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Resumo: As ideias básicas de Cosmologia Quântica (QC) são apresentadas
em termos gerais, indicando-se como se interligam com a Relatividade Geral.
O autor apontou a ser menos técnico e focando mais em introduzir de forma
simples alguns conceitos (um estudo em profundidade está disponível em
[1, 2]). De forma a também apresentar alguns desenvolvimentos recentes do
interesse da comunidade matemática, descrevem-se de forma muito breve
resultados onde simetrias aparentes podem induzir a seleção de condições
fronteira através de processos algébricos, podendo extender-se àlgebra de
supersimetria [1, 2]. Detalhes mais técnicos podem encontrar-se em [3, 4, 5,
6].
Abstract We mention, in general terms, the basic ideas of quantum cos-
mology (QC) and how such framework can be intertwined with General
Relativity (GR) . The author aimed to be less technical and focus more on
introducing in simple terms some concepts [1, 2]. In order to present new
advances that may be of interest to readers, we very briefly discuss recent
results involving hidden symmetries, showing that specific boundary conditi-
ons can be related to the algebra of Dirac observables afterwards associated
to the algebra of supersymmetry [1, 2]. More technical details are found in
[3, 4, 5, 6].
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1 Introduction-I
Contemporary cosmology is a well-established quantitative area, where

remarkable new technology has been used to get a precise chart of the uni-
verse. In particular, fundamental cosmological parameters have been re-
cently displayed with an outstanding precision: At the dawn of the XXIst
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146 Quantum Cosmology

century, the cosmology community has thus entered into a golden epoch,
where future improvements (both in quantity and quality) will allow to get
an even clearer perspective of where (and why and how) we are.

The current paradigm in cosmology (under scrutiny but so far success-
fully able to pass all the major tests) is the inflationary ‘big bang’ scenario. It
allowed to address some of the observational inconsistencies of the standard
cosmological model:

• (Close) Regions currently observed and spatially separated would not
have been (as determined by the standard cosmological dynamics) in
thermal contact; But the isotropy of the cosmic microwave background
radiation (CMBR) forces to consider otherwise: This is the horizon
problem.

• For the currently observed spatial flatness, the universe had to be flat
at early times with an incredible precision (with about a margin of
10−50): This is the flatness problem.

These problems can, however, be explained by an early ’inflationary’
phase of exponential-like expansion of the universe: Causal contact then
becomes possible in the primeval past, at the same time as the universe
enlarges so much that locally it becomes nearly flat, with topological defects
becoming effectively unobservable. Inflation also provides a suitable mecha-
nism for initial small quantum matter perturbations to increase and to form
a fluctuations spectrum, which is consistent with observations.

But an apparent weakness emerges for this picture: For this paradigm to
be realistic, it has to be generically possible. I.e., what is the probability for
the inflationary scenario to occur? Moreover, how did those perturbations
arise? The problem is that these questions are, not withstanding its merits,
beyond the inflationary paradigm.

In fact, this is the issue of the initial conditions of the universe. In brief,
let us first indicate why discussing initial conditions is crucial; Subsequently,
we will focus on how to investigate their generality.

Classically speaking how, can we make for any cosmological case a choice
of initial conditions over any other (choice)? Let us be more concrete. A
suitable domain for an inflationary stage can be easily identified in some
simple models. But, and this is the crucial issue, that evolution requires a
choice of initial conditions. Are they general enough so that our Universe
is general enough, or say, natural to have emerged? To subsequently assert
their generality, the theory of dynamical systems applied to the, e.g., GR
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Paulo Moniz 147

equations about a given cosmological model, leads to (parametrized) families
of physically distinct solutions (i.e., trajectories in the corresponding phase
space). The case of the spatially homogeneous and isotropic closed model
(or, the Friedmann-Lemaître-Robertson-Walker (FLRW) k = +1 solutions
to be more technical) is particulary pertinent: If initial values of matter fields
and their derivatives are restricted to start away from the curve associated to
spatially flat case, the universes recollapses, without any stage of sufficient
inflation; Otherwise, inflation occurs. Hence, the choice of the initial values
is indeed crucial for the (generality of) occurrence of satisfactory inflation.

