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Resumo: Breve introdução à aplicação da teoria de sistemas dinâmicos
nos modelos cosmológicos de Bianchi (espacialmente homogéneos) com um
fluido perfeito e um campo escalar. Resultados gerais são exemplificados
com o modelo simples de Robertson-Walker (espacialmente homogéneo e
isotrópico) com um fluido perfeito com equação de estado linear e um campo
escalar com um potencial constante ou exponencial.

Abstract Brief introduction to the application of the theory of dynami-
cal systems in cosmological Bianchi (spatially homogeneous) models with
a perfect-fluid and a scalar-field. General results are exemplified with the
simple Robertson-Walker (spatially homogeneous and isotropic) model with
a perfect-fluid with linear equation of state and a scalar field with constant
or exponential potential.
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1 Introdução
Em 1915, há precisamente um século atrás, Albert Einstein introduziu a
teoria da relatividade geral, e as equações de campo de Einstein que incor-
poram a teoria clássica do campo relativista com os efeitos da gravidade.
Dez anos antes, já Einstein tinha causado um grande impacto na comuni-
dade científica com a sua teoria da relatividade restrita, na qual os antigos
postulados Galileanos de tempo e espaço absoluto são abandonados para dar
lugar a uma teoria mais complexa onde não existem observadores absolutos.
De um ponto de vista matemático, a teoria da relatividade geral é bastante
complexa, sendo uma teoria de natureza geométrica, onde o sistema físico
é descrito pela estrutura do espaço-tempo. Consequências directas da teo-
ria incluem por exemplo a previsão da existência de buracos negros ou da
expansão do universo.
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Na teoria Newtoniana da gravidade, o campo gravitacional é descrito
pela equação de Poisson

4 ϕ = 4πGρ (1)
com a condição fronteira de que o potencial Newtoniano ϕ é zero no infinito.
G é a constante gravitacional de Newton, ρ > 0 é a densidade de massa da
matéria e 4 o operador de Laplace.

Na teoria da Relatividade Geral, o campo gravitacional é descrito por
uma forma bilinear denominada métrica g vivendo naturalmente numa vari-
edade suave conexa quadridimensionalM. A diferença em relação à geome-
tria Riemanniana tradicional deve-se à métrica ter assinatura (−,+,+,+).
A forma mais simples da métrica é o análogo do espaço Euclidiano em geo-
metria Riemanniana, nomeadamente o espaço de Minkowski, que é o espaço
da relatividade restrita, onde não existe gravidade. Variedades Lorentzia-
nas que representam sistemas físicos são soluções das equações de campo de
Einstein

Rµν −
1
2gµνR+ Λgµν = 8πG

c4 Tµν (2)

onde Rµν e R = gµνRµν são o tensor de Ricci e o escalar de Ricci da
métrica g e Λ é a constante cosmológica1. Tµν é um tensor simétrico de grau
2 conhecido como tensor de energia-momento e descreve a matéria, sendo
uma função dos campos de matéria, e c é a velocidade da luz. Neste artigo
usamos a convenção da soma de Einstein, índices gregos tomam os valores
α, β, µ, ... = 0, 1, 2, 3, e usaremos unidades de Planck reduzidas 8πG = 1 = c.

Devido à identidade de Bianchi diferencial, o lado esquerdo das equações
de campo de Einstein (2) satisfaz a identidade

∇µ
(
Rµν −

1
2δ

µ
νR+ Λδµν

)
= 0. (3)

com ∇ a derivada covariante da métrica g. Então (2) implicam que o tensor
energia-momento da fonte de matéria satisfaz a lei de conservação

∇µTµν = 0. (4)

É costume descrever a matéria no universo por um fluido perfeito. Seja u
o vector quadrivelocidade das particulas do fluido, o tensor energia-momento
é dado por

T (m)
µν = ρm uµuν + pm (gµν + uµuν) (5)

1No caso Λ 6= 0, a solução maximalmente simétrica não é Minkowski, mas sim a solução
de de-Sitter no caso Λ > 0, e Anti-de-Sitter no caso em que Λ < 0. Estas soluções são
bastante importantes para modelar a expansão acelerada do universo Λ > 0, e no caso de
Λ < 0, na correspondência Anti-de-Sitter/Teoria do campo conforme (AdS/CFT).

Boletim da SPM 73, Dezembro 2015, 100 Anos de Relatividade, pp. 103-125



Artur Alho 105

onde ρm > 0 é a densidade de energia e pm a pressão do fluido. É também
necessário a prescrição de uma equação de estado pm = pm(ρm). Usual-
mente, partículas de poeira pm = 0 representam galáxias (ou aglomerados
de galáxias) num Universo em expansão, e radiação pm = 1

3ρm é importante
no Universo primitivo.

