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Resumo: A simetria de espelho conjectura uma correspondência profunda
entre a geometria simpléctica de um espaço e a geometria algébrica do seu
“espelho”. Existem várias versões desta correspondência, desde a igualdade
de alguns invariantes numéricos, inicialmente conjecturada por físicos, a
versões categóricas propostas por Kontsevich.

Este artigo revê algumas destas versões e ilustra-las num exemplo rela-
tivamente simples: uma esfera com três orbi-pontos (no lado simpléctico).
Explicamos como construir o espaço “espelho”, enunciamos as conjecturas
de espelho e descrevemos uma abordagem à sua prova.

Abstract Mirror symmetry predicts a deep correspondence between the
symplectic geometry of a space and the algebraic geometry of its “mirror”.
There are different versions of this correspondence, from the equality of some
numerical invariants, first predicted by physicists, to categorical versions
proposed by Kontsevich.

This paper reviews some of these versions and illustrates them on a
relatively simple example: a sphere with three orbifold points (on the sym-
plectic side). We explain how to construct the “mirror” space, state the
mirror predictions and describe an approach to prove them.

palavras-chave: Simetria de espelho; categoria de Fukaya; orbi-variedade.

keywords: Mirror symmetry; Fukaya category; orbifold.

1 Introduction

1.1 A brief history

Mirror symmetry is a set of predictions from string theory relating the
symplectic and complex geometry of certain pairs of Calabi-Yau manifolds.
Superstring theory proposes that the space-time is (locally) of the form
R1,3 × X, where R1,3 is the usual Minkowski space (that we see around
us) and X is a very (very) small Calabi-Yau three-fold. Meaning X is a
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16 Open and Closed Mirror Symmetry

Kähler manifold (therefore both complex and symplectic) of complex di-
mension three with a Ricci-flat metric. While looking for the X that would
help describe our universe, string theorists produced large lists of Calabi-
Yau manifolds and found a surprising symmetry. There are many pairs of
Calabi-Yau manifolds X and X̌ which exchange Hodge numbers, that is
h1,1(X) = h1,2(X̌) and h1,2(X) = h1,1(X̌).

The most famous example of this is the quintic threefold and its mirror.
Let Xa be the solution set in CP4 of the equation

Xa = {z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − az0z1z2z3z4 = 0} ⊂ CP4,

for some a ∈ C. For most values of a this is a smooth Calabi-Yau manifold.
The group (Z/5)3 acts on Xa and the quotient Xa/G is singular but there
is a resolution X̌a → Xa/G, which is smooth and the mirror partner of Xa.

Mirror symmetry predictions are much deeper than the equality of Hodge
numbers. Candelas, de la Ossa, Green and Parkes [6] predicted the number
of rational curves of degree d in Xa could be obtained from certain period
integrals of the family X̌a. This was remarkable since only the cases with
d ≤ 3 were known. This led to the development of Gromov-Witten in-
variants, a way to define precisely the counting of rational curves. Using
Gromov-Witten invariants Givental [15] proved the predictions for the quin-
tic. Both the (genus zero) Gromov-Witten invariants and the period in-
tegrals can be organized into Frobenius manifolds. Mirror symmetry then
predicts an isomorphism between these two Frobenius manifolds. This is
known as closed-string mirror symmetry.

In [18], Kontsevich proposed a new version of mirror symmetry at a
categorical level. To a Calabi-Yau manifold X one can associate two cate-
gories: the Fukaya category Fuk(X) and the category of coherent sheaves
Coh(X). The Fukaya category is an A∞-category, which depends only on
the symplectic structure of X, and whose objects are, roughly speaking, the
Lagrangians submanifolds of X. The category of coherent sheaves Coh(X)
is an abelian category (which can be promoted to an A∞-category) which
depends only on the complex structure of X. Kontsevich proposed that mir-
ror symmetry exchanges these categories, that is, the derived categories of
Fuk(X) and Coh(X̌) are equivalent. This is usually called the homological
mirror symmetry conjecture, or using physics terminology open-string mir-
ror symmetry. This has been verified in several cases, see [23] for example.

Starting with the works of Givental and Batyrev it was suggested that
mirror symmetry is not restricted to Calabi-Yau manifolds. It was conjec-
tured that when X is Fano [16] or when X is of general type [17], there is
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also a mirror partner. In this case, the mirror is not simply a space, it’s a
non-compact manifold X̌ together with a holomorphic functionW : X̌ → C,
which is called a Landau-Ginzburg model. For Landau-Ginzburg models one
has to modify the mirror symmetry conjectures accordingly, for example re-
placing Coh(X̌) with the category of matrix factorizations MF (X̌,W ).

