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Resumo: Breve introducdo a aplicagdo da teoria de sistemas dindmicos
nos modelos cosmolégicos de Bianchi (espacialmente homogéneos) com um
fluido perfeito e um campo escalar. Resultados gerais sdo exemplificados
com o modelo simples de Robertson-Walker (espacialmente homogéneo e
isotrépico) com um fluido perfeito com equagao de estado linear e um campo
escalar com um potencial constante ou exponencial.

Abstract Brief introduction to the application of the theory of dynami-
cal systems in cosmological Bianchi (spatially homogeneous) models with
a perfect-fluid and a scalar-field. General results are exemplified with the
simple Robertson-Walker (spatially homogeneous and isotropic) model with
a perfect-fluid with linear equation of state and a scalar field with constant
or exponential potential.
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1 Introducao

Em 1915, ha precisamente um século atras, Albert Einstein introduziu a
teoria da relatividade geral, e as equacoes de campo de Einstein que incor-
poram a teoria classica do campo relativista com os efeitos da gravidade.
Dez anos antes, ja Einstein tinha causado um grande impacto na comuni-
dade cientifica com a sua teoria da relatividade restrita, na qual os antigos
postulados Galileanos de tempo e espago absoluto sao abandonados para dar
lugar a uma teoria mais complexa onde nao existem observadores absolutos.
De um ponto de vista matematico, a teoria da relatividade geral é bastante
complexa, sendo uma teoria de natureza geométrica, onde o sistema fisico
¢é descrito pela estrutura do espago-tempo. Consequéncias directas da teo-
ria incluem por exemplo a previsao da existéncia de buracos negros ou da
expansao do universo.
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Na teoria Newtoniana da gravidade, o campo gravitacional é descrito
pela equacdo de Poisson
A =4nGp (1)

com a condicdo fronteira de que o potencial Newtoniano ¢ é zero no infinito.
G ¢é a constante gravitacional de Newton, p > 0 é a densidade de massa da
matéria e A o operador de Laplace.

Na teoria da Relatividade Geral, o campo gravitacional é descrito por
uma forma bilinear denominada métrica g vivendo naturalmente numa vari-
edade suave conexa quadridimensional M. A diferenga em relagdo a geome-
tria Riemanniana tradicional deve-se a métrica ter assinatura (—,+, 4+, +).
A forma mais simples da métrica é o analogo do espago Euclidiano em geo-
metria Riemanniana, nomeadamente o espaco de Minkowski, que é o espago
da relatividade restrita, onde nao existe gravidade. Variedades Lorentzia-
nas que representam sistemas fisicos sao solugoes das equacoes de campo de
FEinstein

Rm/ - %g,u,yR + Ag;w = SLTTGTMV (2)
onde R,, e R = gt R,, sao o tensor de Ricci e o escalar de Ricci da
métrica g e A é a constante cosmolégicaﬂ T}, € um tensor simétrico de grau
2 conhecido como tensor de energia-momento e descreve a matéria, sendo
uma funcao dos campos de matéria, e ¢ é a velocidade da luz. Neste artigo
usamos a convencao da soma de Einstein, indices gregos tomam os valores
a, B, i, ... =0,1,2,3, e usaremos unidades de Planck reduzidas 871G =1 = ¢.

Devido a identidade de Bianchi diferencial, o lado esquerdo das equacoes

de campo de Einstein satisfaz a identidade
1
v, (R“l, SR A65> ~0. (3)

com V a derivada covariante da métrica g. Entao implicam que o tensor
energia-momento da fonte de matéria satisfaz a lei de conservacao

V,.T" = 0. (4)

E costume descrever a matéria no universo por um fluido perfeito. Seja u

o vector quadrivelocidade das particulas do fluido, o tensor energia-momento
é dado por

T;S:,n) = Pm Uply + Pm (QW + U#ul/) (5)

No caso A # 0, a solucio maximalmente simétrica ndo é Minkowski, mas sim a solucio
de de-Sitter no caso A > 0, e Anti-de-Sitter no caso em que A < 0. Estas solugdes sdo
bastante importantes para modelar a expansdo acelerada do universo A > 0, e no caso de
A < 0, na correspondéncia Anti-de-Sitter/Teoria do campo conforme (AdS/CFT).
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onde p,, > 0 é a densidade de energia e p,, a pressao do fluido. E também
necessario a prescrigdo de uma equacao de estado p,, = ppm(pm). Usual-
mente, particulas de poeira p,, = 0 representam galdxias (ou aglomerados
de galdxias) num Universo em expansao, e radiacao p,, = % pm € importante
no Universo primitivo.