Através de u define-se o projector nas hipersuperfícies tridimensionais
ortogonais à congruência do campo de vectores quadrivelocidade, hµν =
gµν + uµuν . Da projecção na direcção paralela e ortogonal a u, de (4)
obtêm-se as equações de Euler

∇µ(ρmuµ) + pm∇µuµ = 0, (6a)
(ρm + pm)uµ∇µuν + uνuµ∇µpm +∇νpm = 0. (6b)

As variáveis cinemáticas associadas ao fluido obtêm-se da decomposição
irredutível da derivada covariante da 1-forma u

∇µuν = θ

3hµν + σµν + ωµν − u̇µuν (7)

onde θ = ∇µuµ é o escalar da expansão, u̇ν = uµ∇µuν é o vector quadriace-
leração, σµν = ∇(µuν)− θ

3hµν + u̇(µuν) é o tensor de cisalhamento (simétrico
e sem traço) e ωµν = ∇[µuν] +u̇[µuν] o tensor de vorticidade (antissimétrico),
com uµσµν = 0 = uµωµν . Se a congruência é irrotacional ωµν = 0, as hiper-
superficies ortogonais constituem uma folheação do espaço-tempo (M,g).
Estas quantidades cinemáticas têm uma interpretação física e geométrica
simples, e em Cosmologia é bastante útil introduzir o escalar de Hubble

H = θ

3 . (8)

O modelo cosmológico padrão, ou o modelo do Big-Bang quente, é cons-
truido sobre três observações cosmológicas fundamentais: O facto de que o
Universo se expande (H > 0), como descoberto por Hubble nos finais da
década de vinte do século passado, devido ao efeito do desvio para o verme-
lho da luminosidade de galáxias distantes; A medição da radiação cósmica
de fundo em microondas (RCFM), primeiramente detectada por Penzias e
Wilson e prevista por Gamow, Alpher e Herman no seus trabalhos em nucle-
ossíntese e processo de formação da abundância de elementos leves segundos
após o Big-Bang; A terceira observação fundamental consiste no padrão da
abundância dos elementos leves, em particular o hélio.

Contudo, muitas questões permanecem abertas, como o facto de o Uni-
verso ser aproximadamente plano e isotrópico, ou a natureza e origem das
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perturbações da densidade primordial que dão origem a toda a formação de
estrutura cósmica. De forma a explicar estes e outros problemas no cenário
do Big-Bang (quente), Guth introduziu em 1981 o paradigma inflacionário
na sua forma mais simples, onde durante uma transição de fase cosmológica
com um período de super-arrefecimento, o Universo expande-se exponenci-
almente, num estado de falso vácuo, isto é, como se não tivesse matéria e
contivesse uma grande constante cosmológica Λ > 0. Mais recentemente, e
devido à descoberta de que o Universo se encontra em expansão acelerada,
como confirmado por observações de supernovas nos finais da década de
noventa por Perlmutter, Schmidt e Riess (uma descoberta premiada com o
prémio Nobel da física em 2011), soluções cosmológicas que exibem expan-
são acelerada tornaram-se de uma particular relevância física. Um dos maior
puzzles em cosmologia moderna é a discrepância entre o presente valor de Λ
e o valor previsto pela teoria da física de partículas no Universo primitivo.

Uma forma mais complexa de produzir expansão acelerada no Universo
(em vez de usar a constante cosmológica), consiste em usar um campo escalar
φ ∈ C∞ (M) com um potencial de interação suave V (φ),

T (φ)
µν = ∇µφ∇νφ− gµν

(
gαβ

2 ∇αφ∇βφ+ V (φ)
)
. (9)

A conservação do tensor energia-momento leva à equação de onda não linear

�gφ = ∂φV (10)

onde ∂φV significa a derivada do potencial em relação ao campo escalar φ.
Por exemplo, potenciais monomiais V = V0φ

2n, n = 1, 2, 3... são protótipos
de modelos inflacionários, e do tipo potência negativa V = V0φ

−α, α > 0,
são modelos de energia escura.

Se ∇µφ é do tipo-tempo, pode-se definir um campo vectorial unitário
u(φ) normal às superficies {φ = const}

uµ(φ) = ∇µφ√
−∇νφ∇νφ

(11)

e o tensor (9) tem a forma algébrica de um fluido perfeito (5), com

ρφ = −1
2∇νφ∇

νφ+ V (φ) , pφ = −1
2∇νφ∇

νφ− V (φ). (12)

Seja (M,g) um espaço-tempo e ξ um campo vectorial que satisfaz

£ξg = 2Cg, (13)
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onde C é uma constant e £ξ é a derivada de Lie ao longo de ξ. Se C = 0, ξ
diz-se um campo vectorial de Killing, e se C 6= 0 diz-se um campo vectorial
homotético. Um campo vectorial de Killing (homotético) gera uma familia
a 1-parâmetro de isometrias (homotetias). O conjunto das isometrias (ho-
motetias) de um espaço-tempo (M,g) forma um grupo de Lie, denominado
o grupo das isometrias (homotetias).

O facto de a métrica ser invariante por (13), implica que £ξR
α
βµν = 0,

£ξRαβ = 0 e £ξR = 2CR, e consequentemente £ξGαβ = 0. Das equações
de Einstein (2) segue que

£ξTαβ = 0. (14)

Diz-se que o tensor energia-momento herda a simetria do espaço-tempo.

2 Espaços-tempo espacialmente homogéneos
Um espaço-tempo (M,g) diz-se espacialmente homogéneo se admite um
grupo de isometrias em que as órbitas são hiper-superfícies do tipo-espaço
que constituem uma folheação de M. A classe de espaços-tempo espacial-
mente homogéneos dividem-se nos modelos de Kantowski-Sachs e de Bianchi.
Os modelos de Bianchi são definidos por o grupo de isometrias possuir um
subgrupo G3 de dimensão 3, que actua simples e transitivamente nas órbi-
tas do tipo-espaço. Existem três subclasses: modelos de Robertson-Walker
(RW) que admitem um grupo de isometrias de dimensão 6, G6; os modelos
de Bianchi que possuem simetria de rotações local (SRL), em que o grupo de
isometrias tem dimensão 4, G4; e por último os modelos de Bianchi que não
admitem simetrias adicionais para além do grupo de simetria a 3 parâmetros.

