos cosmológicos de Friedmann-Lemaître-Robertson-Walker,
os espaços-tempo de Kerr que generalizam a solução de Schwarzschild ao
descreverem buracos negros em rotação, etc.

A formulação adequada do problema de valor inicial para as equações
de Einstein, e a sua posterior resolução, foi algo que levou décadas a ser
devidamente compreendido e estabelecido. Isso deve-se, naturalmente, à ra-
dical diferença que distingue as equações da relatividade geral das outras
equações diferenciais parciais da física clássica, quer na sua complexidade
quer, acima de tudo, no seu teor geométrico intrínseco. Com efeito, em
qualquer das equações da física clássica, como as descritas na Secção 2, a
geometria do domínio onde se procura a solução está prescrito e é conhecido
a priori, mesmo nos casos mais complexos onde a equação é dada em domí-
nios não euclidianos (como por exemplo, se se quiser resolver a equação do
calor com vista a obter a evolução, no tempo, da temperatura numa super-
fície esférica). Ou seja, nas equações da física clássica, buscam-se soluções
desconhecidas, mas que evoluem sobre um domínio com uma geometria pre-
viamente dada e conhecida. Nas equações de Einstein, no entanto, a solução
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- a métrica do espaço-tempo - é ela própria o fator essencial que descreve o
domínio, pelo que este é, no fundo, dado pela própria solução desconhecida.
Por outras palavras, resolver as equações de Einstein consiste precisamente
em determinar a geometria do domínio da solução, como se este fosse sendo
revelado à medida que a evolução da solução vai sendo obtida.

Uma segunda dificuldade, inerente ainda à formulação geométrica intrín-
seca das equações de Einstein, advém do facto de, consoante as coordenadas
locais escolhidas, as equações poderem assumir naturezas aparentemente
muito diferentes: trata-se da chamada liberdade de gauge. Por isso, até o
caráter evolutivo das equações foi uma propriedade obscurecida ao longo de
vários anos pela falta de compreensão dos conceitos abstratos de geometria
diferencial, no início do séc. XX, em particular no que toca à invariância
das equações sob difeomorfismos, ou mudança de coordenadas locais. Aliás,
foi o próprio Albert Einstein o primeiro que, na tentativa de deduzir que o
campo gravitacional se propaga à velocidade da luz, recorrendo a uma per-
turbação linear das suas equações em torno da solução de Minkowski, obteve
um sistema de equações de onda quando escritas em coordenadas locais es-
pecíficas. Ainda assim, a dificuldade em compreender totalmente o conceito
de invariância geométrica, aliada à não existência de uma teoria estabele-
cida de equações hiperbólicas, levou Einstein a hesitar acerca do caráter
dinâmico das equações, insistindo mais na ideia errada de que a distribui-
ção de matéria, através do tensor energia-momento Tµν , devia determinar
de forma única a métrica do espaço-tempo. Numa perspetiva geométrica
moderna, sabemos hoje que se forem escolhidas coordenadas adequadas, as
chamadas coordenadas de onda (ou coordenadas harmónicas para a métrica
Lorentziana), que satisfazem

�gx
µ = 0, (13)

onde �g = ∇α∇α designa o operador das ondas10 sobre uma variedade
Lorentziana de métrica g, as equações de Einstein assumem a forma dum

10Na verdade �g = ∇α∇α não é mais do que o Laplaciano associado à métrica Lorent-
ziana g, dado em coordenadas locais por

∇α∇αf = 1√
|g|
∂α

(√
|g|gαβ∂βf

)
,

onde |g| = | det gαβ |. Normalmente designado como operador de Laplace-Beltrami,
em variedades Riemannianas, a sua definição extende-se a qualquer variedade pseudo-
Riemanniana. Quando a métrica é Lorentziana, o operador deixa de ser elíptico, como no
caso Riemanniano, para passar a ser hiperbólico, e generaliza assim a definição habitual
do operador das ondas � visto em (4), o D’Alembertiano, o qual portanto é simplesmente
o Laplaciano no espaço de Minkowski correspondente Rn+1

t,x .
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sistema geral do tipo
�g gµν = Qµν(g, ∂g),

onde Q é um termo quadrático nas derivadas de primeira ordem da métrica
g.

Estamos, portanto, em presença dum sistema de equações que deve ser
visto como tendo um caráter evolutivo hiperbólico, não linear, análogo ao
das equações das ondas descritas na Secção 2. Põe-se agora a questão do sig-
nificado, e da forma que terá, o problema de valor inicial para um tal sistema.
Nas equações da física clássica, essa formulação é razoavelmente intuitiva:
existe uma variável preferencial, que habitualmente descreve o tempo, para
a qual se escolhe um instante de partida da evolução, num domínio conhe-
cido; a restrição do domínio a esse instante de partida é normalmente uma
hipersuperfície, na qual se impõem os dados iniciais da solução. Mais geral-
mente, o problema de Cauchy pode ser formulado com dados iniciais sobre
uma hipersuperfície do tipo espaço, como se viu a propósito da equação das
ondas, na Secção 2, fazendo evoluir a solução a partir daí, ao longo da variá-
vel tempo. Mas para as equações de Einstein, uma tal formulação parece ser
totalmente impraticável. Por um lado, dada a invariância geométrica, não
existe nenhuma coordenada preferencial canónica que se possa eleger como
aquela que representa o tempo e cujo valor fixo seria o instante de partida.
Por outro lado, mesmo que isso fosse possível, a situação é extremamente
confusa: como se pode selecionar um instante inicial, ou uma hipersuperfície
do tipo espaço, numa variedade Lorentziana que ainda não existe, porque a
métrica que a descreve é precisamente a solução que se procura obter pela
resolução do problema de valor inicial?

Parece assim ser necessário conhecer-se todo o espaço-tempo a priori,
para se poder formular adequadamente o problema de valor inicial. Mas
como o espaço-tempo é a própria solução, se o conhecermos a priori, então
a solução está desde logo determinada e o problema de valor inicial torna-se
totalmente irrelevante. Não admira que tenham sido precisos tantos anos
para, corretamente, formular o problema de Cauchy para as equações de
Einstein e estabelecer o seu lugar central na relatividade geral, como o é
para as outras equações da física clássica.

