
A Price Model with Finitely Many Agents

AbdulRahman Alharbi, Tigran Bakaryan, Rafael Cabral, Sara Campi,
Nicholas Christoffersen, Paolo Colusso, Odylo Costa, Serikbolsyn

Duisembay, Rita Ferreira, Diogo Gomes, Shibei Guo,
Julian Gutierrezpineda, Phebe Havor, Michele Mascherpa, Simone Portaro,
Ricardo Ribeiro, Fernando Rodriguez, Johan Ruiz, Fatimah Saleh, Calum

Strange, Teruo Tada, Xianjin Yang, Zofia Wróblewska
Applied Mathematics Summer School
King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Resumo: Neste trabalho, estudamos um modelo de formação de preços
numa população com um número finito de agentes que compram e vendem
uma mercadoria. A oferta desta mercadoria é exógena e os agentes são
racionais uma vez que pretendem minimizar os custos de transacção. O
problema em estudo é formulado como um jogo dinâmico entre N jogadores
com uma condição de equilíbrio de mercado. O limite deste problema de
N jogadores é um “mean field game”. Posteriormente, mostramos como
reformular o nosso jogo como um problema de optimização do custo total.
Mostramos a existência de uma solução usando o método direto do cálculo
das variações. Por fim, mostramos que o preço é o multiplicador de Lagrange
para a condição de equilíbrio entre a oferta e a procura.

Abstract Here, we propose a price-formation model, with a population
consisting of a finite number of agents storing and trading a commodity.
The supply of this commodity is determined exogenously, and the agents
are rational as they seek to minimize their trading costs. We formulate our
problem as an N -player dynamic game with a market-clearing condition.
The limit of this N -player problem is a mean-field game (MFG). Subse-
quently, we show how to recast our game as an optimization problem for the
overall trading cost. We show the existence of a solution using the direct
method in the calculus of variations. Finally, we show that the price is the
Lagrange multiplier for the balance condition between supply and demand.

palavras-chave: Formação de preço, jogos dinâmicos, equilíbrio de mer-
cado.
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2 A Price Model with Finitely Many Agents

1 Prologue
This document is the result of the second KAUST Summer Camp in Applied
Partial Differential Equations that took place from August 25 to September
8 of 2019. The purpose of this summer camp is to give an intense hands-
on research experience in cutting edge topics to BS/BSc and MS students.
Participants attended mini-courses that provide them with the tools to reach
the results we present here. For the research project, the participants worked
in small groups. These were coordinated by Professor Diogo Gomes, together
with his Ph.D. Students and Postdocs and Research Scientist Rita Ferreira.
Participants also had the opportunity to get acquainted with a variety of
research topics pursued by KAUST scholars as a means of broadening their
mathematical perspectives and future opportunities at KAUST. On the
weekends, there were cultural activities, such as sightseeing in the UNESCO
Cultural Heritage neighborhood of Al Balad, a snorkeling trip, and a Hejazi
Fish Dinner.

2 Introduction
Mean-field game (MFG) theory studies the behavior of large populations of
identical rational agents in competition, where the behavior of each agent
is determined by their state and by statistical information of the remaining
players. In [9], Gomes and Saúde studied a price formation problem using
an MFG approach. In this paper, we address a similar price formation prob-
lem (Problem 1) in a market with N identical rational agents who trade
continuously a commodity whose supply, Q, is a given exogenous variable
and whose price, $, is determined by the balance between supply and de-
mand. The agents are rational, in the sense that they seek to minimize their
trading cost. The collective behavior of the agents, coupled with the market
clearing condition, determines the evolution of the price, $. More precisely,
we consider the following problem:
Problem 1. Let Q ∈ C1([0, T ]) be the supply rate per agent. Let L ∈
C2(R×R), the Lagrangian, be a non-negative function, convex in the second
component. Let Ψ ∈ C1(R) be a non-negative terminal cost. Let N ∈ N
be the number of agents. At time 0, each agent i owns xi0 units of the
commodity.