Por definição, um espaço-tempo de Bianchi (M,g) é uma variedade com
a estruturaM = I×G, onde I ⊂ R. SejaGt, t ∈ I, o grupo de LieGt = t×G,
e ei(t) um referencial invariante à esquerda em Gt. Em termos da cobase
ωi dual de ei, a métrica em Gt tem a forma dada por hijdωidωj . Índices
do alfabeto latino tomam os valores i, j,m, ... = 1, 2, 3. Se adicionalmente
considerarmos a coordenada t como o tempo próprio ao longo da congruência
de geodésicas ortogonal às órbitas do grupo, a métrica de Bianchi é dada
por

g = −dt2 + hijdω
idωj . (15)

Denotaremos por n o vector normal unitário às superficies de simetria, isto
é

g(n,n) = −1. (16)
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Consequentemente, as equações de Einstein dividem-se em equações de res-
trição

3R− kijkij +
(
hijkij

)2
= 2T00 (17a)

∇ikij −∇j (hmnklm) = −T0j (17b)

e equações de evolução

∂thij = −2kij (18a)

∂tk
i
j = Rij + (hmnkmn) kij − T ij + 1

2δ
i
j (hmnTmn − T00) (18b)

onde hij = hij(t) é a métrica espacial (Riemaniana) e hij a sua inversa, 3Rij é
o correspondente tensor de Ricci e 3R = hmn 3Rmn o escalar de Ricci. kij =
kij(t) é a segunda forma fundamental das superfícies de homogeneidade Gt e,
por último, T00, T0i e Tij são a densidade de energia, densidade de momento
e o tensor das tensões, respectivamente, que são derivados do tensor energia-
momento total Tµν = T

(m)
µν + T

(φ)
µν . Denotaremos também por 3Sij a parte

sem traço de 3Rij .
Existe ainda liberdade na especificação do referencial, dada por uma

transformação linear dependente da coordenada temporal. Por um lado, po-
demos usar esta liberdade para tornar o referencial independente do tempo

[n, êi] = 0, (19)

onde [·, ·] denota o comutador. Neste caso, as funções de estrutura são
também elas independentes do tempo e consequentemente pode-se sempre,
através de uma transformação linear independente do tempo, torná-las iguais
às constantes de estrutura da álgebra de Lie gerada pelos campos vectoriais
de Killing

[ξi, ξj ] = Ckijξk , (20)

onde
Ckij = −Ckji , (21)

e vale a identidade de Jacobi

Ckl[mC
l
ij] = 0. (22)

A decomposição das constantes de estrutura na forma

Ckij = εijln̂
kl + âiδ

k
j − âjδ ki , (23)
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Classe do Grupo Tipos de Grupo n̂1 n̂2 n̂3
I 0 0 0
II + 0 0

A (â = 0) VI0 0 + −
VII0 0 + +
VIII − + +
IX + + +
V 0 0 0

B (â 6= 0) IV 0 0 +
VIh 0 + −
VIIh 0 + +

Tabela 1: Tipos de modelos de Bianchi caracterizados pelas constantes de
estrutura do grupo de Lie (n̂1, n̂2, n̂3). Esta caracterização não é única, visto
que se pode sempre rescalar as constantes de cada tipo de Bianchi, assim
como permutar (123). Nesta classificação, Bianchi do tipo III corresponde
ao Bianchi do tipo VI−1.

onde εijk é o símbolo de Levi-Civita que é totalmente antissimétrico, n̂ij é
um tensor simétrico e âi um vector constantes, é usada para classificar os
vários tipos simetria dos modelos de Bianchi. Modelos de Bianchi de classe
A são definidos por â = 0 enquanto que para modelos de classe B, â 6= 0.
Resta ainda liberdade para escolher uma base em que a matriz simétrica n̂ij
é diagonal e escolher âi como

n̂ij = diag(n̂1, n̂2, n̂3) , âi = (â, 0, 0). (24)

As constantes n̂α descrevem diferentes tipos de simetria, o que leva à clas-
sificação da Tabela 1 para os modelos diagonais de classe A. Para modelos
de classe B, pode-se introduzir o escalar h através da seguinte fórmula

â2 = hn̂2n̂3, (25)

pelo que h está bem definido se e só se n̂2n̂3 6= 0, ver Tabela 1.

2.1 Referencial Ortonormado Invariante pelo Grupo de Iso-
metrias

A liberdade que existe na especificação do referencial, pode ser usada para
introduzir um conjunto de três vectores espaciais ortonormais, isto é hij =

Boletim da SPM 73, Dezembro 2015, 100 Anos de Relatividade, pp. 103-125



110 Simetrias e Sistemas Dinâmicos em Cosmologia

δij . Assim, o referencial {eµ} = {n, ei} é ortonormal e invariante pelo grupo
de isometrias. Neste caso, a métrica fica

g = −dt2 + δijω
i(t)ωj(t). (26)