Para fazer frente às dificuldades acabadas de descrever e resolver este
imbróglio, fazem-se duas coisas: primeiro, recorre-se a uma abordagem, e
à definição de conceitos, duma forma geométrica invariante, para que não
haja qualquer tipo de dependência nalguma escolha específica de sistema
de coordenadas; segundo, imagina-se, de facto, o espaço-tempo completo
a priori... sem realmente ainda ter sido obtido. E, do fim para o início,
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analisa-se qual a formulação correta dum problema de valor inicial que lhe
daria origem. Assim, tendo presente as propriedades de propagação para
as equações das ondas, bem como as relações de causalidade e o princípio
do domínio de dependência, teremos de ter, em analogia com o que vimos
na Secção 2, não um tempo inicial - porque não existe nenhuma variável
preferencial que represente o tempo - mas uma hipersuperfície inicial do
tipo espaço, sobre a qual serão impostos os dados iniciais, ou seja, o valor da
solução, assim como da sua derivada na direção ortogonal à hipersuperfície.

Na descrição efetuada na Secção 2, percebeu-se que a necessidade da
superfície inicial ser do tipo espaço prende-se com o facto de evitar que os
dados iniciais se propaguem à própria superfície pela evolução, coisa que po-
deria causar restrições na imposição desses dados, ou contradições no caso
de dados arbitrários, que levariam à má colocação do problema de valor ini-
cial. Diz-se, em relatividade geral, que se tem um subconjunto acausal se
nenhum ponto desse conjunto puder ser ligado a outro, por uma curva cau-
sal. A ideia desta definição é exatamente a mesma: excluir conjuntos para
os quais a informação se propague - e já sabemos que só há propagação de
informação ao longo de curvas causais - a outros pontos do mesmo conjunto.
Mas ao contrário da equação das ondas no espaço euclidiano, em que a ge-
ometria plana do correspondente espaço-tempo de Minkowski Rn+1

t,x garante
que, ao ser do tipo espaço, isso é condição suficiente para uma superfície
inicial ser acausal, no caso duma variedade Lorentziana geral a sua topolo-
gia não trivial pode levar curvas causais, que partem da superfície inicial do
tipo espaço Σ, a intersetá-la várias - até infinitas - vezes. Com efeito, ser do
tipo espaço é uma condição apenas local, e não evita a ocorrência deste tipo
de patologias numa escala global. Um exemplo simples onde este problema
ocorre consiste em “enrolar” o espaço-tempo de Minkowski Rn+1

t,x na variável
t, transformando-o num cilindro. Faz-se isso, por exemplo, através da iden-
tificação t ∼ t+ 1 com a métrica de Minkowski g = −dt2 + dx2

1 + dx2
2 + dx2

3
induzida sobre a variedade quociente Rn+1

t,x /t ∼ t+1. Qualquer curva causal
γ, do tipo tempo, evoluindo para o futuro a partir de Σ = {t = 0} even-
tualmente voltará à superfície inicial quando t = 1, como se representa na
figura seguinte. A superfície do tipo espaço Σ = {t = 0}, que no espaço
de Minkowski plano é acausal, aqui deixa de o ser. Uma patologia mais
dramática, no mesmo exemplo, consiste em considerar uma curva do tipo
tempo com coordenada x fixa: uma tal partícula material evoluiria para o
futuro a partir de t = 0 e chegaria ao seu passado quando t→ 1.

Queremos evitar este tipo de patologias cronológicas, em particular esta
última, de partículas materiais poderem viajar para o seu passado, ao longo
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γ

t

Σ

Figura 5: Superfície Σ do tipo espaço não acausal.

de curvas de tipo tempo percorridas para o futuro (dando origem ao fa-
moso “paradoxo do avô”)11. Mas também queremos evitar ainda outra
situação, na qual pontos do espaço tempo possam não comunicar com a
superfície inicial. Na verdade, devido ao princípio do domínio de dependên-
cia, que é o ingrediente fundamental da garantia de unicidade de soluções
do problema de valor inicial para equações do tipo hiperbólico, como vi-
mos na Secção 2, pretende-se que toda a informação causal de qualquer
ponto do espaço-tempo provenha da superfície inicial. Designa-se assim por
desenvolvimento de Cauchy futuro (passado) de uma superfície acausal Σ
duma variedade Lorentziana, e representa-se por D+(Σ) (D−(Σ)), o con-
junto dos pontos tais que, qualquer curva causal inextensível para o passado
(futuro) a partir deles, interseta Σ12. Naturalmente chama-se desenvol-
vimento de Cauchy (total) de Σ à reunião dos desenvolvimentos futuro e
passado, D(Σ) = D+(Σ) ∪ D−(Σ). Observe-se, na Figura 6, que todas as
curvas causais para o passado, com início no ponto P intersetam Σ. Já o
mesmo não é verdade relativamente ao ponto O, que é causalmente depen-
dente de informação proveniente, não só de Σ, mas também da fronteira de
M . Donde P ∈ D+(Σ) mas O /∈ D+(Σ). As regiões a branco nessa figura
são, portanto, pontos do espaço-tempo em que a previsibilidade da solução
não decorre exclusivamente da evolução a partir de Σ: dado o carácter hi-

11Diz-se que um espaço-tempo é cronológico ou que satisfaz a condição cronológica
quando esta patologia não ocorre, ou seja, quando não existem curvas fechadas do tipo
tempo.

12Na teoria matemática da relatividade geral, também se chama domínio de dependência
de Σ ao seu desenvolvimento de Cauchy. No entanto, como vimos na Secção 2, a mesma
terminologia já é usada na teoria de equações hiperbólicas para designar algo ligeiramente
diferente, podendo causar alguma confusão: observando a Figura 2, o que aí se chama
domínio de dependência do ponto (t1, x1) é o que, em relatividade, se chama de passado
causal desse ponto, ou seja, o conjunto de pontos no seu passado que o podem causalmente
afetar e, portanto, dos quais o valor da solução em (t1, x1) depende. Na terminologia da
relatividade matemática esse conjunto é o desenvolvimento de Cauchy futuro - ou também
domínio de dependência futuro - da bola (7), sobre a superfície t = t0. Para evitar esta
confusão de nomenclatura, usaremos exclusivamente a designação de desenvolvimento de
Cauchy dum conjunto, no âmbito da relatividade geral.
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D⁺(Σ)

D⁻(Σ)

Σ

M

O

P

Figura 6: Desenvolvimento de Cauchy de Σ num espaço-tempo M .

perbólico das equações de Einstein, é de novo possível seguir um argumento
de domínio de dependência para provar que os dados em Σ garantem unici-
dade da solução, mas apenas no desenvolvimento de Cauchy D(Σ), tal como
na Figura 2 os dados na bola (7) garantem unicidade da solução da equação
das ondas apenas no cone com vértice em (t1, x1).