Additional arguments are therefore required. Namely, invoking quantum
cosmological ingredients: E.g., the universe began in some sort of transition
from a quantum regime, the initial classical parameters determined in a
probabilistic method. The task seems then to transfer our quest into deter-
mining (i) the most probable1 state (wave function) of the universe and (ii)
its distinctive predictive signatures. Before proceeding into such issues, it
must also be said that QC is basically the application of quantum mechanics
to models with time reparametrization invariance (e.g, general relativity).
Indeed, QC can be considered as a (toy model-like) attempt to obtain rele-
vant information for a full quantum theory of gravity: One of the supreme
challenges (surely in the XXIst century) for fundamental science.

Let us also add that on the one hand, general relativity is not per-
turbatively renormalisable: This means that naive efforts from, e.g., using
Feynmann diagrams techniques have failed. On the other hand, general rela-
tivity is a theory appropriate to deal with the larger scales of spacetime and
quantum physics applies instead to extremely small scales. Furthermore, the
concept of quantum gravity also means to quantize spacetime itself and not
merely quantizing the matter fields present in that spacetime background.
In spite of all these (apparently) severe obstacles, the problem cannot be
avoided: Overwhelming observational data seems to indicate that the uni-
verse did start out very, very small indeed (the cosmological Big Bang) and
quantum mechanics (as the essential framework) ought to be applied to this
very early universe.

2 From the Hamiltonian formulation of GR
towards its quantization

From the previous section, it is clear that in order to advance towards a
1Assuming the probability interpretation still holds...
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148 Quantum Cosmology

QC point of view, the essentials of a quantum formulation of gravity have to
be analysed. This has usually embraced the presentation of a corresponding
Hamiltonian description of general relativity, where the ADM (or 3 + 1)
decomposition of spacetime is mandatory. In the following, we will employ
4-dimensional general relativity in terms of a metric description.

Making a 3 + 1 split of the 4-dimensional spacetime manifold, M, is
basically, to foliate it into spatial hypersurfaces, Σt, labeled by a global time
parameter, t. The spacetime dimensional metric [with a (−+++) Lorentzian
signature] is

ds2 = gµνdx
µdxν = −ω0 ⊗ ω0 + hijω

i ⊗ ωj , (1)

where we use the basis

ω0 ≡ Ndt, ωi ≡ dxi +N idt, (2)

with greek indices running from 0 to 3 and latin indices from 1 to 3. A few
remarks are in order:

• This decomposition requires the manifoldM to be globally hyperbolic;

• N(t, xk) is called the lapse function and measures the difference
between the coordinate time, t, and proper time, τ , on curves normal
to the hypersurfaces Σt.

• The quantity N i(t, xk) is the shift vector: It measures the difference
between a spatial point, P , and the point one would reach if instead
of following P from one hypersurface to the next one followed a curve
tangent to the normal.

• (3)hij(t, xk) ≡ hij(t, xk) is the intrinsic 3-metric (also called first fun-
damental form), induced on the spatial hypersurfaces by the full 4-
dimensional metric, gµν ;

• In components (matrix representation)

gµν =
[
−N2 +NiN

i Nj

Ni hij

]
. (3)

In more well known terms, this embedding is described by the (3 + 1) de-
composition of the four-metric,

ds2 = gµνdx
µdxν = −

(
N2 −NiN

i
)
dt2 + 2Nidx

idt+ hijdx
idxj . (4)
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Let us take the action to be the (a bit simplified) standard Einstein-
Hilbert action coupled to matter,

S = M2
Pl

16π

[∫
M
d4x(−g)

1
2 (R− 2Λ)

]
+ Smatter. (5)

The matter action for a scalar field Φ, is

Smatter = −1
2

∫
d4x(−g)

1
2 [gµν∂µΦ∂νΦ + V (Φ)] . (6)

Note that M2
Pl := 1

8πG is the reduced Planck’s mass in natural units, R is
the Ricci curvature scalar of the space-time, Λ is the cosmological constant.