Através de u define-se o projector nas hipersuperficies tridimensionais
ortogonais a congruéncia do campo de vectores quadrivelocidade, h,, =
9 + uyuu,. Da projeccdo na direcgao paralela e ortogonal a u, de
obtém-se as equacoes de Fuler

Vu(pmut) + pm V! =0, (6a)
(pm + Pm) 'V u” + uutN ypp, + Vi = 0. (6b)

As variaveis cinematicas associadas ao fluido obtém-se da decomposicao
irredutivel da derivada covariante da 1-forma u

Vouuy = zhuw + 0 + W — U, (7)

3
onde 6 =V, u* é o escalar da expansdo, 1, = u*V u, é o vector quadriace-
leragao, oy = V(,u,) — gh;w + 1, u,) € o tensor de cisalhamento (simétrico
e sem trago) e wyy, = VU, +1[,u,) o tensor de vorticidade (antissimétrico),
com uto,, = 0 = ulw,,. Se a congruéncia ¢ irrotacional w,, = 0, as hiper-
superficies ortogonais constituem uma folheagdo do espago-tempo (M, g).
Estas quantidades cinemaéticas tém uma interpretacao fisica e geométrica
simples, e em Cosmologia é bastante util introduzir o escalar de Hubble

H = 3 (8)
O modelo cosmoldgico padrao, ou o modelo do Big-Bang quente, é cons-
truido sobre trés observacoes cosmoldgicas fundamentais: O facto de que o
Universo se expande (H > 0), como descoberto por Hubble nos finais da
década de vinte do século passado, devido ao efeito do desvio para o verme-
lho da luminosidade de galdxias distantes; A medicado da radiacao césmica
de fundo em microondas (RCFM), primeiramente detectada por Penzias e
Wilson e prevista por Gamow, Alpher e Herman no seus trabalhos em nucle-
ossintese e processo de formacao da abundéancia de elementos leves segundos
apés o Big-Bang; A terceira observacao fundamental consiste no padrao da
abundancia dos elementos leves, em particular o hélio.
Contudo, muitas questoes permanecem abertas, como o facto de o Uni-
verso ser aproximadamente plano e isotrépico, ou a natureza e origem das
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perturbacoes da densidade primordial que dao origem a toda a formacgao de
estrutura cosmica. De forma a explicar estes e outros problemas no cendario
do Big-Bang (quente), Guth introduziu em 1981 o paradigma inflacionario
na sua forma mais simples, onde durante uma transicao de fase cosmologica
com um periodo de super-arrefecimento, o Universo expande-se exponenci-
almente, num estado de falso vacuo, isto é, como se nao tivesse matéria e
contivesse uma grande constante cosmolégica A > 0. Mais recentemente, e
devido a descoberta de que o Universo se encontra em expansao acelerada,
como confirmado por observacoes de supernovas nos finais da década de
noventa por Perlmutter, Schmidt e Riess (uma descoberta premiada com o
prémio Nobel da fisica em 2011), solugbes cosmolégicas que exibem expan-
sao acelerada tornaram-se de uma particular relevancia fisica. Um dos maior
puzzles em cosmologia moderna é a discrepancia entre o presente valor de A
e o valor previsto pela teoria da fisica de particulas no Universo primitivo.

Uma forma mais complexa de produzir expansdo acelerada no Universo
(em vez de usar a constante cosmolégica), consiste em usar um campo escalar
¢ € C*° (M) com um potencial de interacdo suave V(¢),

af

T = VubVué = guv <92va¢vg¢ + V<¢>> : (9)

A conservacio do tensor energia-momento leva a equacdo de onda nao linear
Ogé = 0V (10)

onde 0,V significa a derivada do potencial em relacao ao campo escalar ¢.
Por exemplo, potenciais monomiais V = Vp¢?", n = 1,2, 3... sdo protétipos
de modelos inflacionarios, e do tipo poténcia negativa V = Vg~ ¢, a > 0,
sao modelos de energia escura.

Se V,¢ é do tipo-tempo, pode-se definir um campo vectorial unitario
u(g) normal as superficies {¢ = const}

ut! :7V“¢
© = V0770

e o tensor @D tem a forma algébrica de um fluido perfeito (5)), com

(11)

1 1
ps= =5V 6+ V(0) | py=—5Vu6V G- V(9).  (12)
Seja (M, g) um espago-tempo e €& um campo vectorial que satisfaz

Leg=2Cg, (13)
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onde C' é uma constant e £¢ é a derivada de Lie ao longo de §&. Se C =0, &
diz-se um campo vectorial de Killing, e se C' # 0 diz-se um campo vectorial
homotético. Um campo vectorial de Killing (homotético) gera uma familia
a l-pardmetro de isometrias (homotetias). O conjunto das isometrias (ho-
motetias) de um espago-tempo (M, g) forma um grupo de Lie, denominado
o grupo das isometrias (homotetias).

O facto de a métrica ser invariante por , implica que £ €Ro‘ﬁw =0,
.féRag =0e £€R = 2C'R, e consequentemente ££Ga5 = 0. Das equacoes
de Einstein segue que

£ €Ta5 =0. (14)

Diz-se que o tensor energia-momento herda a simetria do espaco-tempo.