Do ponto de vista da formulação dum problema de valor inicial, é assim
razoável só definir como solução das equações de Einstein um espaço-tempo
M no qual a superfície inicial Σ seja acausal e cujos dados iniciais garantam
previsibilidade global, ou seja, tal que M = D(Σ). Nesse sentido, define-se
então o conceito de (hiper)superfície de Cauchy, como sendo uma hipersu-
perfície Σ ⊂ M , do tipo espaço, tal que qualquer curva causal inextensível
em M interseta Σ uma e uma só vez13. E diz-se que um espaço-tempo M
é globalmente hiperbólico se possui uma superfície de Cauchy Σ ⊂ M . De
acordo com estas definições, tem-se que, quando o espaço-tempo M é glo-
balmente hiperbólico e Σ é uma sua superfície de Cauchy, necessariamente
D(Σ) = M . Ou seja, toda a variedade Lorentziana M globalmente hiper-
bólica está sujeita ao princípio de domínio de dependência duma evolução a
partir da superfície de Cauchy Σ: a solução das equações de Einstein será,

13Em rigor, é habitual definir-se uma superfície de Cauchy a partir duma condição um
pouco mais fraca: apenas como um subconjunto do espaço-tempo tal que qualquer curva
do tipo tempo, inextensível, o interseta uma e uma só vez. É possível provar-se que,
nesse caso, essas superfícies de Cauchy são apenas hipersuperfícies topológicas (ou seja,
sem estrutura diferenciável e portanto possivelmente não suaves) tais que M = D(Σ) e
acronais - ou seja, tais que curvas do tipo tempo a intersetam uma única vez, podendo
as do tipo luz intersetar em infinitos pontos. No entanto, esta definição mais fraca de
superfície de Cauchy conduz exatamente à mesma definição de hiperbolicidade global do
espaço-tempo, no qual é sempre possível obter superfícies de Cauchy suaves (pelo menos
C1), do tipo espaço, como optámos por definir para simplificar a apresentação (ver [13]
ou [16] para uma exposição cuidadosa das hierarquias de causalidade de espaços-tempo).
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portanto, única em todo M para dados iniciais devidamente impostos so-
bre Σ. Além disso, num espaço-tempo globalmente hiperbólico é sempre
possível definir uma função temporal de Cauchy: uma função diferenciável
τ : M → R, tal que o seu gradiente ∇τ é do tipo tempo, para o passado14, e
cujas superfícies de nível Σc = τ−1(c), c ∈ R, são hipersuperfícies de Cauchy,
difeomorfas entre si. Aliás, dada uma superfície de Cauchy Σ ⊂M também
é sempre possível escolher essa função temporal τ tal que Σ = τ−1(0), e o
espaço-tempo é difeomorfo a R× Σ. A existência de funções temporais é a
garantia que as patologias cronológicas, como o caso da existência de cur-
vas do tipo tempo fechadas, estão excluídas dos espaços-tempo globalmente
hiperbólicos.

Exemplo óbvio de um espaço tempo globalmente hiperbólico é o espaço
de Minkowski (8), sendo que qualquer plano t = c ∈ R é uma superfí-
cie de Cauchy. A função temporal natural é a própria variável t, ou seja,
τ(t, x1, x2, x3) = t, cujas hipersuperfícies de nível são precisamente os planos
de t constante. O espaço-tempo de Schwarzschild (11) também é global-
mente hiperbólico, com superfície de Cauchy, por exemplo, correspondendo
a t = 0. Neste caso não se trata dum plano, mas duma hipersuperfície
do tipo espaço com duas terminações assimptoticamente planas, como se
representa na Figura 7.

Figura 7: Configuração topológica da superfície de Cauchy t = 0 para o
espaço-tempo de Schwarzschild.

Espaços-tempo não globalmente hiperbólicos também são fáceis de obter.
Além de exemplos esquemáticos, como o da Figura 6, um exemplo já visto é
o espaço quociente de Minkowski Rn+1

t,x /t ∼ t+ 1 representado na Figura 5.
Outro, bastante natural consiste em simplesmente remover um ponto, por

14Devido ao sinal negativo da métrica Lorentziana para vetores causais orientados para
o futuro, isso significa que τ cresce ao longo de curvas causais percorridas para o futuro,
pois se γ é uma tal curva, tem-se dτ(γ(s))

ds
= dτ(γ̇(s)) = g(γ̇(s),∇τ) > 0.
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exemplo a origem, ao espaço-tempo de Minkowski, como se representa na
Figura 8.

Figura 8: O espaço-tempo de Minkowski sem a origem, R3+1 \ (0, 0, 0, 0),
não é globalmente hiperbólico. Representa-se o desenvolvimento de Cauchy
D(Σ) duma superfície Σ do tipo espaço que passa abaixo da origem, mas o
problema seria o simétrico se passasse acima.

Os espaços-tempo, portanto, podem não ser globalmente hiperbólicos
por duas razões: ou porque não é possível obter uma hipersuperfície Σ
acausal, apesar de qualquer curva causal a intersetar (necessariamente mais
que uma vez, nalguns casos) como é a situação da Figura 5; ou porque
existirão sempre pontos do espaço-tempo cuja dependência causal não é
garantida exclusivamente por Σ, qualquer que seja essa hipersuperfície, como
é o caso das Figuras 6 e 8. Nesta última situação, em analogia com a
teoria clássica de equações diferenciais parciais, seria necessário acrescentar
condições de fronteira, para além das condições iniciais em Σ: na fronteira
de M , no caso da Figura 6, ou na origem, no caso da Figura 8.