The Hamiltonian form of the action can be derived in a standard fashion
as,

S =
∫
d3x dt

[
ḣijπ

ij + Φ̇πΦ −NH−N iHi
]
, (7)

where πij and πΦ are the momenta conjugate to hij and Φ respectively. In
addition, a ’·’ represents a derivative with respect to t, whereas H and Hi
represent the Hamiltonian and momentum constraints, respectively, which
are associated to specific invariance properties under coordinate transforma-
tions (see e.g. [1] for more details). The Hamiltonian is a sum of constraints,
with lagrange multipliers the lapse N and shift N i, which have arise due to
the choice of slicing and time. The Hamiltonian constraint is

H = 16π
M2

Pl
Gijklπ

ijπkl − M2
Pl

16π h
1
2 (3R− 2Λ) +Hmatter = 0, (8)

where Gijkl is the DeWitt metric and is given by

Gijkl ≡
1
2h
− 1

2 (hikhjl + hilhjk − hijhkl) . (9)

It should be noted that the classical dynamics takes place in the su-
perspace, the space of all three-metrics and matter field configurations
(hij(x),Φ(x)) on a three-surface. A metric on superspace is the DeWitt
metric (by addition of the matter field metric). Note that the signature of
the DeWitt metric is independent of the signature of spacetime, its signature
is hyperbolic at every point x in the three-surface.
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150 Quantum Cosmology

2.1 Canonical Quantization

Following Dirac, the quantization of constrained systems is obtained
and a classical constraint becomes a restriction on physically allowed wave
functionals Ψ[hij ,Φ] on superspace. A special feature of this wave function
is the fact that it does not depend explicitly on the coordinate time label
t. This is the consequence of the reparametrization-invariant feature of GR
and “time” is subtended in the dynamical variables hij ,Φ.

Let us be more concrete. By implementing for momenta the following
canonical quantization rule,

πij → −i δ

δhij
πΦ → −i

δ

δΦ (10)

one obtains the equations for Ψ. The Wheeler-DeWitt (WDW) equation is

HΨ =
[
−Gijkl

δ

δhij

δ

δhkl
− h

1
2 (3R− 2Λ) +Hmatter

]
Ψ = 0 (11)

where we have ignored operator ordering problems. The WDW equation
(11), obtained from (??3.8)), denotes the reparametrization invariance of
the theory and describes the dynamical evolution of the wave function in
superspace and is a second order hyperbolic functional differential equation;
In (10), δ

δhij
, e.g., denotes functional derivatives. In general, the WDW

equation has many solutions, so in order to discriminate a unique solution,
some boundary conditions are needed.

The above framework is indeed quite elegant and promising. Some re-
sults are rather relevant [1, 2]. But, in the end, the essential question is the
following: How can we make any prediction within the above structure (in
order to study the physical consequences for the evolution of the universe)
from an initial quantum stage? These are yet open questions, in the sense
that research is active: How to get solutions with physical meaning in order
to proceed to make predictions.

The nature of the Wheeler–DeWitt equation requires thus that specific
boundary conditions for the wavefunction of the universe must be implemen-
ted. Whereas the Hamiltonian formulation of canonical general relativity,
within the ADM plus Dirac quantization guidelines, were the focus within
the 60-70’s, the investigation of the consequences of boundary (and initial!)
conditions became the line of sight for the navigation into quantum gravity
from the 80’s onwards [1, 2].
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Two boundary condition proposals2 took most of the attention: the no-
boundary (from J. Hartle and S. Hawking) and the tunneling (from A. Vi-
lenkin). In fact, and with the exception of specific cases of simple situations,
a choice of boundary condition is mandatory to solve the Wheeler–DeWitt
equation. However, this statement seems to point that we also need an ad-
ditional element (in the form of a new fundamental law of physics), which
will select the boundary condition. How to do it?

In other known physical situations, the boundary conditions are obvious
and follow, e.g., the symmetry of the system. Moreover, it seems that im-
plementing a boundary condition for the Wheeler–DeWitt equation is just
a less clarified manner to deviate (but not really solving) the issue of the
arbitrary initial choice of other parameters, which provide the choice of the
classical evolution, by leading the discussion into the choice of parameters
to describe its quantum evolution. But that is not so: If quantum mecha-
nics is the fundamental framework for physical interactions, then quantum
dynamics precedes the classical dynamics and we must deal with that first.