Find a price, $ : [0, T ] → R, and trajectories, xi : [0, T ] → R, with initial
conditions xi(0) = xi0, such that for each 1 6 i 6 N , xi minimizes the
functional
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Gomes et al 3

∫ T

0

(
L(xi(s), ẋi(s)) +$(s)ẋi(s)

)
ds+ Ψ(xi(T )) (2.1)

subjected to the balance condition

1
N

N∑
i=1

ẋi(t) = Q(t), ∀t ∈ [0, T ]. (2.2)

In the preceding problem, xi(t) is the amount of commodity held by the
agent i at time t; hence, ẋi(t) denotes the rate at which the agent i trades.
The functional in (2.1) represents the cost for each agent. The running cost
is composed of the trading cost that comprises the instantaneous cost of the
commodity $ẋi and indirect costs such as storage or market impact encoded
in the term L(x, ẋ). The preference of the agents at the final time, T , is
encoded in the term Ψ(xi(T )), the terminal cost. The equation in (2.2) is
the requirement that the market clears; that is, supply equals demand at all
times.

Formally, MFGs model the mean-field limit of N -player games as N →∞.
However, the rigorous justification of this limit is unknown in the general
case, despite recent substantial progress [1]. In our price formation problem,
the N -player game is relatively tractable. The main goal of this work is to
study this N -player problem, which is the first step towards the rigorous jus-
tification of the mean-field limit as N goes to infinity. We expect our price to
approximate the one presented [9] as the number of players increases. Also,
each trajectory xi should converge to the trajectory of the representative
player of the continuum of agents model solved as an MFG. Notice that in
this limiting process, the function Q remains the same for both the finite
and the continuous player models.

In their seminal paper, Lasry and Lions [15] presented three examples of
mean-field modeling in economics. They were concerned with situations
involving a large number of rational players with little individual effect on
the game. Inspired by [15], Markowich et al. [18] discussed the existence and
uniqueness of the solution for a one-dimensional parabolic evolution equation
with a free boundary that models price formation. Caffarelli et al. [2]
established the global existence and asymptotic behavior of a price formation
model with free boundaries. Their results rely on a transformation, which
takes the equation in their problem into the heat equation. Burger et al.
[1] extended this problem to a Boltzman-type price formation model. Their
solutions converge to the Lasry–Lions model as the transaction rate tends
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4 A Price Model with Finitely Many Agents

to infinity. The study of the behavior of rational agents in energy markets
appeared in [16, 17] in the context of load-control problems. Switching space
heaters on and off controls the load, for an MFG approach see [12, 13, 14].
Previous authors addressed the price issue by assuming that the demand is
a given function of the price [11] or that the price is a given function of the
demand, see [3, 4, 5, 6, 10].

An N -player version of an economic growth model was presented in [8].
In a more recent paper [9], Gomes and Saúde introduced a price-formation
model where a large number of small players seek to store and trade elec-
tricity. This model was a constrained MFG where the price is a Lagrange
multiplier for the supply vs. demand balance condition.
Here, we prove the following main theorem:

Theorem 2.1. Assume that Ψ, the terminal cost, is non-negative and uni-
formly convex, and L ∈ C2(R × R), the Langrangian, is non-negative, uni-
formly convex in the second component, and satisfies the following inequality
uniformly in (z, v) ∈ R× R:

L(z, v) > α|v|q − β, q ∈ (1,∞), α > 0, β > 0. (2.3)

Then, Problem 1 has a unique solution.

The existence is established in Proposition 4.1 and the uniqueness in
Proposition 4.3.

The condition (2.3) means that high trading rates are expensive. The utility
function in Economics is the negative of our value function. Convexity prop-
erties of the value function translate into concavity for the utility function.
Therefore, our convexity assumptions are natural from the Economics point
of view.