Os espaços-tempo globalmente hiperbólicos são assim aqueles que têm a
estrutura precisamente adequada para a formulação dum problema de valor
inicial. No fundo, é aquilo que se tem habitualmente no espaço euclidiano,
da teoria de equações diferenciais parciais de evolução clássica. Em resumo:
existe uma superfície inicial, dita de Cauchy, do tipo espaço, a partir da qual
a evolução dos dados iniciais permite controlar a previsibilidade da solução
sobre todo o espaço-tempo, pelo que este está assim globalmente sujeito ao
princípio do domínio de dependência, assegurando portanto unicidade de
soluções em todo o domínio; existe uma função (não canónica) que desem-
penha um papel análogo ao do tempo, crescente ao longo de curvas causais
orientadas para o futuro, e cujos conjuntos de nível folheiam o espaço-tempo
por superfícies do tipo espaço, difeomorfas à superfície de Cauchy inicial, a
qual corresponde ao conjunto de nível onde esse tempo vale zero.
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Mas somos de novo confrontados com o problema já descrito atrás: esta
estrutura de hiperbolicidade global, e superfícies de Cauchy, requer a existên-
cia prévia de um espaço-tempo (M, g), sendo que na formulação do problema
de valor inicial esse espaço-tempo é a solução e, portanto, é desconhecido
à partida. Como determinar então uma superfície de Cauchy dum espaço-
tempo globalmente hiperbólico que ainda não existe, onde queremos impor
as condições iniciais? Numa variedade Lorentziana (M, g) a restrição da sua
métrica g a uma hipersuperfície Σ ⊂ M do tipo espaço é definida positiva,
pelo que (Σ, g|Σ) será sempre uma variedade Riemanniana15. Claro que, à
partida, não existeM nem a métrica global g, pelo que não poderemos falar
da sua restrição a Σ. Por isso, seguindo a estratégia de analisar o sistema
do fim para o início, para formular convenientemente um problema de valor
inicial que daria origem ao espaço-tempo idealizado, o que faremos é partir
duma variedade Riemanniana (Σ, g̃) isolada a qual, a posteriori, depois de
obtida uma solução globalmente hiperbólica (M, g), possa ser identificada
(isometricamente) com uma hipersuperfície de Cauchy de M , e portanto g̃
com a restrição de g a essa hipersuperfície.

A métrica g̃ corresponde ao valor da solução sobre a superfície Rieman-
niana inicial. Mas tratando-se as equações de Einstein dum sistema do tipo
das equações de onda, vistos na Secção 2, falta ainda impor a derivada da so-
lução, na direção ortogonal à superfície, para completar as condições iniciais
dum problema de valor inicial bem posto. De novo assumindo que se tem a
posteriori a solução completa, ou seja, um espaço-tempo globalmente hiper-
bólico (M, g), no qual Σ é uma superfície de Cauchy, o análogo à derivada da
solução na direção normal à hipersuperfície é a segunda forma fundamen-
tal de Σ. Relembramos que, para uma hipersuperfície Σ duma variedade
Riemanniana, ou pseudo-Riemanniana, (M, g), a segunda forma fundamen-
tal K é um campo tensorial simétrico 2-covariante em Σ (ou seja, em cada
ponto p ∈ Σ definida em pares de vetores tangentes a Σ nesse ponto), que
corresponde à (metade da) derivada de Lie da métrica na direção de um
(dos dois possíveis) vetor unitário ortogonal à superfície:

K(u, v) = 1
2(LNg)(u, v).

Naturalmente, a segunda forma fundamental muda de sinal consoante o
15Entende-se aqui por restrição g|Σ da métrica g à hipersuperfície Σ como o pullback

g|Σ = i∗g em que i : Σ → M é o mergulho de Σ em M , como subvariedade, através
da identidade. Por outras palavras, a restrição da métrica não é simplesmente a métrica
ambiente g de M restringida aos pontos do subconjunto Σ, mas é também restringida a
uma métrica em Σ, ou seja, definida apenas sobre os vetores do fibrado tangente TΣ, e
portanto reduzida só às componentes relativas aos vetores tangentes à hipersuperfície.
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sentido da normal unitária N convencionado para a sua definição. Em rigor,
para que a derivada de Lie, LNg, esteja bem definida, esta fórmula exige
que N seja um campo vetorial em M , portanto teria de ser estendido dum
campo vetorial ortogonal, apenas definido sobre Σ, para uma vizinhança da
superfície na variedade ambiente M . Não é, no entanto, difícil provar que
esta definição é independente da extensão e que, na verdade, depende só
mesmo dos valores pontuais dos vetores u, v e N em cada p ∈ Σ, podendo
ser dada simplesmente por

Kp(u, v) = −gp(∇uv,Np), (14)

para u, v ∈ TpΣ, onde v, no lado direito da definição, designa uma qualquer
extensão arbitrária de v ∈ TpΣ a um campo vetorial na vizinhança de p e ∇
designa a conexão de Levi-Civita emM , ou seja, ∇uv é a derivada covariante
de v na direção u na variedade ambiente M . Para espaços-tempo em que
Σ é do tipo espaço, convenciona-se que Np é a normal (portanto, do tipo
tempo) que aponta no sentido futuro16. Invertendo de novo o raciocínio,
tal como fizemos para o próprio valor da métrica sobre a hipersuperfície de
Cauchy inicial, o que faremos agora é definir também um campo tensorial
simétrico 2-covariante K̃ sobre a variedade Riemanniana (Σ, g̃), que já esta-
mos a usar para representar isoladamente a superfície inicial. A posteriori,
depois de obtida a solução globalmente hiperbólica (M, g) e feita a identi-
ficação de Σ com uma hipersuperfície de Cauchy em M , K̃ corresponderá
à segunda forma fundamental K de Σ como uma subvariedade mergulhada
em M , desempenhando assim o papel correspondente à derivada ortogonal
à superfície de Cauchy, para os dados iniciais duma equação do tipo das
ondas.

Apesar de já suficientemente complexa toda esta construção, e parecendo
que a imposição dos valores de g e da segunda forma fundamental K sobre
a hipersuperfície inicial seriam suficientes para encerrar a escolha dos dados
iniciais do problema de valor inicial, tal como u e ∂νu são suficientes para
uma equação clássica das ondas sobre uma hipersuperfície do tipo espaço,
de acordo com o que vimos na Secção 2, ainda assim as dificuldades para
a correta formulação do problema de Cauchy para a equação de Einstein
não terminam aqui. As equações de Gauss-Codazzi relacionam a curvatura
de subvariedades com a da variedade ambiente, através da segunda forma
fundamental e, por isso, impõem restrições a estes dados iniciais, visto que

16De acordo com (14), é possível fazer uma outra interpretação da segunda forma fun-
damental duma hipersuperfície Σ do tipo espaço: como a componente ortogonal a Σ (na
métrica g), para o passado, da derivada covariante ambiente de v na direção u, ∇uv.
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a curvatura do espaço ambiente, no caso dum espaço-tempo, está condici-
onada a satisfazer as equações de Einstein. Obtém-se assim o sistema de
equações de restrição aos dados iniciais, para o sistema acoplado de equações
de Einstein com modelo de matéria (12)