Nesta abordagem, as variáveis básicas são as funções de estrutura γαβγ(t),

[eβ, eγ ] = γαβγeα, (27)

que sendo constantes ao longo das órbitas de simetria, são funções somente
da variável de tempo global t. No caso da matéria ser um fluido perfeito não
inclinado, e as superficies de homogeneidade serem as superficies φ = const.,
então

u = n = u(φ), (28)

as funções de comutação são dadas por

γ0
0j = γ0

ij = 0, (29a)
γk0j = −Hδ kj − σ k

j − εkjlΩl, (29b)
γkij = εijln

kl + aiδ
k
j − ajδki (29c)

e das equações de campo de Einstein tem-se então

H2 = σ2

3 −
3R

6 + ρ

3 + V

3 + φ̇2

6 (30a)

Ḣ = −H2 − 2
3σ

2 − 1
6 (ρ+ 3p)− 1

3
(
φ̇2 − V

)
(30b)

σ̇ij = −3Hσij + 2εml(iσj)mΩl − 3Sij (30c)

onde

σ2 = 1
2σijσ

ij (31a)

3R = −1
2b

i
i − 6aiai (31b)

3Sij = bij −
1
3b

k
k δij − 2εlp(inj)lap (31c)

bij = 2n k
i nkj − n k

k nij (31d)

e˙significa a derivada com respeito à variável temporal t e Ωj é um vector que
tem a interpretação de momento angular (local) de um referencial espacial
em relação a um outro referencial espacial que tem uma propagação de Fermi
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ao longo e0. As equações de restrição e evolução para nij e aj obtêm-se das
identidades de Jacobi, e são dadas por

0 = n k
i ak , (32a)

ṅij = −Hnij + 2σ k
(i nj)k + 2εml(inj)mΩl , (32b)

ȧi = −Hai − σ k
i ak + ε mli amΩl . (32c)

Note-se que neste caso as equações de campo de Einstein reduzem-se a um
sistema de equações diferenciais ordinárias. Tal como em cima, existe ainda
liberdade na escolha do referencial ortonormado, que pode ser escolhido de
forma a que nij = diag(n1, n2, n3) e ai = (a, 0, 0) 2. Para modelos de Classe
A, isto implica que

σij = diag(σ11, σ22, σ33) , Ωj = 0, (33)

e como σij tem traço nulo, só tem duas componentes independentes. Po-
demos assim escolher um referencial próprio do tensor de cisalhamento σij ,
onde este é representado por dois termos diagonais,

σ+ = 1
2(σ22 + σ33) , σ− = 1

2
√

3
(σ22 − σ33). (34)

Neste caso, tem-se que 3Sij = diag(3S11,
3S22,

3S33), e as duas componentes
independentes

3S+ = 1
2(3S22 + 3S33) , 3S− = 1

2
√

3
(3S22 − 3S33). (35)

Para modelos de classe B a situação é mais complicada. Em geral, estas
escolhas levam a um sistema de equações reduzido, que consiste na variável
de Hubble H, e nas restantes funções de estrutura, que denotaremos por

x =
(
γkij |reduzido

)
, (36)

às quais se tem de juntar as equações para a matéria e para o campo escalar
dadas por (6a) e (10). No caso espacialmente homogéneo, estas equações
reduzem-se a

ρ̇m = −3H(pm + ρm), (37a)
φ̈+ 3Hφ̇ = −∂φV , (37b)

em conjunto com a prescrição de uma equação de estado pm(ρm), e a espe-
cificação de um potencial V (φ).

2Visto que nij e ai têm a mesma forma canónica das constantes de estrutura n̂ij e âi,
estas determinam os vários tipo de Bianchi do grupo de isometrias.
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3 Auto-Semelhança
Um espaço-tempo diz-se auto-semelhante se admite um vector homotético.
Um resultado importante devido a Eardley [2], diz que um grupo de homote-
tias Hd admite um subgrupo Gd−1 de isometrias. No contexto dos modelos
espacialmente homogéneos o grupo de homotetias é H4 e, neste caso, diz-se
que o modelo cosmológico é transitivamente auto-semelhante. O seguinte
teorema é devido a Hsu e Wainwright [4].

Teorema 1 Um espaço-tempo admite um grupo de homotetias simples tran-
sitivo H4, se e só se existe um referencial ortonormado {eµ} e um escalar t
tal que

γγµν(t) = F γµνt
−1 (38a)

eµ(t) = nµ (38b)

onde F γµν e nµ são constantes.

O facto de a métrica ser invariante por dimensionamentos (13) restringe
o tensor energia-momento. Para um fluido perfeito, a condição (14) res-
tringe equação de estado pm = pm(ρm). O seguinte teorema é devido a
Wainwright [3].

Teorema 2 Suponha-se que um espaço-tempo admite um campo vectorial
homotético, e que se verificam as equações de campo de Einstein com um
fluido perfeito. Se existe uma equação de estado pm = pm(ρm), então

pm = (γm − 1) ρm (39)

com γm 6= 0 constante. Se ξ é ortogonal à velocidade do fluido u, então
γm = 2, e se ξ é paralelo a u, então γm = 2/3.