This work starts with the description of the single-agent control problem
and derives the Euler–Lagrange equation. It then deals with the N -agent
problem. For this, we first show the existence of the minimizers by applying
the direct method in the calculus of variations. Then, we provide an inter-
pretation of the price of the commodity as the Lagrange multiplier of the
corresponding multi-agent problem. Subsequently, we find necessary con-
ditions for the trajectories to be minimizers, via a slight variation on the
Euler–Lagrange equation.We conclude the work by proving the existence of
a unique solution for Problem 1 under convexity assumptions on L and Ψ.

Finally, we point out that Problem 1 can be coupled with a control problem
for Q on the production side, where the producer seeks to maximize profits.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 1-14



Gomes et al 5

3 Single-agent control problem
To build an N -player model, we first analyze a single-agent control problem.
Using optimal control theory and calculus of variations, we derive the Euler–
Lagrange equation and the boundary conditions.
Let Bqt = W 1,q (t, T ) be the set of admissible functions with q ∈ (1,∞) as
in (2.3). Each agent seeks to find an optimal trajectory, x ∈ Bq0, minimizing
the functional

I[x] =
∫ T

0

(
L(x(t), ẋ(t)) +$(t)ẋ(t)

)
dt+ Ψ(x(T ))

with an initial position, x(0) = x0.

If x is a minimizer, then for any y ∈ C∞c ((0, T ]), and every ε ∈ R, we have

I[x] 6 I[x + εy] .

Thus, the function i : R → R defined by i(ε) = I[x + εy] attains a local
minimum at ε = 0. Then, i′(ε)|ε=0 = 0. Accordingly, computing i′(0) and
using the fact that y is arbitrary, we obtain the Euler–Lagrange equation

DxL(x, ẋ)− d

dt
(DvL(x, ẋ) +$) = 0

and the natural boundary condition

DvL(x(T ), ẋ(T )) +$(T ) + Ψ′(x(T )) = 0.

Example 3.1. Consider a Lagrangian of the form

L(x, v) = L(v).

Then, the Euler–Lagrange equation becomes

d

dt
(DvL(ẋ) +$) = 0⇔ DvL(ẋ) +$ = K,

where K is some constant. Since L is uniformly convex, DvL is strictly
monotone and, thus, invertible. Therefore,

ẋ = (DvL)−1(K −$) .

So, if the price $(t) increases, the agents buy less or sell. In particular, if
L(v) = v2

2 , then
DvL(ẋ) = ẋ.
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6 A Price Model with Finitely Many Agents

Hence, the Euler–Lagrange equation becomes

ẋ = K −$. (3.1)

Equation (3.1) shows that as the price increases, ẋ decreases.

Let Ψ(x) = x2

2 , which means that agents seek to minimize |x(T )|2. This
choice of Ψ corresponds to the portfolio liquidation problem. The Euler–
Lagrangian equation and corresponding natural boundary condition give

d

dt
(ẋ(t) +$(t)) = 0

ẋ(T ) + x(T ) = −$(T )
x(0) = x0 .

(3.2)

Thus, from (3.1) and (3.2), we get

K = 1
1 + T

[∫ T

0
$(t)dt− x0

]
.

Define the average price

$̂ = 1
T

∫ T

0
$(t)dt.

The agent buys when

ẋ(t) > 0.

According to (3.1), the above inequality holds if

$(t) < T$̂ − x0
T + 1 .

Thus, an agent buys when the price is below the threshold price on the
right-hand side of the preceding inequality.

4 A constrained minimization problem for N
agents

We use the single-agent control problem to formulate an N -agent mini-
mization problem that includes the balance condition. We prove existence,
uniqueness, and then we provide a characterization of such minimizer by
showing that the price is the Lagrange multiplier of an equivalent minimiza-
tion problem.
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4.1 A variational problem

Notice that, for each agent, (2.1) is a functional that is independent of
the dynamics of the other agents. Hence, Problem 1 is equivalent to the
following minimization problem

x min
x,x(0)=x0

1
N

N∑
i=1

(∫ T

0

(
L(xi(s), ẋi(s)) +$(s)ẋi(s)

)
ds+ Ψ(xi(T ))

)
(4.1)

subject to 1
N

N∑
i=1

ẋi(t) = Q(t) ∀t ∈ [0, T ] . (4.2)