R̃+ (K̃j
j )

2 − K̃ijK̃
ij = 16π TµνNµNν + 2Λ, (15)

∇̃jK̃j
i − ∇̃iK̃

j
j = 16πΠµ

i TµνN
ν , (16)

em que R̃ e K̃ representam, respetivamente, a curvatura escalar e a segunda
forma fundamental da hipersuperfície Σ, com a métrica induzida pela mé-
trica ambiente g̃ = g|Σ , e ∇̃ é a conexão em Σ compatível com g̃. Do lado
direito de (15) e (16), T é o tensor de energia-momento, que modela a pre-
sença de matéria e energia nas equações de Einstein, como visto na Secção
3, Λ é a constante cosmológica, N é a normal unitária a Σ de (14) e Π é
o pullback da variedade ambiente, o espaço-tempo (M, g), para a hipersu-
perfície Σ. Observe-se, para concluir, que os índices romanos, relativos às
componentes dos tensores em Σ percorrem apenas três índices, i, j = 1, 2, 3,
visto que a hipersuperfície é tridimensional, enquanto os índices gregos, rela-
tivos às componentes tensoriais no espaço-tempo, percorrem quatro índices
µ, ν = 0, 1, 2, 3.

No caso de vácuo, e na ausência de constante cosmológica, ou seja, para
as equações de Einstein (9) ou (10), o sistema de restrições às condições
iniciais reduz-se a

R̃+ (K̃j
j )

2 − K̃ijK̃
ij = 0, (17)

∇̃jK̃j
i − ∇̃iK̃

j
j = 0. (18)

Quer (15) e (16), quer (17) e (18), formam difíceis sistemas de equações
diferenciais parciais de tipo elíptico, e mesmo só a sua resolução é motivo
de alguma da investigação matemática atual. Donde podemos concluir que
a formulação do problema de valor inicial para o sistema das equações de
Einstein, acoplado a modelos de matéria, ou mesmo só em vácuo, é de uma
complexidade tão grande que se torna um problema em si mesmo, só para
a escolha dos dados iniciais, antes mesmo da tentativa de resolução das
equações propriamente ditas, para a obtenção do espaço-tempo.

Podemos finalmente enunciar o problema de valor inicial para as equa-
ções de Einstein, no vácuo.

Problema de Valor Inicial: Seja Σ uma variedade tridimensional, g̃ uma
métrica Riemanniana em Σ e K̃ um tensor simétrico 2-covariante. Cha-
mamos a (Σ, g̃, K̃) dados iniciais para as equações de Einstein no vácuo,
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sem constante cosmológica, se satisfazem as equações de restrição (17) e
(18). Nesse caso, designa-se por solução do problema de valor inicial, ou de-
senvolvimento de Cauchy dos dados iniciais, um espaço-tempo globalmente
hiperbólico (M, g), cuja métrica satisfaz as equações (9) ou (10) e tal que
existe um mergulho i : Σ→M em que i(Σ) é uma superfície de Cauchy de
M , e g̃, K̃ coincidem, respetivamente, com a métrica induzida por (M, g)
na subvariedade i(Σ) e com a correspondente segunda forma fundamental
K, ou seja, g̃ = i∗g e K̃ = i∗K.

Para encerrar esta secção, fazemos notar apenas dois detalhes:

• No caso do sistema acoplado das equações de Einstein com um modelo
de matéria ou energia (12), é necessário também acrescentar aos dados
iniciais geométricos (Σ, g̃, K̃), para o espaço tempo, dados iniciais para
a evolução dinâmica do modelo de matéria sobre a superfície inicial
Σ, os quais dependem do tipo de modelo de matéria considerado e
das correspondentes equações de evolução acopladas às equações de
Einstein. De qualquer forma, os dados iniciais para a matéria, conjun-
tamente com os do espaço-tempo, terão agora de satisfazer as equações
de restrição (15) e (16).

• Dois espaços-tempo (M, g) e (M ′, g′) consideram-se como sendo a
mesma solução do problema de valor inicial para as equações de Eins-
tein, se existir uma isometria entre eles φ : M → M ′, ou seja, um
difeomorfismo que satisfaz g = φ∗g′, e que além disso, preserva a
superfície inicial. Este último facto significa que, se i : Σ → M e
i′ : Σ → M ′ forem os mergulhos dos dados iniciais, de acordo com a
definição anterior de solução para o problema de valor inicial, então
i′ = φ ◦ i. Esta identificação de soluções, a menos de isometrias, torna
as questões de unicidade particularmente delicadas e difíceis, como
veremos na secção seguinte.

3.3 Existência e unicidade de soluções

Não é objetivo deste texto, nem seria aqui possível, fazer uma exposição ade-
quada, mesmo que superficial, da teoria de existência e unicidade de soluções
para as equações de Einstein. Recomendamos, mais uma vez, a excelente
apresentação em [16], para os leitores interessados em aprofundar os conhe-
cimentos necessários à compreensão detalhada e completa do problema de
valor inicial para as equações de Einstein, assim como dos métodos mate-
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máticos usados para obter os resultados mais fundamentais de existência e
unicidade de soluções. Outros livros de referência são [1] ou [14].

Por um lado, uma abordagem minimamente cuidadosa dos resultados
de existência e unicidade, até evitando entrar nos detalhes completos das
demonstrações, requereria um nível técnico matemático muito superior ao
que se pretende aqui, visto envolver uma combinação já avançada de teoria
de equações diferenciais parciais hiperbólicas, assim como de geometria Ri-
emanniana. Por outro lado, não existe nenhum teorema geral que englobe
todos, ou pelo menos uma classe suficientemente ampla, de modelos de ma-
téria e energia acoplados às equações de Einstein (12). É preciso relembrar
que esses modelos acrescentam às equações de Einstein novas equações para
descrever a evolução da matéria sob o efeito da gravidade, as quais são tipica-
mente complexas ao ponto de, mesmo de forma isolada, merecerem estudo
dedicado. A tecnologia matemática atual está longe de conseguir tratar
de forma exaustiva um sistema altamente não linear de equações de tipo
hiperbólico, como são as equações de Einstein, com as dificuldades já des-
critas anteriormente relativamente à sua forte componente geométrica, além
disso acopladas a equações para a evolução dinâmica de matéria que podem
ser suficientemente difíceis, até separadas do efeito gravitacional. Se bem
que existe hoje em dia um conhecimento bastante completo das questões
de existência local, muitas das respostas relativas ao comportamento global
das soluções continuam em aberto. Como também já referimos, mesmo as
equações de Einstein no vácuo, (9) ou (10), na ausência de qualquer matéria,
onde a evolução dinâmica da gravidade se dá só sob o seu próprio efeito au-
tónomo, são ainda assim de análise muito difícil, de tal modo que respostas
a questões aparentemente básicas, como a estabilidade do espaço-tempo de
Minkowski ou a formação de singularidades, foram só recentemente respon-
didas em trabalhos de extrema profundidade e complexidade, como [4] ou
[5].