2 Espacos-tempo espacialmente homogéneos

Um espago-tempo (M, g) diz-se espacialmente homogéneo se admite um
grupo de isometrias em que as érbitas sao hiper-superficies do tipo-espaco
que constituem uma folheacdo de M. A classe de espacos-tempo espacial-
mente homogéneos dividem-se nos modelos de Kantowski-Sachs e de Bianchi.
Os modelos de Bianchi sao definidos por o grupo de isometrias possuir um
subgrupo G5 de dimensao 3, que actua simples e transitivamente nas 6rbi-
tas do tipo-espago. Existem trés subclasses: modelos de Robertson-Walker
(RW) que admitem um grupo de isometrias de dimensao 6, Gg; os modelos
de Bianchi que possuem simetria de rotagoes local (SRL), em que o grupo de
isometrias tem dimensao 4, G4; e por ultimo os modelos de Bianchi que nao
admitem simetrias adicionais para além do grupo de simetria a 3 parametros.
Por definigdo, um espago-tempo de Bianchi (M, g) é uma variedade com
a estrutura M = I xG, onde I C R. Seja Gy, t € I, o grupo de Lie Gy = txG,
e e;(t) um referencial invariante a esquerda em G;. Em termos da cobase
w' dual de e;, a métrica em Gy tem a forma dada por hijdwidwj . Indices
do alfabeto latino tomam os valores i,j,m,... = 1,2,3. Se adicionalmente
considerarmos a coordenada ¢t como o tempo proprio ao longo da congruéncia
de geodésicas ortogonal as oérbitas do grupo, a métrica de Bianchi é dada
por
g = —dt* + hijdw'dw’. (15)
Denotaremos por n o vector normal unitario as superficies de simetria, isto
¢
gn,n)=—1. (16)
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Consequentemente, as equagoes de Einstein dividem-se em equagoes de res-
tricao

SR~ Kk + (W kij>2 = 2T (17a)
Vik'; = Vi (B k) = =T, (17b)
e equagoes de evolucao
Othij = —2k;; (18a)
atkij - Rij + (K" k) kij - Tij + %52‘ (R Tinn — Too) (18b)

onde h;; = h;j(t) é amétrica espacial (Riemaniana) e h¥/ a sua inversa, >R;; é
o correspondente tensor de Ricci e 3R = h™" 3R,,,, o escalar de Ricci. kij =
k;j(t) é a segunda forma fundamental das superficies de homogeneidade G e,
por ultimo, Tpo, To; e Tj; sao a densidade de energia, densidade de momento
e o tensor das tensoes, respectivamente, que sdo derivados do tensor energia-
momento total T}, = T;Szr,n) + T,S(,é). Denotaremos também por 352-]- a parte
sem trago de SRij.

Existe ainda liberdade na especificacdo do referencial, dada por uma
transformacao linear dependente da coordenada temporal. Por um lado, po-
demos usar esta liberdade para tornar o referencial independente do tempo

[n,é;] =0, (19)

onde [, ] denota o comutador. Neste caso, as fungoes de estrutura sdo
também elas independentes do tempo e consequentemente pode-se sempre,
através de uma transformacao linear independente do tempo, torna-las iguais
as constantes de estrutura da algebra de Lie gerada pelos campos vectoriais
de Killing

onde
k _ k
ck=-Ck, (21)
e vale a identidade de Jacobi

A decomposicao das constantes de estrutura na forma
Chs = e + a;0" — a;0.", (23)
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>
w

Classe do Grupo | Tipos de Grupo
I
I
A(a=0) VI
VIl
VIII
IX
v
B(a +#0) v
VI,
VI,

oo+ o
o o

+ o+ + +

|
++ oo+ +++ oo

o o o o+

_l’_

Tabela 1: Tipos de modelos de Bianchi caracterizados pelas constantes de
estrutura do grupo de Lie (2!, 72, 7%). Esta caracterizacio nio é tinica, visto
que se pode sempre rescalar as constantes de cada tipo de Bianchi, assim
como permutar (123). Nesta classificagdo, Bianchi do tipo III corresponde
ao Bianchi do tipo VI_;.

onde ;5 € o simbolo de Levi-Civita que é totalmente antissimétrico, A é
um tensor simétrico e &' um vector constantes, é usada para classificar os
varios tipos simetria dos modelos de Bianchi. Modelos de Bianchi de classe
A sdo definidos por @ = 0 enquanto que para modelos de classe B, a # 0.
Resta ainda liberdade para escolher uma base em que a matriz simétrica 1%/
é diagonal e escolher @' como

' = diag(f1, fg, 7g) ' = (a,0,0). (24)

As constantes 7, descrevem diferentes tipos de simetria, o que leva a clas-
sificacdo da Tabela [I| para os modelos diagonais de classe A. Para modelos
de classe B, pode-se introduzir o escalar h através da seguinte férmula

a? = higna, (25)

pelo que h estd bem definido se e s6 se riafig # 0, ver Tabela [T}

2.1 Referencial Ortonormado Invariante pelo Grupo de Iso-
metrias

A liberdade que existe na especificacdo do referencial, pode ser usada para
introduzir um conjunto de trés vectores espaciais ortonormais, isto ¢ h;; =
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dij. Assim, o referencial {e,} = {n,e;} é ortonormal e invariante pelo grupo
de isometrias. Neste caso, a métrica fica

g = —dt* + 5w ()W (t). (26)
Nesta abordagem, as variaveis béasicas sao as fungoes de estrutura ,yam (1),

[eﬂu e’Y] = ’yaﬁfyeav (27)

que sendo constantes ao longo das orbitas de simetria, sao fun¢des somente
da variavel de tempo global . No caso da matéria ser um fluido perfeito nao
inclinado, e as superficies de homogeneidade serem as superficies ¢ = const.,
entao