Para todos os modelos de Bianchi, excepto o modelo cosmológico
mais simples, a solução plana de Friedmann-Lemaître-Robertson-Walker
(FLRW), tem-se que 2/3 ≤ γm ≤ 2. O modelo de FLRW plano é auto-
semelhante para todos os valores de 0 < γm ≤ 2. Neste caso, a métrica (26)
é dada em coordenadas (t, x, y, z) por

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (40)

onde
a2(t) = t

4
3γm (41)
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e o campo vectorial homotético ξ dado por

ξ = t
∂

∂t
+
(

1− 2
3γm

)(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
. (42)

O escalar de Hubble (8)
H(t) = ȧ

a
, (43)

e a densidade de energia do fluido ρm são

H(t) = 2
3γm

t−1 , ρm(t) = 4
3γ2

m

t−2 . (44)

Modelos mais gerais, como por exemplo os modelos de FLRW hiperbólico
e Bianchi do tipo I, não sendo auto-semelhantes, são assimptoticamente auto-
semelhantes [2]. Por modelos assimptoticamente auto-semelhantes entende-
se modelos para os quais, nos regimes assimptóticos, a sua evolução é apro-
ximada por modelos auto-semelhantes, ou seja, estes modelos têm regimes
assimptóticos bem definidos que são invariantes por dimensionamento.

Existem, contudo, modelos que não são assimptoticamente auto-
semelhantes. Por exemplo, os modelos no vácuo de Bianchi do tipo IX
(Universo de Mixmaster) exibem um comportamento assimptótico oscila-
tório no passado, isto é, no limite em que se tende para a singularidade
inicial. Existem também os modelos com fluido perfeito com equação de
estado linear de Bianchi do tipo VII0 [8, 10], e do tipo VIII [12] em que
existe quebra de simetria de auto-semelhança no futuro assimptótico, ver
também [11].

A inclusão de outro tipo de matéria, como campos escalares, pode levar
à quebra assimptótica de simetria de auto-semelhança. Neste caso se ξ é um
campo vectorial homotético, o campo escalar não tem massa, i.e. V (φ) = 0,
ou o potencial é exponencial, isto é

V (φ) = V0e
−λφ, (45)

com V0 > 0 e λ > 0 constantes, e

£ξφ = −2C
λ
. (46)

A solução cosmológica mais simples para as equações de Einstein com
um campo escalar é a solução plana de RW com um campo escalar sem
massa que se obtém pondo V (φ) = 0. Neste caso

a(t) = t
1
3 , H(t) = 1

3 t
−1 , (47)
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φ̇(t) = −
√

2
3 t
−1 , φ(t) =

√
2
3 ln

(
c0
t

)
, (48)

com c0 uma constante. No caso de um potencial exponencial,

a(t) = t
2
λ2 , H(t) = 2

λ2 t
−1 , (49)

φ̇(t) = −
√

2p
t

, φ(t) =
√

2p
2 ln

(
p(3p− 1)
V0t2

)
, (50)

onde p > 1/3 e λ2p = 2. Esta solução exibe expansão acelerada ä > 0, se e
só se λ <

√
2, e denomina-se inflação do tipo lei da potência.

4 Sistemas dinâmicos cosmológicos
Nesta secção, faremos um breve resumo da aplicação de métodos de sistemas
dinâmicos em Cosmologia. Ao mesmo tempo, resultados gerais são exempli-
ficados com o modelo particular de RW plano, com um fluido perfeito com
equação de estado linear, e um campo escalar com um potentical positivo
constante ou exponencial.

Comecemos por rever algumas definições básicas da teoria de sistemas
dinâmicos. Outras técnicas e resultados serão introduzidos à medida que
forem necessários (para mais detalhes, ver [15], por exemplo).

Seja z′ = f(z), z ∈ Rm um sistema dinâmico autónomo. A evolução
de um ponto do espaço de estados (físicos) do sistema dinâmico é descrito
pelo fluxo, que formalmente consiste na aplicação ϕτ : Rm → Rm que leva
z(0)→ z(τ). O conjunto ω-limite ω(z) de um ponto z ∈ Rm é definido como
o conjunto de pontos de acumulação da órbita futura, (isto é, a trajectória
da solução) que passa por z. Da mesma forma, o conjunto α-limite α(z)
é definido como o conjunto de pontos de acumulação da órbita passada.
O ω-limite de um conjunto S ⊆ Rm é ω(S) =

⋃
z∈S ω(z). Os conjuntos

ω-limite (conjuntos α-limite) caracterizam o comportamento assimptótico
no futuro (passado) do sistema dinâmico. Os exemplos mais simples de
conjuntos limites são pontos fixos, isto é, pontos z? no espaço de estados
do sistema dinâmico z′ = f(z) para os quais f(z?) = 0 (por vezes os pontos
fixos denominam-se pontos de equilibrio, criticos ou estacionários) e órbitas
periódicas.

4.1 Variáveis Hubble-normalizadas e generalizações

A aplicação de métodos da teoria de sistemas dinâmicos à cosmologia surge
do trabalho pioneiro de Collins [1]. É neste trabalho, que surge também pela
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primeira vez a ideia de utilizar novas variáveis dependentes, normalizadas
com a variável de Hubble (8), que resultam em quantidades adimensionais
e, em geral, limitadas. Este método foi posteriormente desenvolvido no caso
em que a matéria é descrita por um fluido perfeito com equação de estado
linear para modelos de Bianchi de classe A, por Wainwright e Hsu [5], e
modelos de Bianchi de classe B por Hewitt e Wainwright [6]. Estes resultados
encontram-se compilados em [7].