Ora, o que se faz para conseguir obter problemas tratáveis, é abordar
sistemas específicos de matéria, normalmente acrescidos de simplificações
em termos de simetrias. É preciso lembrar também que a simetria, só por
si, introduz muita rigidez no problema, facto de que o teorema de Birkhoff
mencionado na Secção 3.1 é um exemplo, pelo que quando se quer introduzir
algum grau de liberdade na evolução dinâmica das equações, mantendo a
simetria, é necessário acoplar as equações de Einstein a modelos particulares
de matéria. Por sua vez, visto que os fenómenos singulares ou patológicos,
que se desenvolvem pela evolução gravitacional das soluções, são aqueles
que mais interesse despertam, é importante assegurar que eles sejam causa-
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dos pela própria evolução gravitacional e não por propriedades intrínsecas do
modelo de matéria que sejam, já à partida, propensas à formação de singula-
ridades. Por exemplo, as soluções das equações que descrevem o escoamento
de fluidos compressíveis, no espaço euclidiano, tipicamente desenvolvem cho-
ques: trata-se duma formação de singularidades bem conhecida, intrínseca
a este modelo específico da mecânica de meios contínuos, mesmo sem qual-
quer efeito gravitacional. Pelo que, quando se quer estudar fenómenos de
colapso gravitacional, por exemplo, é preciso ter um cuidado especial na
escolha de modelo de matéria a acoplar às equações de Einstein, para não
ofuscar os efeitos puramente gravitacionais com os resultantes da dinâmica
material. Por tudo isto, existe uma riquíssima literatura dedicada ao estudo
de variados exemplos de combinações de equações de Einstein, com modelos
de matéria e hipóteses de simetria, cada um dos quais normalmente aborda
a existência e unicidade de soluções para o seu próprio problema de valor
inicial.

Vamos, por tudo isto, e como já referimos antes, centrar-nos apenas nas
equações de Einstein no vácuo e nos resultados pioneiros de Yvonne Choquet-
Bruhat ([11]), para a questão de existência local, e de Yvonne Choquet-
Bruhat e Robert Geroch ([3]), para a posterior questão da existência de
solução maximal única.

O trabalho de Choquet-Bruhat ([11]), em 1952, é fundamental porque,
pela primeira vez, quase 40 anos após a publicação das equações para o
campo gravitacional, de acordo com a teoria da relatividade geral, por Albert
Einstein ([7]), o problema de valor inicial foi devidamente considerado e
resolvido, tendo sido obtidas soluções locais. A sua demonstração recorreu
ao uso de coordenadas locais do tipo (13) e à teoria de existência e unicidade
para equações hiperbólicas não lineares (coisa que facilmente se depreende
pelo título do artigo). Mas, em rigor, a formulação do resultado, neste
trabalho, ainda foi feita em coordenadas locais. A invariância geométrica
da definição de solução do problema de valor inicial, tal como a enunciámos
na Secção 3.2, só foi finalmente clarificada no trabalho seguinte ([3]). De
qualquer modo, e à luz do formalismo geométrico atual, podemos enunciar o
teorema de existência e unicidade local de desenvolvimentos de Cauchy, para
o problema de valor inicial das equações de Einstein no vácuo, da seguinte
forma.

Teorema (Existência e Unicidade Locais [11]): Sejam (Σ, g̃, K̃) dados
iniciais para as equações de Einstein no vácuo, sem constante cosmológica,
de acordo com a definição do problema de valor inicial, do final da Secção
3.2. Então:
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1. Existe um espaço tempo (M, g) que é solução do correspondente pro-
blema de valor inicial para as equações (9) ou (10).

2. Se (M ′, g′) for outra solução do mesmo problema de valor inicial, existe
um terceiro espaço-tempo (N, g]), também solução do mesmo pro-
blema de valor inicial, tal que, se j : Σ → N for o mergulho da
superfície inicial em N , têm-se duas isometrias (não necessariamente
sobrejetivas) φ : N → M e φ′ : N → M ′, que satisfazem i = φ ◦ j e
i′ = φ′ ◦ j, em que i e i′ designam os mergulhos de Σ em M e M ′,
respetivamente.

O ponto 2 do teorema anterior corresponde, evidentemente, ao resultado
de unicidade local. A sua forma aparentemente rebuscada resulta da dificul-
dade inerente ao conceito de solução geometricamente invariante, a menos
de isometrias. Com efeito, um resultado análogo, para equações de evolução
num domínio do espaço euclidiano, corresponderia a intersetar os domínios
de duas soluções que partilham os mesmos dados iniciais, afirmando que
nessa interseção as soluções coincidem. Mas, no problema de valor inicial
para as equações de Einstein, duas soluções correspondem a dois objetos di-
ferentes, duas variedades Lorentzianas distintas, (M, g) e (M ′, g′) digamos.
Como intersetar então dois objetos diferentes, para afirmar que as soluções
coincidem na interseção? A resolução desta dificuldade passa por construir
uma terceira variedade (N, g]) que, por isometrias em M e M ′, φ : N →M
e φ′ : N → M ′, representa essa interseção, de acordo com a identificação
de soluções a menos de isometrias, estabelecendo assim a equivalência entre
os correspondentes subconjuntos locais dos espaços-tempo. Diz-se que (a
menos de isometrias) (M, g) e (M ′, g′) são extensões do desenvolvimento de
Cauchy comum (N, g]), quando satisfazem as condições do ponto 2 do teo-
rema anterior. O resultado de unicidade local pode assim ser enunciado, de
forma sucinta, dizendo que dois desenvolvimentos de Cauchy quaisquer dos
dados iniciais (Σ, g̃, K̃) são sempre extensões dum mesmo desenvolvimento
comum. Uma representação esquemática dessas relações encontra-se na Fi-
gura 9. Sublinhe-se, curiosamente, que do ponto de vista técnico, é mais
difícil provar este resultado de unicidade local, do que a própria existência
de soluções, do ponto 1 do teorema.