U =1 = Uy, (28)

as funcoes de comutacao sao dadas por

700;‘ _ W’Oij =0, (29a)
Vo = —HO —of — 50, (29b)
Vi = eigm™ + a;6f — a;oF (29¢)

e das equacgoes de campo de Einstein tem-se entao

p_ 9t PR _p V& 30
376 3737 o
. 2., 1 L
=12 Ly 5 (V) (300)
0;j = —3Hoj + 25m(li0j)le %Sy (30)
onde
o1 4
1, :
SR = _§bil — 6a;a’ (31b)
1
3Sij = bij — §bkk5z‘j - 26lp(i”j)laf” (31
bij = 2n;"n; — njfng (31d)

e significa a derivada com respeito a variavel temporal ¢ e {27 é um vector que
tem a interpretagdo de momento angular (local) de um referencial espacial
em relagao a um outro referencial espacial que tem uma propagacdio de Fermi
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ao longo eg. As equacoes de restri¢do e evolucao para n;; e a; obtém-se das
identidades de Jacobi, e sao dadas por

0=na, (32a)
Rij = —Hnig + 200 gy, + 26™m gm0 (32b)
a; = —Ha; — O'Z-k(lk + Eimlale . (32¢)

Note-se que neste caso as equacoes de campo de Einstein reduzem-se a um
sistema de equacoOes diferenciais ordinarias. Tal como em cima, existe ainda
liberdade na escolha do referencial ortonormado, que pode ser escolhido de
forma a que n;; = diag(ni, ng,n3) e a’ = (a,0,0) El Para modelos de Classe
A, isto implica que

oij = diag(o11,092,033) , €Q; =0, (33)

e como o;; tem trago nulo, sé6 tem duas componentes independentes. Po-
demos assim escolher um referencial préprio do tensor de cisalhamento o;;,
onde este é representado por dois termos diagonais,

1 1

oy = 5(022 +o33) , o_= ﬁ(am — 033). (34)

Neste caso, tem-se que SSij = diag(®S11,3S22,3533), e as duas componentes
independentes

1 1
36, = Z(3855 + 38 , 35 = ——(3895 — 3S33). 35
+ 2( 22 + °S33) 2\/3( 22 33) (35)

Para modelos de classe B a situacao é mais complicada. Em geral, estas
escolhas levam a um sistema de equacdes reduzido, que consiste na varidvel
de Hubble H, e nas restantes funcoes de estrutura, que denotaremos por

X = (’Ykz‘j|reduzido> ) (36)
as quais se tem de juntar as equagoes para a matéria e para o campo escalar
dadas por e . No caso espacialmente homogéneo, estas equagoes
reduzem-se a

pm = _3H(pm + Pm), (37&)
¢+3Hp = -0,V , (37b)

em conjunto com a prescri¢cao de uma equacdo de estado py,(pm), € a espe-
cificacdo de um potencial V(¢).

2Visto que n;; e a; tém a mesma forma candnica das constantes de estrutura n;; e a,
estas determinam os varios tipo de Bianchi do grupo de isometrias.
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3 Auto-Semelhanca

Um espaco-tempo diz-se auto-semelhante se admite um vector homotético.
Um resultado importante devido a Eardley [2], diz que um grupo de homote-
tias Hy admite um subgrupo G4 de isometrias. No contexto dos modelos
espacialmente homogéneos o grupo de homotetias é H, e, neste caso, diz-se
que o modelo cosmoldgico é transitivamente auto-semelhante. O seguinte
teorema é devido a Hsu e Wainwright [4].

Teorema 1 Um espaco-tempo admite um grupo de homotetias simples tran-
sitivo Hy, se e s se existe um referencial ortonormado {e,} e um escalar t
tal que

Yy () = F b (38a)
et) =, (38D)

onde FL e ny, sdo constantes.

v

O facto de a métrica ser invariante por dimensionamentos restringe
o tensor energia-momento. Para um fluido perfeito, a condigao res-
tringe equagao de estado p;, = pm(pm). O seguinte teorema é devido a
Wainwright [3].

Teorema 2 Suponha-se que um espago-tempo admite um campo vectorial
homotético, e que se verificam as equagoes de campo de Finstein com um
fluido perfeito. Se existe uma equacio de estado py, = pm(pm), entdo

Pm = (Ym — 1) pm (39)
com vm # 0 constante. Se € € ortogonal a velocidade do fluido w, entdo

Ym =2, e se & € paralelo a w, entdo v, = 2/3.

Para todos os modelos de Bianchi, excepto o modelo cosmologico
mais simples, a solucdo plana de Friedmann-Lemaitre-Robertson-Walker
(FLRW), tem-se que 2/3 < 7, < 2. O modelo de FLRW plano é auto-
semelhante para todos os valores de 0 < 7, < 2. Neste caso, a métrica
é dada em coordenadas (t,x,y, z) por

ds* = —dt* + d*(t) (de + dy? + sz) , (40)

onde
2 4
a“(t) = t3m (41)
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e o campo vectorial homotético & dado por

0 2 0 0 0
et (1— ) (ot y— 2 ). 42
¢ t8t+< 3fym><x8x+y6y+zaz) (42)

O escalar de Hubble ({8

a
H(t) = - 43
(=", (13)
e a densidade de energia do fluido p,, sao
2 4
Ht)=—t"1 | pult)=—1t2. (44)

372,

Modelos mais gerais, como por exemplo os modelos de FLRW hiperbélico
e Bianchi do tipo I, ndo sendo auto-semelhantes, sao assimptoticamente auto-
semelhantes [2]. Por modelos assimptoticamente auto-semelhantes entende-
se modelos para os quais, nos regimes assimptoéticos, a sua evolucao é apro-
ximada por modelos auto-semelhantes, ou seja, estes modelos tém regimes
assimptoticos bem definidos que sdo invariantes por dimensionamento.