Substituting (4.2) into (4.1) we get

1
N

N∑
i=1

(∫ T

0

(
L(xi(s), ẋi(s)) +$(s)ẋi(s)

)
ds+ Ψ(xi(T ))

)

= 1
N

N∑
i=1

(∫ T

0
L(xi(s), ẋi(s))ds+ Ψ(xi(T ))

)
+
∫ T

0
$(s)Q(s)ds ,

and since$(s)Q(s) is independent of x at every s, the minimization problem
is equivalent to

min
x,x(0)=x0

1
N

N∑
i=1

∫ T

0
L(xi(s), ẋi(s))ds+ Ψ(xi(T )) (4.3)

subject to 1
N

N∑
i=1

ẋi(t) = Q(t) ∀t ∈ [0, T ] . (4.4)

We now prove the existence of optimal trajectories.

4.2 Existence of a solution

We use the direct method in the calculus of variations to obtain the existence
of a minimizer of (4.3) and (4.4). For that, let

L(x, ẋ) = 1
N

N∑
i=1

(
L(xi, ẋi) + 1

T
Ψ(xi(T ))

)
,

and

IN [x] =
∫ T

0
L(x, ẋ)ds.
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8 A Price Model with Finitely Many Agents

Then (4.3) and (4.4) becomes

min
x,x(0)=x0

IN [x]

s.t. 〈x(t)〉 = Q(t).
(4.5)

Proposition 4.1. Let L satisfy (2.3). Then Problem 1 has a solution.

Proof. We show that L is coercive and lower semicountinuous in W 1,q. It is
enough to show that there exist ᾱ > 0, β̄ > 0, and q > 1 such that

L(x,p) > α|p|q − β

to obtain coercivity. The condition on the Lagrangian for each agent implies
the coercivity on L, since, by the non-negativity of Ψ, we have:

L(x,p) = 1
N

N∑
i=1

(
L(xi,pi) + 1

T
Ψ(xi(T ))

)
>

1
N

N∑
i=1

(α|pi|q − β)

> α
N∑
i=1
|pi|q − β = α||p||qLq − β

>
αC

N
|p|q − β.

The last inequality follows from the fact that in RN all the p-norms are
equivalent. The above establishes the coercivity of L.

To show lower semicontinuity, we need to ensure the convexity of L on the
second variable, and that L is bounded from below. Convexity follows from
the convexity of L in ẋ. Boundedness from below follows from the coercivity
condition.

We use the direct method in the calculus of variations to determine the
existence of a minimizer for our problem. Define the admissible set

At =
{

x ∈W 1,q(t, T ) |
∑N

i=1 ẋi(s)
N

= Q(s),xi(0) = xi
0, 1 6 i 6 N, t 6 s 6 T

}
,

and set A = A0. We notice that A is nonempty by taking ẋi = Q(t),xi(0) =
xi0. Since L is bounded from below, there exists a minimizing sequence,
(xn)n∈N ⊂ A such that

lim
n→+∞

IN [xn] = inf
x
IN [x].
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By the coercivity of L, we have

IN [xn] > α‖ẋn‖qLq − βT.

Thus, by Poincaré’s inequality, (xn)n∈N is bounded in W 1,q(0, T ). Then,
there exists x∗ ∈ W 1,q(0, T ) such that, up to a subsequence, xn converges
weakly to x∗. We notice that A is convex. Since q > 1, Morrey’s theorem
(see [7]) gives that A is closed. Thus, by Mazur’s theorem, see ([7] Appendix
D.4), A is weakly closed in W 1,q(0, T ), which implies that x∗ ∈ A. Then,
since L is bounded from below and convex in p, I is sequentially weakly
lower semicontinuous in W 1,q(0, T ). Thus, x∗ is the minimizer of I since

inf
x
IN [x] = lim

n→+∞
IN [xn] > IN [x∗] > inf

x
IN [x].

4.3 Uniqueness of solutions

Assume that

Assumption 4.2.