O segundo passo da teoria de existência e unicidade, para o problema
de valor inicial, consiste na obtenção de soluções maximais ou globais. De
novo, a situação é bastante mais simples de formular e entender (mas não
necessariamente de provar) nas equações da física clássica: trata-se aí de sa-
ber se as soluções existem para qualquer intervalo de tempo arbitrariamente
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Figura 9: Unicidade local dos desenvolvimentos de Cauchy de Σ.

grande, ou se existe alguma obstrução em tempo finito, normalmente sob a
forma de ocorrência de singularidades, que impedem a solução de existir até
tempo infinito. Mais uma vez, estas ideias são impossíveis de transpor para
o contexto geométrico das equações de Einstein, por não podermos falar
duma coordenada canónica de tempo ao longo da qual se averigua se a so-
lução evolui em intervalos arbitrariamente longos. Por outro lado, do ponto
de vista de teoria de conjuntos, visto que as soluções são agora variedades
Lorentzianas identificadas por isometrias, a forma de definir uma solução
global acaba por ser de uma simplicidade surpreendente: uma solução glo-
bal será uma solução maximal, extensão de qualquer outra. Evidentemente,
esta definição evoca imediatamente o lema de Zorn, e é esse precisamente o
mecanismo matemático usado para obter o resultado. No entanto, ao con-
trário dos resultados de existência global de soluções nas equações da física
clássica, a natureza de teoria de conjuntos deste resultado maximal para as
equações de Einstein não dá qualquer informação sobre a obstrução à exten-
são das soluções a domínios ainda maiores. Uma representação esquemática
de dois desenvolvimentos de Cauchy, a partir dos dados iniciais triviais17 so-
bre dois subconjuntos do plano t = 0 no espaço de Minkowski, encontra-se
na Figura 10: o desenvolvimento de Σ1 é maximal e o de Σ2 não é.

Em 1969, dezassete anos depois da obtenção do primeiro resultado de
existência local de soluções para as equações de Einstein no vácuo, Yvonne

17Dados iniciais triviais para o espaço-tempo de Minkowski, para uma superfície inicial
Σ correspondente a um subconjunto aberto de R3, consistem em fazer g̃ = 〈·, ·〉R3 e K̃ = 0.
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t = 0 Σ1 t = 0 Σ2

t t

Figura 10: Desenvolvimento de Cauchy maximal de Σ1 e não maximal de
Σ2.

Choquet-Bruhat e Robert Geroch finalmente estabeleceram o seguinte re-
sultado de existência de desenvolvimentos maximais, encerrando assim o
conjunto de ideias que confirmam o papel central do problema de valor ini-
cial para as equações de Einstein, na teoria da relatividade geral.

Teorema (Existência e Unicidade de Desenvolvimentos Maximais
[3]): Sejam (Σ, g̃, K̃) dados iniciais para as equações de Einstein no vácuo,
sem constante cosmológica, de acordo com a definição do problema de valor
inicial, do final da Secção 3.2. Então, existe um desenvolvimento de Cauchy
destes dados iniciais que é maximal, ou seja, que é uma extensão de qualquer
outro desenvolvimento dos mesmos dados. Esta solução maximal é única, a
menos de isometrias.

É só no artigo [3], em que este resultado é publicado, que os concei-
tos de problema de valor inicial, de solução globalmente hiperbólica e de
unicidade, são finalmente definidos e clarificados de forma geometricamente
invariante, como apresentados na Secção 3.2. O ingrediente essencial da
demonstração é a aplicação do lema de Zorn18 ao conjunto de desenvolvi-
mentos globalmente hiperbólicos dos dados iniciais. Um detalhe técnico de
demonstração particularmente difícil é o da unicidade da solução maximal:
ao contrário da unicidade local, agora é necessário provar-se que, dados dois
desenvolvimentos de Cauchy dos mesmos dados iniciais, existe um terceiro
desenvolvimento de Cauchy que é extensão desses dois (no fundo, o análogo

18Um resultado recente de Jan Sbierski ([18]) evita a utilização do lema de Zorn nesta
construção.
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de reunir os dois domínios, para construir uma solução com domínio maior).
Sublinhe-se também a importância crucial, neste resultado, das soluções se-
rem espaços-tempo globalmente hiperbólicos: sem essa propriedade não seria
possível obter soluções maximais únicas, facto que se deve, conceptualmente,
ao princípio de domínio de dependência e que assim assegura a previsibili-
dade de toda a solução maximal a partir dos dados iniciais. As dificuldades
técnicas associadas à clarificação das definições e das demonstrações foram a
razão do longo intervalo de tempo que separou os dois resultados anteriores.

Para terminar este artigo, queremos apenas mencionar um dos mais im-
portantes problemas em aberto da teoria matemática da relatividade geral,
que decorre diretamente destes resultados de existência e unicidade de de-
senvolvimentos de Cauchy maximais, para o problema de valor inicial associ-
ado às equações de Einstein. Trata-se da conjetura da censura cósmica forte,
originalmente enunciada por Roger Penrose19. De forma simples, a questão
pode pôr-se da seguinte forma: existirá solução, ou espaço-tempo, para lá
do desenvolvimento de Cauchy maximal dos dados iniciais? Ou, usando as
definições mais técnicas, existirão extensões estritas (necessariamente já não
globalmente hiperbólicas) do desenvolvimento de Cauchy maximal de dados
iniciais?

A resposta parece ser simples e afirmativa: basta observar, por exemplo,
as Figuras 2 ou 10 para, com certeza, afirmar que no exterior dos cones
representados nessas figuras continua a existir solução. Mas a razão desse
fenómeno é fácil de entender pois, de alguma forma, nas duas figuras, as
superfícies iniciais são apenas pequenos subconjuntos de todo o plano, pelo
que a solução no exterior dos cones não é mais do que o desenvolvimento
maximal do plano completo. Ou seja, a questão posta no parágrafo anterior
só assume um caráter não trivial se se considerarem superfícies iniciais tão
grandes quanto possível. Nesse caso, se se considerar o plano todo, na Figura
2 o desenvolvimento maximal da solução da equação de onda será toda a
região t > 0, enquanto na Figura 10 o desenvolvimento de Cauchy maximal
de Σ = R3 será todo o espaço de Minkowski: num caso e noutro, as soluções
maximais serão então inextensíveis.