Existem, contudo, modelos que nao sao assimptoticamente auto-
semelhantes. Por exemplo, os modelos no vacuo de Bianchi do tipo IX
(Universo de Mixmaster) exibem um comportamento assimptético oscila-
tério no passado, isto é, no limite em que se tende para a singularidade
inicial. Existem também os modelos com fluido perfeito com equagao de
estado linear de Bianchi do tipo VIIy [8, 0], e do tipo VIII [12] em que
existe quebra de simetria de auto-semelhanca no futuro assimptético, ver
também [I1].

A inclusao de outro tipo de matéria, como campos escalares, pode levar
a quebra assimptotica de simetria de auto-semelhanca. Neste caso se € é um
campo vectorial homotético, o campo escalar ndo tem massa, i.e. V(¢) =0,
ou o potencial é exponencial, isto é

V(¢) = Voe 7, (45)
com Vp > 0 e A > 0 constantes, e
2C

A solugdo cosmolégica mais simples para as equagoes de Einstein com
um campo escalar é a solucdo plana de RW com um campo escalar sem
massa que se obtém pondo V(¢) = 0. Neste caso

alt)=ts , H(t)=-t", (47)
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b0 =—2 e =\n(2). (49

com ¢ uma constante. No caso de um potencial exponencial,

at) =t | H(t) = %fl , (49)
(b(t) = _\/? ) ¢(t) = \/227]) In <p(?€v;t_2 1)) ) (50)

onde p > 1/3 e A?p = 2. Esta solucio exibe expansio acelerada é > 0, se e
s6 se A < v/2, e denomina-se inflacio do tipo lei da poténcia.

4 Sistemas dinamicos cosmolégicos

Nesta seccao, faremos um breve resumo da aplicacao de métodos de sistemas
dindmicos em Cosmologia. Ao mesmo tempo, resultados gerais sdo exempli-
ficados com o modelo particular de RW plano, com um fluido perfeito com
equacao de estado linear, e um campo escalar com um potentical positivo
constante ou exponencial.

Comecemos por rever algumas defini¢cGes basicas da teoria de sistemas
dindmicos. Outras técnicas e resultados serdo introduzidos a medida que
forem necessérios (para mais detalhes, ver [15], por exemplo).

Seja z' = f(z), z € R™ um sistema dindmico auténomo. A evolucao
de um ponto do espago de estados (fisicos) do sistema dindmico é descrito
pelo fluxo, que formalmente consiste na aplicagdo ¢, : R™ — R™ que leva
z(0) — z(7). O conjunto w-limite w(z) de um ponto z € R™ ¢ definido como
o conjunto de pontos de acumulagdo da 6rbita futura, (isto é, a trajectoria
da solugdo) que passa por z. Da mesma forma, o conjunto a-limite «(z)
¢é definido como o conjunto de pontos de acumulagdo da Orbita passada.
O w-limite de um conjunto S € R™ é w(S) = Uyegw(z). Os conjuntos
w-limite (conjuntos a-limite) caracterizam o comportamento assimptdtico
no futuro (passado) do sistema dindmico. Os exemplos mais simples de
conjuntos limites sdo pontos fixos, isto é, pontos z, no espaco de estados
do sistema dindmico z’ = f(z) para os quais f(z,) = 0 (por vezes os pontos
fixos denominam-se pontos de equilibrio, criticos ou estacionérios) e drbitas
periddicas.

4.1 Variaveis Hubble-normalizadas e generalizacoes

A aplicacdo de métodos da teoria de sistemas dindmicos a cosmologia surge
do trabalho pioneiro de Collins [I]. E neste trabalho, que surge também pela
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primeira vez a ideia de utilizar novas variaveis dependentes, normalizadas
com a variavel de Hubble , que resultam em quantidades adimensionais
e, em geral, limitadas. Este método foi posteriormente desenvolvido no caso
em que a matéria é descrita por um fluido perfeito com equacao de estado
linear para modelos de Bianchi de classe A, por Wainwright e Hsu [5], e
modelos de Bianchi de classe B por Hewitt e Wainwright [6]. Estes resultados
encontram-se compilados em [7].