Por analogia com o caso de RW (43), o escalar de Hubble pode ser usado
para definir uma função escala de distância l,

H = l̇

l
, (51)

onde 0 < l < +∞, e a quantidade adimensional parâmetro de desaceleração
q definido por

q = − l̈l
l̇2

⇔ Ḣ = −(1− q)H2 . (52)

Para modelos que se expandem para sempre, H > 0, as variáveis Hubble-
normalizadas das funções de estrutura são definidas da seguinte forma

y = x
H

(53)

e a variável temporal adimensional τ é definida por

dτ = Hdt ⇔ l = l0e
τ (54)

onde τ → −∞ no passado e τ → +∞ no futuro assimptóticos. A equação
de evolução para o escalar de Hubble fica

dH

dτ
= −(1 + q)H, (55)

enquanto que as variáveis adimensionais formam um sistema autónomo

dy
dτ

= h(y) , y ∈ Rn. (56)

Nos caso dos modelos de Bianchi de classe B, existe ainda uma equação de
restrição adicional g(x) = 0 (32a), e que se traduz na equação de restrição
g(y) = 0. As funções h(y) e g(y) são polinomiais em y. O motivo da evo-
lução do escalar de Hubble se desacoplar deve-se ao facto da transformação
acima fazer desaparecer, por rescalamento, os efeitos de uma expansão geral.
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No caso em que o fluido perfeito tem uma equação de estado linear
pm = (γm − 1)ρm, com γm constante, só é necessário, a introdução do
parâmetro de densidade,

Ωm = ρm
3H2 , (57)

que satisfaz
dΩm

dτ
= [2q − (3γm − 2)] Ωm. (58)

No caso do campo escalar ter um potencial positivo V (φ) > 0, podem-se
introduzir as seguintes variáveis Hubble-normalizadas (ver por exemplo [9,
13]):

(ΩV ,Σφ) =
(

V

3H2 ,
φ̇√
6H

)
, (59)

que denominamos por parâmetro densidade de energia potencial e parâmetro
densidade de energia cinética, respectivamente. Estas quantidades obede-
cem às seguintes equações de evolução

dΩV

dτ
= 2

[
(1 + q)−

√
3
2λ(φ)Σφ

]
ΩV , (60a)

dΣφ

dτ
= (q − 2)Σφ +

√
3
2λ(φ)ΩV , (60b)

onde
λ(φ) = −∂φV

V
. (61)

Isto é, apenas no caso em que o potencial é constante ou exponencial é que
as variáveis (ΩV ,Σφ) formam um sistema fechado.

Uma formulação que inclui potenciais mais gerais foi recentemente in-
troduzida em [24]. Neste caso, é necessário, a introdução de uma variável
de campo escalar Z(φ),

dZ

dτ
=
√

6dZ
dφ

Σφ. (62)

A escolha da variável Z(φ) não é única e uma escolha óptima depende do
potencial em estudo. Contudo, para obter uma formulação global do sistema
dinâmico, Z deve ser sempre escolhida de forma a que seja uma função global
monótona e invertivel em φ, definida num intervalo limitado Z ∈ (Z−, Z+),
com Z± = Z(φ±), onde φ± = limτ→±∞ φ. Além disso, se a função λ não for
limitado como, por exemplo, no caso de potenciais do tipo potência invertida
em que λ = 1/φ explode no limite φ→ 0, é preciso introduzir outra variável
temporal que regularize o sistema dinâmico [20, 24].
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Estas variáveis não são de, todo adequadas para todos os potenciais.
Para potenciais com mínimo zero (V (φ) ≥ 0), como por exemplo potenciais
monomiais, deve-se substituir a variável do campo escalar Z por uma variá-
vel baseada no escalar de Hubble H e que tem em consideração uma escala
temporal média oscilatória variável no futuro, como demonstrado em [21],
e [23]. O facto de existirem formulações diferentes do sistema dinâmico,
melhor adaptadas à descrição de regimes assimptóticos, não deve ser visto
com surpresa, visto que regimes diferentes induzem estruturas extra que po-
dem ser usadas na formulação dos sistemas. Perto da singularidade inicial
(l → 0), é natural adaptar tanto as variáveis dependentes como indepen-
dentes à variável de Hubble, devido ao facto de esta variável fornecer uma
escala física natural neste regime, como discutido em [19]. Por outro lado,
o regime oscilatório no futuro, no caso de campos escalares com potenciais
monomiais, depende do mínimo do potencial, que no caso mais simples do
potencial de Klein-Gordon V (φ) = m2

2 φ
2, é caracterizado por d2V

dφ2 = m2, e
assim m fornece a escala física natural neste regime. Estas características
refletem-se na escolha de variáveis dependentes e independentes, ver [21, 23].

Denotemos por z o estado

z = (y,Ωm,ΩV ,Σφ, Z) . (63)

Na derivação das equações de evolução, o parâmetro de desaceleração q tem
um papel importante, e pode-se escrever em termos das novas funções y,
e das variáveis da matéria e do campo escalar, através da equação de Ray-
chaudhuri (30b). Além disso, as variáveis para a matéria e campo escalar
estão relacionadas com as funções de estrutura através da equação de Fried-
mann generalisada (30a):

1 = Σ2 +K + Ωm + Σ2
φ + ΩV , (64)

onde introduzimos o parâmetro de cisalhamento Σ, e o parâmetro de curva-
tura K, na forma

Σ2 = σ2

3H2 , K = −
3R

6H2 . (65)

Assim, o parâmetro de desaceleração é dado por

q = 2Σ2 +
(3

2γm − 1
)

Ωm + 2Σ2
φ − ΩV . (66)

Dado um ponto z0, que representa o estado do universo num tempo τ0,
z = ϕτ (z0) descreve a órbita que passa por z0, em τ = τ0. Seja q̃(τ) o
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parâmetro de desaceleração ao longo da órbita, isto é,

q̃(τ) = q(ϕτ (z0)), (67)

pelo que q̃(0) = q(z0). Então, de (55), tem-se que ao longo da órbita que
passa por z0, o escalar de Hubble é dado por

H(τ) = H0e
−
∫ τ
τ0

[1+q̃(τ̃)]dτ̃
, (68)

com H0 arbitrário. Esta liberdade implica que cada órbita não-singular
corresponde a uma família a 1-parâmetro de universos físicos, que estão
conformalmente relacionados por um rescalamento constante das funções de
estrutura, e consequentemente do referencial ortonormado e da métrica.