1. the map (x, v) 7→ L(x, v) is convex and for each x ∈ R, the map
v 7→ L(x, v) is uniformly convex; that is, there exists θ > 0 such that
for all x, y, v, w ∈ R, we have

L(λx+(1−λ)y, λv+(1−λ)w) 6 λL(x, v)+(1−λ)L(y, w)−θλ(1−λ)|v−w|2.

2. Ψ is uniformly convex.

We notice that the term $ẋ is linear in the velocity, thus convex.

Proposition 4.3. Let x ∈ RN . Under Assumptions 1. and 2., the solution
of the problem

min
x∈At,x(t)=x

IN [x]

is unique.

Proof. We prove the statement via contradiction. Assume that there exist
two different minimizers, x, y ∈ At with x(t) = x. Then, taking the middle
point, x + y

2 , we obtain
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10 A Price Model with Finitely Many Agents

IN

[x + y
2

]
= 1
N

N∑
i=1

[∫ T

0
L

(xi + yi
2 ,

ẋi + ẏi
2

)
dt+ Ψ

(xi(T ) + yi(T )
2

)]

6
1

2N

N∑
i=1

[ ∫ T

0
L(xi, ẋi)dt+

∫ T

0
L(yi, ẏi)dt−

θ

2

∫ T

0
|ẋi − ẏi|2dt

+ Ψ(xi(T )) + Ψ(yi(T ))
]

= 1
2IN [x] + 1

2IN [y]−
N∑
i=1

θ

4N ||ẋi − ẏi||2L2(0,T )

= min
z∈At,z(t)=x

IN [z]−
N∑
i=1

θ

4N ||ẋi − ẏi||2L2(0,T ).

Because θ > 0, the preceding inequality can hold only if ||ẋi− ẏi||2L2(0,T ) = 0
for all i = 1, . . . , N . Consequently, there exists a constant, c ∈ RN , such that
x(s)−y(s) = c for all s ∈ [t, T ]. Using the initial condition x(t) = y(t) = x,
we get c = 0, which contradicts the fact that x and y are distinct. Thus,
x = y and this concludes the proof.

4.4 Price as a Lagrange Multiplier

For F = (f1, . . . , fN ) ∈ RN , we denote its entry-wise average by

〈F 〉 := 1
N

N∑
k=1

fk.

Before deriving the necessary optimality conditions, we introduce the fol-
lowing auxiliary result.

Lemma 4.4. Let F = (f1, . . . , fN ) ∈ C((0, T );RN ) be such that for all
P ∈ C∞c ([0, T ];RN ) with 〈P (s)〉 = 0, for all s ∈ [0, T ], F satisfies∫ T

0
F (s) · P (s) ds = 0.

Then, there exists c ∈ C(0, T ) such that, for all k = 1, . . . , N , we have

fk(t) = c(t).
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Proof. Fix R ∈ C∞c ([0, T ];RN ). Set P by

P = R− 〈R〉1.

Because 〈P (s)〉 = 0, we have

0 =
∫ T

0
F · P ds =

∫ T

0
(F ·R−N〈R〉〈F 〉) ds =

∫ T

0
(F − 〈F 〉1) ·Rds.

Since R is arbitrary, by the fundamental theorem of the calculus of varia-
tions, for all k = 1, . . . , N and t ∈ (0, T ), we have

fk(s)− 〈F (s)〉 = 0.

Hence, we obtain c(·) = 〈F (·)〉 ∈ C(0, T ).

In the next proposition, we derive the necessary conditions (Euler–Lagrange
equations) for solutions of (4.5). Let X be

X :=
{

x ∈ C2([0, T ],RN ) | 〈ẋ(s)〉 = Q(s) for all s ∈ [0, T ]
}
.