Por analogia com o caso de RW , o escalar de Hubble pode ser usado
para definir uma funcao escala de distancia [,

I
onde 0 < [ < 400, e a quantidade adimensional pardimetro de desaceleracdo
q definido por
Il : )
q:—l.—2 & H=—-(1-qH". (52)

Para modelos que se expandem para sempre, H > 0, as varidveis Hubble-
normalizadas das fungoes de estrutura sao definidas da seguinte forma

y = q (53)

e a variavel temporal adimensional 7 é definida por
dr = Hdt & I =lpe” (54)

onde 7 — —oo no passado e T — 400 no futuro assimptéticos. A equagao
de evolugao para o escalar de Hubble fica

aH

= —(+qH. (55)

enquanto que as variaveis adimensionais formam um sistema auténomo

dy _

5, —hly) . yeR" (56)

Nos caso dos modelos de Bianchi de classe B, existe ainda uma equagao de
restri¢ao adicional g(x) =0 , e que se traduz na equagao de restrigao
g9(y) = 0. As fungoes h(y) e g(y) sdo polinomiais em y. O motivo da evo-
lucao do escalar de Hubble se desacoplar deve-se ao facto da transformagao
acima fazer desaparecer, por rescalamento, os efeitos de uma expansao geral.
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No caso em que o fluido perfeito tem uma equagao de estado linear
Pm = (Ym — 1)pm, com 7, constante, sé é necessario, a introdugao do
parametro de densidade,

Pm
que satisfaz
A

No caso do campo escalar ter um potencial positivo V(¢) > 0, podem-se
introduzir as seguintes varidveis Hubble-normalizadas (ver por exemplo [

13): |
(. 3,) = (zﬂzg ¢§H) , (59)

que denominamos por parametro densidade de energia potencial e parametro
densidade de energia cinética, respectivamente. Estas quantidades obede-
cem as seguintes equacoes de evolucao

dCSilTv —2|(1+q) — @)@5)24 Qv, (60a)
% = (q—2)% + \/gx\(qb)Qv, (60Db)

onde 0,V
M) = —=-. (61)

Isto é, apenas no caso em que o potencial é constante ou exponencial é que
as variaveis (Qy,%,) formam um sistema fechado.

Uma formulagao que inclui potenciais mais gerais foi recentemente in-
troduzida em [24]. Neste caso, é necessario, a introdu¢do de uma varidvel

de campo escalar Z(¢),
dz

dz
= \/6%2(;5. (62)
A escolha da varidvel Z(¢) nao é unica e uma escolha 6ptima depende do
potencial em estudo. Contudo, para obter uma formulacao global do sistema
dindmico, Z deve ser sempre escolhida de forma a que seja uma funcao global
mondtona e invertivel em ¢, definida num intervalo limitado Z € (Z_, Z),
com Zy = Z(¢+), onde ¢+ = lim;_, 1o ¢. Além disso, se a fun¢ao A nao for
limitado como, por exemplo, no caso de potenciais do tipo poténcia invertida
em que A = 1/¢ explode no limite ¢ — 0, é preciso introduzir outra variavel
temporal que regularize o sistema dindmico [20), 24].
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Estas varidaveis nao sao de, todo adequadas para todos os potenciais.
Para potenciais com minimo zero (V(¢) > 0), como por exemplo potenciais
monomiais, deve-se substituir a variavel do campo escalar Z por uma varia-
vel baseada no escalar de Hubble H e que tem em consideragao uma escala
temporal média oscilatéria varidvel no futuro, como demonstrado em [21],
e [23]. O facto de existirem formulagoes diferentes do sistema dindmico,
melhor adaptadas a descricao de regimes assimptéticos, ndao deve ser visto
com surpresa, visto que regimes diferentes induzem estruturas extra que po-
dem ser usadas na formulacao dos sistemas. Perto da singularidade inicial
(I — 0), é natural adaptar tanto as varidveis dependentes como indepen-
dentes a varidvel de Hubble, devido ao facto de esta variavel fornecer uma
escala fisica natural neste regime, como discutido em [I9]. Por outro lado,
o regime oscilatorio no futuro, no caso de campos escalares com potenciais
monomiais, depende do minimo do potencial, que no caso mais simples do
potencial de Klein-Gordon V(¢) = %quQ, é caracterizado por f—‘g =m?, e
assim m fornece a escala fisica natural neste regime. Estas caracteristicas
refletem-se na escolha de varidveis dependentes e independentes, ver [21, 23].

Denotemos por z o estado

z = (y, Qm,Qv,Z¢,Z) . (63)

Na derivacao das equacoes de evolugao, o parametro de desaceleragao q tem
um papel importante, e pode-se escrever em termos das novas fungoes y,
e das varidveis da matéria e do campo escalar, através da equacdo de Ray-
chaudhuri . Além disso, as varidveis para a matéria e campo escalar
estao relacionadas com as fungoes de estrutura através da equacdo de Fried-

mann generalisada (30al):
1=+ K+ Qm+ 33+ Qv, (64)

onde introduzimos o parametro de cisalhamento ¥, e o pardmetro de curva-
tura K, na forma

2 3
9 O - R
s KT ae (65)

Assim, o pardmetro de desaceleragao é dado por

3
q=2%+ (2% - 1) Q4+ 252 — Q. (66)

Dado um ponto zg, que representa o estado do universo num tempo 7,
z = ¢,(z0) descreve a Orbita que passa por zg, em T = 19. Seja G(T) o
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parametro de desaceleracao ao longo da érbita, isto é,

q(1) = q(¥+(20)), (67)

pelo que ¢(0) = ¢(zp). Entao, de , tem-se que ao longo da érbita que
passa por zg, o escalar de Hubble é dado por
o fTO [1+4(7))d7

H(t)= H, ) (68)

com Hy arbitrario. Esta liberdade implica que cada orbita ndo-singular
corresponde a uma familia a 1-parametro de universos fisicos, que estdo
conformalmente relacionados por um rescalamento constante das fungoes de
estrutura, e consequentemente do referencial ortonormado e da métrica.