3 Introduction-II
Thus, selecting an appropriate boundary condition for the wave function

of the Universe has been a paramount objective of quantum cosmology; Two
‘rival’ approaches are the no-boundary proposal and the tunneling proposal.
Notwithstanding their dominance, two other proposals have also been used,
as means to address mathematically the presence of classical singularities:
the wave function satisfies Ψ(0) = 0 (De Witt boundary condition), or regar-
ding its derivative with respect to the scale factor, Ψ′(0) = 0, i.e., vanishing
at the classical singularity. It is crucial to mention that all those boundary
conditions were ad hoc3 chosen, within a particular physical perspective.

The question that guided [3, 4, 5, 6] was the following: Can a relation
between the constraints (that are present and whose algebra characterize
the gravity-matter system) and the allowed boundary conditions be esta-
blished? If there is such an association, then boundary conditions could
be intertwined with the set of possible Dirac observables and their algebra.

2Other proposals have been put forward: the ’infinite wall’ by B. DeWitt , the ’all
possible boundaries’ by Suen and Young and the ’symmetric initial condition’ by Conradi
and Zeh.

3Most importantly, these ad hoc conditions were not formulated as part of the dyna-
mical law. However, according to De Witt “the constraints are everything” i.e., nothing
else but the constraints should be needed.
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152 Quantum Cosmology

The answer to this query, requires the presence of a paramount element:
Symmetry.

The most often use of a symmetry is associated to that of isometry,
that is, a spacetime diffeomorphism that leaves the metric invariant; A one-
parameter continuous isometry is linked to the existence of Killing vectors.
Using those symmetries assists to solve Einstein’s equations. However, there
are other types of symmetries: Instead of looking at the symmetries of a spa-
cetime, let us analyse the symmetries of the dynamics of a system. Being
more precise, for a classical system we employ transformations in the whole
phase space of the system such that the dynamics is left invariant (For a
quantum system this means a set of phase space operators that commute
with the Hamiltonian or with the relevant evolution operator, and trans-
forms solutions into solutions). In the literature, some of such symmetries,
have been referred to as hidden symmetries.

In the next section, albeit a bit more technical, where details elabo-
rated in [3, 4, 5, 6] are somewhat summarized, we will illustrate how the
constraints algebra can set-up allowed boundary conditions to be identified.
Some boundary conditions can indeed be displayed as intertwined with the
set of possible Dirac observables and their algebra, allowing to select them
directly and explicitly from the algebra of constraints (to which the hidden
symmetries are subjacent, as we will explain).

4 Quantization and Dirac Observables
Let us start with one of the simplest models in quantum cosmology. We

will be making a concrete application of the content of section 2. Consider
the homogeneous and isotropic FLRW minisuperspace for a closed Universe
with the following line element

ds2 = −N2(η)dη2 + a2(η)dΩ2
(3), (12)

where dΩ2
(3) is the standard line element on the unit three-sphere. Take

also for this metric the corresponding action (obtained from the Einstein-
Hilbert), with a specific matter content (in the form of a perfect fluid with
barotropic equation of state ρ = γp) . Moreover, we are usingM = I × S3

for the spacetime manifold, ∂M = S3 as boundary, and overdot denotes
herein differentiation with respect to η. In addition, if we further redefine
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the lapse function N and scale factor a asa(η) = x(η) + M
12π2M2

Pl
:= x− x0,

N(η) = 12π2MPla(η)Ñ ,
(13)

this allows to obtain the Lagrangian

L = − 1
2Ñ

MPlẋ
2 + Ñ

2 MPlω
2x2 − EÑ , (14)

where E and ω are constants. Hence, in terms of the conjugate momenta to
x, Πx, the corresponding Hamiltonian for (14) is the secondary constraint

H := 1
2MPl

Π2
x + 1

2MPlω
2x2 − E ≈ 0. (15)

Using the Hamiltonian constraint (15), we can easily find the well known
solution of a closed Universe

a(η) = aMax
1+secφ [1− secφ cos(η + φ)] ,

aMax := M
12π2M2

Pl
+
(

2E
MPlω2

) 1
2 ,

cosφ := M√
2EMPl

,

(16)

where aMax is the maximum radius of the Universe and it is assumed that
the initial singularity occurs at η = 0.