In 1996, Strominger-Yau-Zaslow [24] proposed a geometric explanation
for mirror symmetry. Mirror (Calabi-Yau) pairs X and X̌ should admit
dual, special Lagrangian torus fibrations over the same base B. This is
known as the SYZ conjecture. A proof of the SYZ conjecture seems to be
out of reach and in fact these fibrations might only exist after deforming
X. Nevertheless this conjecture has been very influential and inspired many
important insights into mirror symmetry.

1.2 Family Floer theory

Mirror symmetry and the SYZ conjecture become more manageable if one
takes a less symmetric approach. That is, if we consider the Calabi-Yau
manifold X just as a symplectic manifold and construct a variety (or rigid
analytic space) X̌ over the (non-archimedian) Novikov field:

Λ :=
{ ∞∑
k=0

akT
λk |ak ∈ C, λk ∈ R, λk →∞

}
.

Then one can try to prove half of mirror symmetry, that is, to relate the
symplectic geometry of X (Gromov-Witten invariants or Fukaya category)
to the algebraic/analytic geometry of X̌.

In this approach, proposed by Fukaya [11] (see also [19]), one starts with
a (possibly singular) SYZ fibration or, more generally, some “interesting”
family of Lagrangians in X and constructs X̌ as the moduli space of objects
in the Fukaya category supported on this family of Lagrangians. The fact
that Fuk(X) is a linear category over Λ is then the reason why X̌ is not a
complex manifold. This approach comes with an additional benefit: using
family Floer cohomology (introduced by Fukaya), one has a canonically
defined functor from Fuk(X) to the category of coherent sheaves (or matrix
factorizations) on X̌. This construction has been carried out for the case of
smooth fibrations by Abouzaid [2].

In this note, we will illustrate these ideas in an example, first studied by
Cho-Hong-Lau [9], which is as simple as possible: the family of Lagrangians
consists of a single Lagrangian. The mirror will then be a Landau-Ginzburg
model (X̌,W ) where X̌ is an affine space.
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18 Open and Closed Mirror Symmetry

2 Orbifold spheres

2.1 Our example

LetX := P1
a,b,c be an orbifold sphere with three orbifolds points with isotropy

groups Z/a, Z/b, Z/c, where a, b, c ≥ 2. The orbifold Euler characteristic is
given by χ

(
P1
a,b,c

)
= 1

a + 1
b + 1

c −1. The orbifold P1
a,b,c can be constructed as

a global quotient of a Riemann surface Σ by a finite group. If χ
(
P1
a,b,c

)
> 0

then Σ is a sphere, if χ
(
P1
a,b,c

)
= 0 then Σ is an elliptic curve and in the

other cases Σ is a surface of genus ≥ 2. For example, P1
3,3,3 = E/(Z/3),

where E is an elliptic curve with a Z/3 symmetry.
We now introduce our Lagrangian: L which we call the Seidel Lagran-

gian, since it first appeared in [22]. This is an immersed circle S1 # P1
a,b,c

with three transversal (double) self-intersections (see Figure 1). The three
immersed points lie in the equator, determined by the three orbifold points.
Moreover we assume that the image of L is invariant under reflection on
the equator. The image of L and the equator divide the sphere into eight
regions: two triangles and six bigons. We take L and scale the symplectic
form so that each of these regions has area 1.

Figura 1: The orbifold sphere

2.2 The Fukaya algebra

We will start with a sketch of the construction of the Fukaya algebra of
a Lagrangian submanifold. In fact, there is a family of Fukaya algebras
parametrized by H∗orb(X) the orbifold cohomology of X. The orbifold coho-
mology is the singular cohomology of IX the inertia orbifold of X. In our
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example, we have

IX = S2
a−1⋃
i=1

pt
b−1⋃
j=1

pt
c−1⋃
k=1

pt,

that is a copy of X (which as a topological space is a sphere) and one point
for each non-trivial element in the isotropy groups of the three orbifold points
in X. We define H∗orb(X) := H∗(IX,Λ). The Novikov field Λ has a real
valuation ν : Λ → R, given by the lowest power of T . Therefore H∗orb(X)
inherits a valuation ν. We fix τ ∈ H∗orb(X) with ν(τ) > 0 and define the
Fukaya algebra Fτ (L).