Como exemplo, consideremos o modelo mais simples de RW plano, para
o qual Σ = 0 = K. Além disso, consideremos um fluido perfeito com
equação de estado linear e um campo escalar com um potencial constante
ou exponencial. Neste caso, o problema é efectivamente reduzido a duas
dimensões, em que a equação para a variável do campo escalar, Z, desacopla-
se das restantes equações. A razão por detrás desta propriedade reside no
facto de estes modelos admitirem simetrias de dimensionamento o que, por
sua vez, dá origem a uma família a 1-parâmetro de soluções equivalentes.
Neste caso o sistema dinâmico é dado por

dΣφ

dτ
= −(2− q)Σφ +

√
3
2λ(1− Σ2

φ − Ωm), (69a)

Ωm

dτ
= 3

[
2Σ2

φ − (1− Ωm)
]

Ωm, (69b)

onde se usou a equação de Friedmann generalisada (64), para expressar
globalmente a variável Hubble-normalizada da energia potencial do campo
escalar, ΩV , em termos das variáveis do espaço de estados,

ΩV = 1− Σ2
φ − Ωm , (70)

enquanto que o parâmetro de desaceleração, q, é dado por (66)

q = −1 + 3Σ2
φ + 3

2γmΩm. (71)

Para modelos que se expandem para sempre, i.e. H > 0, as soluções
de (69), estão bem definidas para todos os tempos τ , e definem um fluxo
{ϕτ} em R2. Pode-se assim analisar a evolução dos modelos cosmológicos
estudando as órbitas deste fluxo na região física do espaço de estados S ⊂ R2

definido por
Ωm > 0 , ΩV = 1− Σ2

φ − Ωm > 0 (72)
e que é relativamente compacto.
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4.2 Fronteiras invariantes

Uma outra propriedade das variáveis Hubble-normalizadas consiste nas fron-
teiras serem conjuntos invariantes. Um conjunto I ⊂ Rn diz-se um conjunto
invariante do fluxo ϕτ em Rn, se para todo z ∈ I e todo τ ∈ R, ϕτ (z) ∈ I.
Exemplos de conjuntos invariantes consistem em pontos fixos e órbitas perió-
dicas, que correspondem a uma única órbita, variedades estáveis, instáveis
e centrais, conjuntos α e ω-limite, atractores, sequências heteroclinicas e
ciclos. Conjuntos invariantes descrevem classes de sistemas físicos restri-
tos, que satisfazem propriedades especiais, e que, por vezes, descrevem o
comportamento assimptótico de classes de modelos mais gerais.

No nosso exemplo, o espaço de estados físicos S pode ser subsequente-
mente estendido de forma regular para incluir as fronteiras invariantes:

• Ωm = 0, que denominaremos por fronteira invariante do campo esca-
lar.

• ΩV = 0, que denominaremos por fronteira invariante do campo escalar
sem massa.

O facto do espaço de estados S̄ ser compacto tem um significado físico
directo. Para modelos que se expandem para sempre, nenhuma quantidade
física ou geométrica diverge mais rápido que uma certa potência de H na
singularidade inicial, e nenhuma quantidade tende para zero mais lentamente
do que H no futuro3.

4.3 Pontos fixos

Para um ponto fixo z? do sistema dinâmico, o parâmetro de desaceleração
é constante, isto é, q(z?) = q?, e

H(τ) = H0e
(1+q?)τ . (73)

Neste caso, o parâmetro H0, pode ser fixado por uma translação em τ ,
τ → τ + const. Assim, e pondo H0 = 1, (54) implica que

Ht = 1
1 + q?

, (74)

3No caso Λ > 0, H →
√

Λ
3 , no futuro assimptótico.
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e, de (36) e (53), tem-se que as funções de estrutura são da forma (38a).
Segue do Teorema 1 o seguinte resultado: A cada ponto fixo do sistema
dinâmico, corresponde um único modelo cosmológico transitivamente auto-
semelhante.

Os pontos fixos determinam o comportamento assimptótico de modelos
mais gerais. Se o conjunto α-limite (ω-limite) de um ponto z é o ponto fixo
z?, então a órbita que passa por z tende para z? à medida que τ → −∞
(τ → +∞). A interpretação física é a de que a dinâmica do modelo com o
estado inicial z é aproximada pelo modelo auto-semelhante correspondente
a z?, quando τ → −∞ (τ → +∞), i.e. os modelos são assimptoticamente
auto-semelhantes no passado (futuro). Se o modelo tem esta propriedade
no passado e no futuro, diz-se somente que o modelo é assimptoticamente
auto-semelhante, e neste caso a órbita que descreve o modelo diz-se hetero-
clinica 4.