4.1 Standard quantization

The standard quantization procedure for this simple system is accom-
plished by using x̂ = x and Π̂x := −i∂x in the coordinate representation.
Then the Hamiltonian constraint (15) becomes the WDW equation for the
wave function of the Universe

− 1
2MPl

d2ψ

dx2 + 1
2MPlω

2x2ψ(x) = Eψ(x). (17)

Note that the classical solution (16) has a singularity at x = x0. We will
assume the wave functions defined on the (x0,∞) domain. To have a self-
adjoint Hamiltonian, this suggests us to use those wave functions which
satisfy one of the following boundary conditions: either De Witt boundary
condition

ψ(x)|x=x0 = 0, (18)
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154 Quantum Cosmology

to avoid the singularity at x = x0, or(
dψ

dx
+ αψ

)
|x=x0 = 0, (19)

where α is an arbitrary constant. As α would be a new fundamental constant
of the theory, so to avoid this, we set it to be zero

dψ

dx
|x=x0 = 0. (20)

Boundary conditions (18) or (20) establishes the wave function to have nor-
malized oscillator states with eigenvalues En = ω(n+1/2), with n is an even
or odd integer, corresponding to the above boundary conditions (18) and
(20), respectively. Hence, using definition (??), we obtain

(
M
MPl

)2
+ 24π2Nγ = 24π2(n+ 1

2),

ψn =
(√

MPlω√
π2nn!

) 1
2 Hn(

√
MPlωa) exp (−1

2MPlωa
2).

(21)

The normalized eigenfunction indicates the existence of the maximum clas-
sical radius of a closed Universe.

4.2 Reduced phase space and observables

This subsection and the subsequent one, will be far (much) more technical
and the reader may skip it, although it presents in a very compact manner
some of the recent developments in [3, 4, 5, 6]. These bear a significant
synergy framework, in a clear mathematics plus physics endeavor, assisting
in shedding new light in quantum cosmology conundrums [1, 2].

As mentioned, the invariance of GR under the group of diffeomorphisms
of the spacetime manifold M leads to the result that the Hamiltonian can
be expressed as a sum of constraints and that any observable must com-
mute with these constraints. Constraints are classified in two classes: first
class constraints (which generate a gauge transformation) and second class
constraints (essentially arise in the Hamiltonian formulation of a system).
In a constraint Hamiltonian system, a first class constraint is a phase space
function on the constraint surface (a surface of simultaneous vanishing of
all constraints) whose Poisson bracket vanishes weakly with all the cons-
traints. Accordingly, an observable is an invariant function under the gauge
transformations generated by all of the first class constraints. As in GR, the
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momentum and Hamiltonian constraints are always first class, then a func-
tion on the phase space is an observable if it has weakly vanishing Poisson
brackets with the first class constraints when the first class constraints hold.
To find gauge invariant observables, we can proceed as follows. The uncons-
trained phase space Γ of the model is R2, with global canonical coordinates
(x,Πx) with Poisson structure {x,Πx} = 1. More consistently, let us define
on Γ the complex-valued functionsC :=

√
MPlω

2

(
x+ i Πx

MPlω

)
,

C∗ :=
√

MPlω
2

(
x− i Πx

MPlω

)
.

(22)

The set S = {C,C∗, 1} form a closed algebra under the Poisson bracket,
{C,C∗} = −i and every sufficiently differentiable function on Γ can be
expressed in terms of S. Therefore, the Hamiltonian can be recast in

H = −Ñ (ωC∗C − E) . (23)

Moreover, consider on Γ the functions
J0 := 1

2C
∗C,

J+ := 1
2C
∗2,

J− := 1
2C

2,

(24)

which have a closed algebra{
{J0, J±} = ∓iJ±,
{J+, J−} = 2iJ0.