Proposition 4.5. Assume that L ∈ C2(R2). Then, there exist c ∈ C(0, T )
and c̃ ∈ R such that, if x̄ ∈ X ∩C2([0, T ];RN ) is a minimizer of (4.5), then
it solves

∂

∂x
L(x̄k(t), ˙̄xk(t))−

d

dt

(
∂

∂v
L(x̄k(t), ˙̄xk(t))

)
= c(t)

and
∂

∂v
L(x̄k(T ), ˙̄xk(T )) + Ψ′(x̄k(T )) = c̃

for all t ∈ (0, T ) and for all k = 1, . . . , N .

Proof. Let y ∈ C∞([0, T ],RN ) be such that y(0) = 0 and 〈y(s)〉 = 0 for
every s ∈ [0, T ]. For ε ∈ R, we define i : R→ R as

i(ε) = 1
N

N∑
k=1

∫ T

0

(
L(x̄k+εyk, ˙̄xk+εẏk)+$·( ˙̄xk+εẏk)

)
ds+Ψ(x̄k(T )+εyk(T )).

Since 〈y〉 = 0 and x̄ ∈ X, we have

〈 ˙̄x + εẏ〉 = Q(s).
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12 A Price Model with Finitely Many Agents

Thus, we obtain

i(ε) = 1
N

N∑
k=1

[∫ T

0
L(x̄k + εyk, ˙̄xk + εẏk) ds+ Ψ(x̄k(T ) + εyk(T ))

]
+
∫ T

0
$·Qds.

We have that i ∈ C1(R) because L ∈ C2(R2). Thus, because x̄k is a mini-
mizer for all k = 1, . . . , N , we have i′(0) = 0; that is

1
N

N∑
k=1

[∫ T

0

(
∂

∂x
L(x̄k, ˙̄xk)yk + ∂

∂v
L(x̄k, ˙̄xk)ẏk

)
ds+ Ψ′(x̄k(T ))yk(T )

]
= 0.

Integrating by parts, we obtain

1
N

N∑
k=1

[ ∫ T

0

( ∂
∂x
L(x̄k, ˙̄xk)−

d

dt

( ∂
∂v
L(x̄k, ˙̄xk)

))
yk ds

+
( ∂
∂v
L(x̄k(T ), ˙̄xk(T )) + Ψ′(x̄k(T ))

)
yk(T )

]
= 0.

If we select y such that y(T ) = 0, by Lemma 4.4, we conclude that there
exists c ∈ C(0, T ) such that, for all k = 1, . . . , N , we have

∂

∂x
L(x̄k, ˙̄xk) + d

dt

( ∂
∂v
L(x̄k, ˙̄xk)

)
= c(t). (4.6)

Define f̃k(T ) by

f̃k(T ) = ∂

∂v
L(x̄k(T ), ˙̄xk(T )) + Ψ′(x̄k(T )).

For all t ∈ [0, T ], set F̃ (t) := (f̃1(T ), ..., f̃n(T )). Since f̃k is constant, apply-
ing Lemma 4.4 for F̃ , there exists c̃ ∈ R such that we have f̃k(t) = f̃k(T ) = c̃,
from which we conclude that

∂

∂v
L(x̄k(T ), ˙̄xk(T )) + Ψ′(x̄k(T )) = c̃.

Let c and c̃ be as in the statement of the preceding proposition, and let
$ ∈ C1(0, T ) solve

$̇(t) = −c(t), $(T ) = −c̃.

Then, the necessary optimality conditions for xk become

∂

∂x
L(x̄k, ˙̄xk) + d

dt

( ∂
∂v
L(x̄k, ˙̄xk) +$

)
= 0
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and
∂

∂v
L(x̄k(T ), ˙̄xk(T )) +$(T ) + Ψ′(x̄k(T )) = 0

for all k = 1, ..., N .

The preceding equations are the optimality conditions for the functional

1
N

N∑
i=1

∫ T

0
L(xi(s), ẋi(s))ds+ Ψ(xi(T )) +

∫ T

0
$(s)

(
1
N

N∑
i=1

ẋi(s)−Q(s)
)
ds,

and the solution constructed in Proposition 4.5 satisfy the constraint (4.2).
Thus, we can regard $ as a Lagrange multiplier for (4.2).
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