Consider the fiber product L×X L, which in our example is

L×X L = S1 ⋃
p=X,Y,Z

(p ∪ p−),

where X,Y, Z are the self-intersections of L. We define Fτ (L) := Ω∗(L ×X
L)⊗̂Λ, where ⊗̂ is the completed tensor product, with respect to the va-
luation induced by ν. More concretely, Fτ (L) consists of the de Rham
complex of a circle plus two generators (one even, one odd) for each of the
self-intersection points. We will now equip this space with a sequence of
operations mk of arity k ≥ 0.

Let Σ be a orbifold which is topologically the closed unit disk in C and
whose orbifold points lie in the interior. We take k + 1 cyclically orde-
red marked points z0, . . . , zk on the boundary of Σ and m marked points
w1, . . . , wm in the interior of Σ. We assume that each orbifold point is one
of the wj . Then we consider holomorphic maps u : (Σ, ∂Σ) → (X,L), with
boundary on L, in a fixed relative homology class β ∈ H2(X,L). We put
a few more technical conditions on these maps, which in particular imply:
1) the restriction of u to the boundary can only switch branches at self-
intersections of L at one of the zi’s; 2) orbifold points in Σ are mapped to
orbifold points in X, (see [8] for details). Then we consider the space of
tuples (Σ, z0, . . . , zk, w1, . . . , wm, u) modulo complex automorphisms of the
domain. This space can be compactified by, roughly speaking, allowing the
domain of the map Σ to be a nodal disk, meaning a configuration of seve-
ral disks and spheres attached at nodal points. For details see [13] for the
manifold case and [7, 8] for the orbifold case. This is called the stable map
compactification and we denote the resulting space by Mk+1,m(β). It fol-
lows from the work of Fukaya-Oh-Ohta-Ono [13] that the spaceMk+1,m(β)
is a compact Kuranishi space with boundary and corners. The definition of
Kuranishi space is rather involved, we will use it as a black box to mean a
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space where we can pull-back and push-forward differential forms and the
Stokes theorem works, in the same way as for manifolds.

It follows from the definition that these spaces have evaluation maps

IX
evwj←−−−Mk+1,m(β)

evzi−−→ L×X L.

For example, evzi(Σ, z0, . . . , zk, w1, . . . , wm, u) = u(zi). We are now ready
to define the A∞ maps mτ

k : Fτ (L)⊗k → Fτ (L) by the formula

mτ
k(h1, . . . , hk) =

∑
β,m≥0

Tω(β)

m! (evz0)∗(ev∗w1τ ∧ . . . ∧ev
∗
wm
τ ∧ ev∗z1h1

∧ . . . ∧ ev∗zk
hk).

The following theorem follows from the work of Fukaya–Oh–Ohta–Ono [12,
13] and further generalizations by Akaho–Joyce [3] and Cho–Poddar [8].

Theorem 2.1 F(L) with the operations {mτ
k}k≥0 is a filtered A∞-algebra.

What is a filtered A∞-algebra? Let’s define this.

Definition 2.2 A filtered A∞-algebra is a Z/2-graded Λ-vector space A of
the form A = A0⊗̂Λ, where A0 is a complex vector space. There are maps
mk : A⊗k → A of degree k (mod 2), for each k ≥ 0, satisfying∑

0≤j≤n
0≤i≤n−j

(−1)|a1|+...+|ai|+imn−j+1(a1, . . . ,mj(ai+1, . . . , ai+j), . . . , an) = 0.

Moreover ν(mk(a1, . . . , ak)) ≥
∑
i ν(ai) and ν(m0) > 0. We will also require

that the A∞-algebra is unital: there is an even element 1 satisfying:

m2(1, a) = (−1)|a|m2(a,1) = a, ,mk(. . . ,1, . . .) = 0, k 6= 2.

If we stare at the A∞ equation above for n = 1, 2, 3, we can easily see
that when m0 is a multiple of the unit 1, then m1 is a differential and so we
can consider the cohomology of the A∞-algebra. Moreover m2 then defines
an associative product on the cohomology. In general, filtered A∞-algebras
are rather complicated objects, so when we have to work with one we try to
deform it (when possible) to another where this condition holds. In order
to do that we need to solve the Maurer-Cartan equation.

Definition 2.3 A Maurer-Cartan element in A is an odd element b satis-
fying

∑
k≥0 mk(b, . . . , b) = λ1, for some λ ∈ Λ, called the potential of b.
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Note that the sum on the left hand side of the equation is in general an
infinite sum, so we need to ensure convergence. The safest way to do this
is to require that ν(b) > 0, but as we will see in our example, this can
sometimes be relaxed. Given a Maurer-Cartan element we can define a new
A∞ structure on A by setting

mb
k(a1, . . . , ak) :=

∑
i0,...,ik

mk+i0+...+ik(b, . . . , b, a1, b, . . . , b, ak, b, . . . , b).