Para superfícies iniciais Σ, que são variedades Riemannianas, como as
que usamos nos dados do problema de valor inicial, ser “tão grande quanto
possível” tem uma tradução rigorosa simples do ponto de vista matemático:
serem geodesicamente completas. Trata-se duma propriedade importante

19Existe uma outra conjetura de censura cósmica, dita fraca, igualmente famosa e tam-
bém devida a Roger Penrose, a qual, apesar do nome, não está logicamente relacionada
com a conjetura de censura cósmica forte.
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em geometria Riemanniana, que consiste precisamente no facto de qualquer
geodésica ter parâmetro afim definido até ao infinito e, portanto, a varie-
dade ser inextensível de forma geometricamente invariante. Não é possível,
nesse caso, considerar-se uma superfície inicial maior, da qual Σ seja um
pequeno subconjunto, como acontece nos exemplos óbvios das Figuras 2 e
10. Outra condição que se exige é que Σ seja assimptoticamente plana, o
que significa vagamente que, à medida que nos afastamos para infinito ao
longo de geodésicas, a variedade Riemanniana se assemelha cada vez mais
à superfície inicial trivial do espaço-tempo de Minkowski20 (caso contrário
é possível construir exemplos de desenvolvimentos de Cauchy maximais fa-
cilmente extensíveis). É esta a situação que se verifica obviamente, se se
considerar o plano todo como superfície inicial, nas Figuras 2 e 10.

Curiosamente, mesmo para superfícies iniciais geodesicamente completas
e assimptoticamente planas, são conhecidos exemplos explícitos particulares
em que o desenvolvimento de Cauchy maximal é extensível, ou seja, existe
um espaço-tempo não globalmente hiperbólico que é uma extensão estrita
dessa solução maximal. Evidentemente, o princípio do determinismo falha
nesses casos: os pontos da extensão, no exterior do desenvolvimento global-
mente hiperbólico maximal, deixam de depender exclusivamente dos dados
na superfície inicial Σ e, portanto, não é possível aplicar um argumento de
domínio de dependência. Tal como no exterior dos cones das figuras 2 e 10 a
solução deixa de ser única, também nestes exemplos a extensão não global-
mente hiperbólica perde a unicidade. Um exemplo importante em que este
fenómeno acontece é na solução de Reissner-Nordström, que se obtém, em
simetria esférica, acoplando as equações de Einstein às equações de Maxwell
do eletromagnetismo, de forma a introduzir o efeito dum campo eletromag-
nético no vácuo no tensor da energia-momento. A superfície inicial desta
solução é análoga à de Schwarzschild, portanto como na Figura 7 (continua
a ser uma solução de vácuo e, por isso, não existe matéria carregada ele-
tricamente, pelo que o campo eletromagnético é puramente topológico), e
verifica-se também a formação de um buraco negro nesta solução. Só que,
ao contrário dos buracos negros da solução de Schwarzschild, dentro dos

20Rigorosamente, diz-se que uma superfície Riemanniana inicial Σ tem n terminações
assimptoticamente planas se existe um compacto K ⊂ Σ tal que Σ \ K = ∪nj=1Uj , em
que cada Uj é um aberto difeomorfo ao exterior da bola unitária R3 \ B1(0) e tal que,
nas coordenadas induzidas por esse difeomorfismo, existe algum m > 0 - denominada
massa ADM - para o qual se tem g̃ij =

(
1 + 2m

r

)
δab + o(r−1), onde δab designa a métrica

euclidiana. Assim, Σ = R3 com os dados iniciais triviais de Minkowski é assimptoticamente
plana com uma só terminação em = 0, enquanto que a Figura 7 é assimptoticamente plana
com duas terminações e m é a massa da solução de Schwarzschild (11).
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quais as geodésicas causais são incompletas e colapsam numa singularidade
em r = 0, nos buracos negros de Reissner-Nordström não há singularida-
des: as geodésicas causais continuam a ser incompletas dentro do domínio
globalmente hiperbólico maximal, mas podem ser continuadas para além do
que se denomina de horizonte de Cauchy, para regiões que já fazem parte
de extensões estritas do espaço-tempo maximal. Por um lado, a situação
parece ótima: não há singularidades dentro dos buracos negros de Reissner-
Nordström e um viajante que atravesse o horizonte de eventos, e caia no
buraco negro, não será esmagado pela gravidade em r = 0, como no buraco
negro de Schwarzschild. Mas, por outro lado, do ponto de vista filosófico
e do determinismo esperado das equações de Einstein, o problema é mais
grave: o futuro do viajante espacial é imprevisível quando ele alcançar o
horizonte de Cauchy, porque poderá atravessá-lo para uma infinidade de
extensões possíveis do espaço-tempo original, no futuro.

Roger Penrose, baseado nalgumas análises heurísticas, achou que estes
casos, como o da solução de Reissner-Nordström, eram excecionais, causados
por arranjos matemáticos muito particulares, como a simetria esférica. Mas
que qualquer perturbação destas soluções eventualmente introduziria sin-
gularidades na fronteira da solução maximal globalmente hiperbólica, como
acontece no buraco negro de Schwarzschild, impedindo a existência de exten-
sões estritas e assim garantindo, genericamente, o determinismo das equa-
ções de Einstein. E foi baseado nestas ideias que ele formulou a seguinte
conjetura.

Conjetura da censura cósmica forte: Condições iniciais genéricas para
superfícies completas assimptoticamente planas, em modelos de matéria ra-
zoáveis, dão origem a desenvolvimentos de Cauchy maximais, globalmente
hiperbólicos, que são inextensíveis como variedades Lorentzianas regulares.

Esta conjetura deve ser vista mais como um programa de investigação,
do que como um problema matemático específico. Muitos dos conceitos são
deixados vagos, como o que se entendem por condições iniciais genéricas, mo-
delos de matéria razoáveis ou a regularidade das possíveis extensões. Existe
uma extensa literatura, na teoria matemática recente da relatividade geral,
que tem abordado precisamente este problema, especificando estes concei-
tos em casos particulares, de modo a poder dar respostas sob diferentes
hipóteses.

De qualquer forma, e dum ponto de vista menos técnico e detalhado, o
que torna esta questão absolutamente fascinante é o facto duma resposta
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negativa para esta conjetura implicar a quebra de determinismo, a uma
escala global, do modelo de gravitação das equações de Einstein.
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