(25)

The Hamiltonian constraint implies

J0 = E
2ω . (26)

Furthermore, we have

J2 := J2
0 −

1
2(J+J− + J−J+) = j(j − 1), (27)

where j = {1/4, 3/4} denote the Bargmann indexes for the simple harmonic
oscillator.
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4.3 Hidden symmetry and boundary conditions

To specify boundary conditions for the evolution of subsystems of the
Universe, one needs observations done out of the subsystem; they are related
to the rest of the Universe. However, in quantum cosmology, the Universe
as a whole, has nothing external to determine those boundary conditions.
“The cosmological boundary condition must be one of the fundamental laws
of physics” or, as we define herein, it can be related, at least in some specific,
albeit restrictive, circumstances, to the constraint algebra of the cosmologi-
cal model. In what follows, we will give some insight towards determining
boundary conditions using the hidden dynamical symmetries of the mo-
del. With this aim, let us focus our attention on the Dirac observables
of the cosmological model. We start by introducing the set of operators
Ŝ = {C,C†, 1}, with the following commutator algebra

[C,C†] = 1, [C, 1] = [C†, 1] = 0. (28)

Thus, the set Ŝ and its commutator algebra are the quantum counterpart
of the set S, terms of operators, with C† being the Hermitian conjugate to
operator C. The action of operators {C,C†} on the states of the physical
Hilbert space are given by{

C|n >=
√
n|n− 1〉,

C†|n >=
√
n+ 1|n+ 1〉.

(29)

Subsequently, the Poisson bracket algebra of the classical J ’s can be pro-
moted into a commutator algebra version by setting

J0 := 1
4(C†C + CC†),

J+ := 1
2C
†2,

J− := 1
2C

2,

(30)

With m being any non-negative integer, in this representation, su(1, 1) is
determined by the number j and the eigenstates of J2 and J0. Thus, the
irreducible representations of su(1, 1) are labelled by |j,m〉. In addition, the
Hamiltonian can be presented as

H = −E + ω(C†C + 1
2) = −E + 2ωJ0, (31)

As J2 and J0 commute with the Hamiltonian, they leave the physical Hilbert
space VH invariant and consequently we choose {J0, J

2, 1} as physical ope-
rators of the model. Using definition (30), the Casimir operator of su(1, 1)
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reduces identically to J2 = j(j − 1) = −3/16. Hence, the Bargmann in-
dex j = {1

4 ,
3
4} is a gauge invariant observable of the quantum cosmological

model. Subsequently, we obtain

Em,j = 2ω(j +m). (32)

Hence, the Bargmann index classifies the underlying states of the Hilbert
space, by means of the Hamiltonian constraint VH=0, into two invariant
subspaces: E 3

4 ,m
= ω(3

2 + 2m); VH=0,j= 3
4

= {|34 ,m〉},
E 1

4 ,m
= ω(1

2 + 2m); VH=0,j= 1
4

= {|14 ,m〉},
(33)

with VH=0 = VH=0,j= 1
4
⊕ VH=0,j= 3

4
. Therefore, the gauge invariance of the

Bargmann index allows the partition of the Hilbert space into two disjoin-
ted invariant subspaces, and this equivalently implies imposing boundary
conditions (18) and (19), respectively.

5 Outlook
Within the framework for quantum cosmology, the wave function retri-

eved from the WDW equation with appropriate boundary conditions would
describe the Universe. However, difficulties have been identified along the
path towards this purpose, not merely being of a purely technical (mathe-
matical) nature, or even model dependent. Some obstacles range from the
conceptual and complex up to deep fundamental questions [1].

Our suggestion is that a very specific use of (hidden) symmetries may
provide a helpful beacon to guide investigation. Let us be more precise
on the motivation. It is well known that the factorization method enables
us to investigate the properties of the quantum system in a easier way. It
is upon to consider a pair of first order differential equations which can
be obtained from a given second-order differential equation with boundary
conditions. The main advantage of this method is that we may discover the
hidden symmetry of the quantum system through constructing a suitable
Lie algebra, which can be realized by ladder operators. As in the case
of the simple harmonic operator, which can be elegantly solved using the
raising and lowering operator method, the operator method for the harmonic
oscillator can be generalized to the whole class of shape invariant potentials
which include all the popular, analytically solvable potentials.
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158 Quantum Cosmology

This can be done using the ideas of supersymmetric quantum mechanics
introduced in [1, 2] and an integrability condition called the shape invariance
condition. We are indeed already unveiling what can be a wider scope of
perspective and understanding of our approach and its potential, but this
can assist in preparing for the route of ’uncharted navigation’ we took and
we share herein with the readers.
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