By construction mb
0 = λ1. Maurer-Cartan elements for the Fukaya algebra

Fτ (L) of a Lagrangian L are called bounding cochains. Objects in the
Fukaya category Fuk(X, τ) := ⊕λFukλ(X, τ) are pairs (L, b) where L is a
Lagrangian and b is a Maurer-Cartan element in Fτ (L) with potential λ.
The endomorphism space of the object (L, b) is then H∗(Fτ (L),mτ,b

1 ).

3 The mirror

3.1 Potential

Like we promised in the introduction, we will construct the mirror to X =
P1
a,b,c as the moduli space of objects in the Fukaya category of X supported

on the Seidel Lagrangian L. More precisely we will construct a mirror for the
pair (P1

a,b,c, τ), where τ ∈ H∗orb(X). As explained in the previous section, the
moduli space of these objects is exactly the space of Maurer-Cartan elements
in Fτ (L). In [4] we prove the following proposition.

Proposition 3.1 Let X,Y, Z be the odd generators of Fτ (L) corresponding
to the three self-intersections. All elements of the form b = T−3(xX + yY +
zZ), for elements x, y, z ∈ Λ of non-negative valuation, are Maurer-Cartan
elements with potential Wτ (x, y, z).

At this point Wτ (x, y, z) is just a formal series on x, y, z, but in fact it
is convergent in the following (non-archimedian) sense.

Definition 3.2 A convergent power series is an expression of the form∑
i,j,k∈Z≥0

ci,j,kx
iyjzk, with ci,j,k ∈ Λ and limi+j+k→∞ ν(ci,j,k) = +∞. The

set of all convergent power series naturally forms a ring which we denote by
Λ〈〈x, y, z〉〉.

Let us explain the terminology here. We can define a non-archimedian
norm on Λ by setting |v| := e−ν(v). Then one can see that Λ〈〈x, y, z〉〉 is
exactly the ring of regular functions on the unit polydisk, see [5].
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Proposition 3.3 ([4]) Wτ is a convergent power series. Moreover

Wτ = T−8xyz + xa + yb + zc + positive valuation in T.

It turns out that when χ(P1
a,b,c) ≥ 0,Wτ is actually a polynomial. An explicit

description of Wτ for arbitrary τ seems out of reach, but for our purposes
knowing the leading order term in the above proposition is enough.

We are finally ready to define the mirror partner to P1
a,b,c.

Definition 3.4 The mirror to (P1
a,b,c, τ) is the Landau-Ginzburg model

X̌ = B = {(x, y, z), |x|, |y|, |z| ≤ 1} ⊆ Λ3, Wτ : B → Λ.

One might ask why this is the correct mirror. Even assuming our phi-
losophy that the mirror should be given as the moduli of objects in the
Fukaya category supported in a certain family of Lagrangians in X, why
is the Seidel Lagrangian the correct family? And even assuming that, how
do we know we have “enough” bounding cochains? I don’t believe there is
a completely satisfactory answer to these questions. The short answer is
that it works, meaning the closed-string mirror symmetry conjecture, that
we will state in the next subsection, holds for this pair. Once we have es-
tablished closed mirror symmetry, Abouzaid’s generation criterion [1] tells
us that, loosely speaking, our family of objects of the Fukaya category is
“large” enough and therefore we have constructed the correct mirror and
should expect open mirror symmetry to also hold for this pair.

3.2 Closed mirror symmetry

The closed mirror symmetry conjecture is an isomorphism of Frobenius ma-
nifolds. We will not define Frobenius manifold (see [20] for the complete
definition), instead we will work at a more elementary level and consider it
as a family of commutative algebras with a compatible inner product. In
our situation, the families (on both sides of the mirror) are parameterized
by τ ∈ H∗orb(X).

On the symplectic side, the Frobenius manifold is the orbifold quantum
cohomology, defined by Chen-Ruan [7]. The construction is similar to the
construction of the Fukaya algebra. For each homology class α ∈ H2(X),
one constructsMsph

`+3(α) the moduli space of stable holomorphic orbi-spheres
in X with ` + 3 marked points w1, . . . , w`+3. Then we fix τ as before and
define a product •τ on H∗(IX,Λ) as follows
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A •τ B :=
∑
α,`≥0

Tω(α)

`! (evw1)∗(ev∗w2A ∧ ev
∗
w3B ∧ ev

∗
w4τ ∧ . . . ∧ ev

∗
w`+3τ).