Como exemplo, consideremos o modelo mais simples de RW plano, para
oqual ¥ = 0 = K. Além disso, consideremos um fluido perfeito com
equacao de estado linear e um campo escalar com um potencial constante
ou exponencial. Neste caso, o problema é efectivamente reduzido a duas
dimensodes, em que a equagao para a variavel do campo escalar, Z, desacopla-
se das restantes equacoes. A razao por detrds desta propriedade reside no
facto de estes modelos admitirem simetrias de dimensionamento o que, por
sua vez, da origem a uma familia a 1-pardmetro de solucdes equivalentes.
Neste caso o sistema dinamico é dado por

s

o gm0 -2, (699)
4 253 — (1 - Q)| 2, (69b)
dr

onde se usou a equacao de Friedmann generalisada , para expressar
globalmente a variavel Hubble-normalizada da energia potencial do campo
escalar, €0y, em termos das varidveis do espaco de estados,

Qu=1-3 —Qp, (70)
enquanto que o parametro de desaceleragao, ¢, é dado por
3
q=-1+3%5+ 5 ¥m . (71)

Para modelos que se expandem para sempre, i.e. H > 0, as solucoes
de , estdo bem definidas para todos os tempos 7, e definem um fluxo
{,} em R2. Pode-se assim analisar a evolucio dos modelos cosmolégicos
estudando as érbitas deste fluxo na regido fisica do espaco de estados S C R?
definido por

Qp>0 ,  Qu=1-%3-0Qp>0 (72)

e que é relativamente compacto.
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4.2 Fronteiras invariantes

Uma outra propriedade das varidveis Hubble-normalizadas consiste nas fron-
teiras serem conjuntos invariantes. Um conjunto Z C R"™ diz-se um conjunto
invariante do fluxo ¢, em R™, se para todo z € Z e todo 7 € R, ¢,(z) € T.
Exemplos de conjuntos invariantes consistem em pontos fixos e érbitas perio-
dicas, que correspondem a uma unica orbita, variedades estaveis, instaveis
e centrais, conjuntos a e w-limite, atractores, sequéncias heteroclinicas e
ciclos. Conjuntos invariantes descrevem classes de sistemas fisicos restri-
tos, que satisfazem propriedades especiais, e que, por vezes, descrevem o
comportamento assimptotico de classes de modelos mais gerais.

No nosso exemplo, o espaco de estados fisicos S pode ser subsequente-
mente estendido de forma regular para incluir as fronteiras invariantes:

e O, = 0, que denominaremos por fronteira invariante do campo esca-
lar.

e )y = 0, que denominaremos por fronteira invariante do campo escalar
sem massa.

O facto do espaco de estados S ser compacto tem um significado fisico
directo. Para modelos que se expandem para sempre, nenhuma quantidade
fisica ou geométrica diverge mais rapido que uma certa poténcia de H na
singularidade inicial, e nenhuma quantidade tende para zero mais lentamente
do que H no futurcﬂ

4.3 Pontos fixos

Para um ponto fixo z, do sistema dindmico, o parametro de desaceleragao
é constante, isto é, q(z4) = ¢, €

H(7) = Hoe(l+e)™ (73)
Neste caso, o parametro Hy, pode ser fixado por uma translacdo em T,
T — T + const. Assim, e pondo Hy =1, implica que

1

Ht=——,
1+ g«

(74)

3No caso A > 0, H — \/g, no futuro assimptdtico.
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e, de e , tem-se que as fungoes de estrutura sdo da forma ([38a)).
Segue do Teorema [I] o seguinte resultado: A cada ponto fixo do sistema

dinamico, corresponde um unico modelo cosmoldgico transitivamente auto-
semelhante.

Os pontos fixos determinam o comportamento assimptdtico de modelos
mais gerais. Se o conjunto a-limite (w-limite) de um ponto z é o ponto fixo
z,, entdo a Orbita que passa por z tende para z, a medida que 7 — —o0
(T — +00). A interpretacao fisica é a de que a dindmica do modelo com o
estado inicial z é aproximada pelo modelo auto-semelhante correspondente
a Zy, quando 7 — —oo (7 — +00), i.e. 0os modelos sdo assimptoticamente
auto-semelhantes no passado (futuro). Se o modelo tem esta propriedade
no passado e no futuro, diz-se somente que o modelo é assimptoticamente
auto-semelhante, e neste caso a 6rbita que descreve o modelo diz-se hetero-
clinica [

Nesta situacao, pode-se obter a forma assimptoética para as fungoes de
estrutura reduzidas x e para as variaveis de matéria e do campo escalar. Da
equacao de evolugao para a variavel adimensional Ht, tem-se que

Jim Ht=(1+q)7" & H=0+q) "t +ot™)  (75)

e consequentemente, a equacao (53)) implica

Y«
x =

= t~1 1
Tta +o(t™), (76)

onde o termo dominante corresponde aos modelos auto-semelhantes.