Nesta situação, pode-se obter a forma assimptótica para as funções de
estrutura reduzidas x e para as variáveis de matéria e do campo escalar. Da
equação de evolução para a variável adimensional Ht, tem-se que

lim
t→±∞

Ht = (1 + q?)−1 ⇔ H = (1 + q?)−1t−1 + o(t−1) (75)

e consequentemente, a equação (53) implica

x = y?
1 + q?

t−1 + o(t−1), (76)

onde o termo dominante corresponde aos modelos auto-semelhantes.
No caso particular do sistema (69), os pontos fixos encontram-se listados

na Tabela 2.
Usando os valor de q da Tabela 2 e (75) é fácil de ver que os pontos

fixos FL, M e PL correspondem às soluções exactas auto-semelhantes de
FLRW plano (44), campo escalar sem massa (47) e lei da potência (49).
O ponto fixo EM corresponde a uma solução auto-semelhante homotética
com um potencial exponencial e matéria na forma de um fluido perfeito com
equação de estado linear. A razão por detrás da existência deste ponto fixo
deve-se ao facto de existir simetria de dimensionamento. Neste caso, uma
solução auto-semelhante homotética só pode existir se ρm e ρφ têm a mesma
forma, o que requer γm = γφ, onde γφ = 1 + pφ

ρφ
.

Para um potencial constante λ = 0, o rescalamento das coordenadas leva
uma solução com um dado V = Λ, a uma solução com um Λ diferente, e

4Uma órbita heteroclinica junta dois pontos fixos distintos, enquanto órbitas homocli-
nicas têm o mesmo ponto inicial e final.
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FL Σφ = 0, Ωm = 1 q = (3γm − 2)/2
EM Σφ =

√
3/2γmλ−1, Ωm = 1− 3γmλ−2; λ >

√
3γm q = (3γm − 2)/2

M± Σφ = ±1, Ωm = 0 q = 2
PL Σφ = λ/

√
6, Ωm = 0; λ <

√
6 q = −1 + λ2/2

dS Σφ = Ωm = 0; λ = 0 q = −1

Tabela 2: Tabela com os diversos pontos fixos que ocorrem para modelos de
RW planos com um campo escalar com potencial constante ou exponencial e
um fluido perfeito com o parâmetro da equação de estado linear 0 < γm < 2.

é por esta razão que o espaço-tempo de de-Sitter aparece como ponto fixo
dS. Mas devido a Λ ter dimensões (distância−2), não existem soluções que
admitam uma simetria homotética quando Λ 6= 0, isto é, esta simetria não
é a mesma do caso do potencial exponencial.

Todos os pontos fixos do sistema dinâmico são hiperbólicos. Recordar
que um ponto fixo diz-se hiperbólico se a matriz de linearização do sistema em
torno do ponto fixo possui valores próprios com parte real diferente de zero.
Neste caso, o teorema de Hartman-Grobman aplica-se: Numa vizinhança de
um ponto de fixo hiperbólico, o sistema não-linear original e o linearizado são
topologicamente equivalentes. O teorema de Hartman-Grobman estabelece
as propriedades de estabilidade locais de um ponto fixo hiperbólico, mas
de notar, contudo, que não é garantido que a solução linearizada dê uma
aproximação na vizinhança do ponto fixo. Pontos fixos não-hiperbólicos têm
linearizações com um ou mais valores próprios com parte real zero.

Da análise dos valores próprios, tem-se o seguinte resultado: Um con-
junto a um parâmetro de órbitas em S̄ origina-se de cada fonte M+ e M−
quando λ <

√
6, mas quando λ >

√
6 não há soluções que têm origem

em M+, enquanto uma solução tem origem em FL. Em direcção ao futuro
PL é estável quando λ <

√
3γm, enquanto EM é estável no futuro quando

λ >
√

3γm. Ou seja, as bifurcações aparecem quando λ =
√

6, que é quando
PL deixa o espaço de estados físico através de M+, e quando λ =

√
3γm, que

é quando EM entra no espaço de estados através de PL. Mais ainda, existe
uma bifurcação quando λ = 0, que é quando PL se torna o ponto estável no
futuro dS. A estrutura do espaço de soluções para exemplos representativos
dos diferentes casos pode ser vista na Fig. 1.
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Figura 1: Estruturas representativas do espaço de soluções para S̄.

4.4 Funções monótonas e dinâmica global

A propriedades de estabilidade dos pontos fixos dadas pela teorema de
Hartman-Grobman são apenas locais. As propriedades globais, seguem da
existência de uma função monótona. SejaM : S→ R uma função contínua.
M diz-se monótona decrescente (crescente) para o fluxo em S, se para todos
os z ∈ S, M(ϕτ (z)) é uma função monótona decrescente (crescente) de τ .
Se existe uma função monótona M : S → R em S, então S não contém
pontos fixos, órbitas periódicas, órbitas recurrentes ou homoclinicas.

A função monótona pode ser obtida de outro tipo de simetria das equa-
ções de campo, associada com dimensionamento de coordenadas (um meca-
nismo geral, discutido em [16]). No caso dos modelos de RW planos com
fluido perfeito e campo escalar, o escalar de Hubble é uma função monótona
que pode ser escrita através das variáveis do espaço de estados, como

H2 = V (φ(Z))
3(1− Ωm − Σ2

φ)
. (77)

Estes métodos já foram também utilizados em modelos com outros tipos
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de matéria, como por exemplo fluidos perfeitos com equação de estado não
linear [14], fluidos anisotrópicos [18], fluidos com difusão [22] e material
elástico [17].
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