Theorem 3.5 ([7]) The map •τ defines a commutative, associative pro-
duct on H∗orb(X,Λ), compatible with the Poincaré pairing. We denote it by
QH∗orb(X, •τ ).

On the mirror, things are somewhat easier to define.

Definition 3.6 The Jacobian of Wτ is the ring obtained by taking the quo-
tient of Λ〈〈x, y, z〉〉 by the ideal generated by the partial derivatives of Wτ .

Jac(Wτ ) = Λ〈〈x, y, z〉〉
< ∂xWτ , ∂yWτ , ∂zWτ >

.

In order to define an inner product in Jac(Wτ ), one has to fix a volume
form and then take the residue pairing. This is related to the choice of a
primitive form as defined by Saito [21].

There is a natural map KSτ : QH∗(X, •τ ) → Jac(Wτ ), called the
Kodaira-Spencer map. We fix a basis {ei}i of H∗(IX,Λ) and write τ =∑
i τiei. We define the map by the formula KSτ (ei) = ∂

∂τi
Wτ .

This map was originally constructed by Fukaya–Oh–Ohta–Ono [14] for
toric manifolds. They show that this is a well-defined, unital ring map.
In fact, this is expected to be the case for a very wide class of symplectic
manifolds/orbifolds. In [4], we extend their construction to our example and
prove the following.

Theorem 3.7 The Kodaira-Spencer KSτ : QH∗(X, •τ ) → Jac(Wτ ) is an
unital, ring isomorphism.

This theorem is not the complete closed mirror symmetry statement.
The full-fledged statement requires an identification of the Euler vector fi-
elds, which we prove in [4]:

KSτ
(
c1(X) +

∑
i

(1− deg ei
2 )τiei

)
= [Wτ ].

Moreover the Kodaira-Spencer should intertwine the Poincaré pairing with
the residue pairing on Jac(Wτ ) determined by some volume form ωτ . A
complete description of ωτ is still work in progress by Cho, Hong, Lau and
myself.
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3.3 Open mirror symmetry

The open (or homological) mirror symmetry conjecture in this example as-
serts that the derived categories of Fuk(X, τ) and MF (Wτ ) the category
of matrix factorizations of Wτ are equivalent. The matrix factorizations
category is a dg-category, which captures some information about the sin-
gularities of Wτ . We refer the reader to [10] for the definition.

One of the main advantages of this formalism, is that L determines, for
each τ , an A∞-functorML : Fuk(X, τ)→MF (Wτ ). This is a version of the
Yoneda embedding, see [9] for a full description. We expect the following to
hold.
Conjecture 3.8 The functorML induces an equivalence

DπFukλ(X, τ)→ DπMF (Wτ ),

where Dπ stands for the split-closed derived category.
This conjecture was proved in some cases in [9] when τ = 0 and is work in
progress by Cho, Hong, Lau and myself. But we are not that far off from
proving this. First note that the closed mirror symmetry statement that we
saw in the previous subsection implies that Jac(Wτ ) is finite dimensional,
which implies that the critical points ofWτ are isolated. It then follows from
Dyckerhoff [10] that MF (Wτ ) has finitely many generators P η, one for each
critical point η ∈ Crit(Wτ ). We prove in [4] that each η also determines a
bounding cochain bη for L. Therefore it is not unreasonable to expect that
ML sends the object (L, bη) to P η and it is fully faithful (on cohomology)
when restricted to these objects.

Assuming we can prove this, the only thing left to show is that the
objects (L, bη) split-generate the Fukaya category. This should follow from
a suitable generalization of Abouzaid’s generation criterion [1]. Let’s explain
how this criterion works. Let A be the subcategory of Fuk(X, τ) generated
by the (L, bη). There is a ring map

CO : HH∗(A)→ QH∗(X, •τ ),

whose domain is the Hochschild cohomology of A. The generation crite-
rion asserts that if the map CO is injective then A is derived equivalent to
Fuk(X, τ). The reason this should hold in our example is the following.
We expect the Hochschild cohomology HH∗(A) to be isomorphic to the
Jacobian Jac(Wτ ), and under this isomorphism, the map CO should agree
with the Kodaira-Spencer map. Therefore the condition needed for the ge-
neration criterion follows from the fact that KS is an isomorphism, in other
words, it follows from closed mirror symmetry.
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