No caso particular do sistema , os pontos fixos encontram-se listados
na Tabela 2

Usando os valor de ¢ da Tabela [2| e é facil de ver que os pontos
fixos FL, M e PL correspondem as solugdes exactas auto-semelhantes de
FLRW plano , campo escalar sem massa @ e lei da poténcia .
O ponto fixo EM corresponde a uma solucao auto-semelhante homotética
com um potencial exponencial e matéria na forma de um fluido perfeito com
equacao de estado linear. A razao por detras da existéncia deste ponto fixo
deve-se ao facto de existir simetria de dimensionamento. Neste caso, uma
solugdo auto-semelhante homotética sé pode existir se p,, e py tém a mesma
forma, o que requer 7, = 4, onde 4 = 1 + i’—z.

Para um potencial constante A = 0, o rescalamento das coordenadas leva
uma solugdo com um dado V' = A, a uma solugdo com um A diferente, e

4Uma 6rbita heteroclinica junta dois pontos fixos distintos, enquanto érbitas homocli-
nicas tém o mesmo ponto inicial e final.
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FL Sy =0,Q, =1 q= 3vm —2)/2
EM | %5 = /3/29mA ", Q=1 = 3ymA % A > V37m | 4= (3ym — 2)/2
Mi E¢::|:1,Qm:() q:2
PL o =AV6, Qn =0; A< V6 q=—-1+)%/2
ds Yp=0n=0;A=0 g=—1

Tabela 2: Tabela com os diversos pontos fixos que ocorrem para modelos de
RW planos com um campo escalar com potencial constante ou exponencial e
um fluido perfeito com o parametro da equacao de estado linear 0 < v, < 2.

é por esta razao que o espaco-tempo de de-Sitter aparece como ponto fixo
dS. Mas devido a A ter dimensdes (distancia=?), ndo existem solucoes que
admitam uma simetria homotética quando A # 0, isto é, esta simetria nao
¢ a mesma do caso do potencial exponencial.

Todos os pontos fixos do sistema dindmico sao hiperbdlicos. Recordar
que um ponto fixo diz-se hiperbdlico se a matriz de linearizacao do sistema em
torno do ponto fixo possui valores préprios com parte real diferente de zero.
Neste caso, o teorema de Hartman-Grobman aplica-se: Numa vizinhanca de
um ponto de fixo hiperbdlico, o sistema nao-linear original e o linearizado sao
topologicamente equivalentes. O teorema de Hartman-Grobman estabelece
as propriedades de estabilidade locais de um ponto fixo hiperbdlico, mas
de notar, contudo, que nao é garantido que a solucao linearizada dé uma
aproximacao na vizinhanga do ponto fixo. Pontos fizos ndo-hiperbolicos tém
linearizagdes com um ou mais valores préprios com parte real zero.

Da analise dos valores proprios, tem-se o seguinte resultado: Um con-
junto a um pardmetro de 6rbitas em S origina-se de cada fonte M+ e M~
quando A < /6, mas quando A > /6 nao hé solucdes que tém origem
em M™, enquanto uma solucao tem origem em FL. Em direccao ao futuro
PL é estdavel quando A < /37,,, enquanto EM é estével no futuro quando
A > /37,. Ou seja, as bifurcagdes aparecem quando A = /6, que é quando
PL deixa o espaco de estados fisico através de M T, e quando A = /37, que
é quando EM entra no espaco de estados através de PL. Mais ainda, existe
uma bifurcagdo quando A = 0, que é quando PL se torna o ponto estavel no
futuro dS. A estrutura do espaco de solugoes para exemplos representativos
dos diferentes casos pode ser vista na Fig. [T}
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TQ,,, TQ
FL FL

X X
<4 ﬁ
M M M- PL M
TQ’"
FL
_% _X
M PL M- M M

Figura 1: Estruturas representativas do espaco de solucdes para S.

4.4 Fungoes monétonas e dinamica global

A propriedades de estabilidade dos pontos fixos dadas pela teorema de
Hartman-Grobman sao apenas locais. As propriedades globais, seguem da
existéncia de uma fung¢do mondtona. Seja M : S — R uma fungao continua.
M diz-se mondtona decrescente (crescente) para o fluxo em S, se para todos
os z € S, M(¢-(z)) é uma funcdo mondétona decrescente (crescente) de 7.
Se existe uma funcdo mondtona M : S — R em S, entdo S nao contém
pontos fixos, érbitas periddicas, érbitas recurrentes ou homoclinicas.

A func¢do mondétona pode ser obtida de outro tipo de simetria das equa-
¢oes de campo, associada com dimensionamento de coordenadas (um meca-
nismo geral, discutido em [I6]). No caso dos modelos de RW planos com
fluido perfeito e campo escalar, o escalar de Hubble é uma fun¢do mondtona
que pode ser escrita através das variaveis do espaco de estados, como

_ V(¢(2))
1 = 3(1—Qp —X3)

(77)
Estes métodos ja foram também utilizados em modelos com outros tipos
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de matéria, como por exemplo fluidos perfeitos com equacao de estado nao
linear [I4], fluidos anisotrépicos [18], fluidos com difusdo [22] e material
elastico [17].
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