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Resumo: O sistema de Navier–Stokes–Maxwell incompressível é um modelo
clássico que descreve a evolução de um plasma. Embora se saiba que existem
pequenas soluções suaves para esse sistema (no espírito de Fujita–Kato), a
existência de grandes soluções fracas (no espírito de Leray) no espaço de en-
ergia permanece desconhecida. Esse defeito pode ser atribuído à dificuldade
de acoplar as equações de Navier–Stokes a um sistema hiperbólico. Nós de-
screvemos aqui resultados recentes, com o objetivo de criar soluções fracas
para os sistemas de Navier–Stokes–Maxwell em grandes espaços funcionais.
Em particular, explicamos como, para quaisquer dados iniciais com ener-
gia finita, uma condição de pequenez apenas no campo electromagnético é
suficiente para garantir a existência de soluções globais.

Abstract: The incompressible Navier–Stokes–Maxwell system is a classical
model describing the evolution of a plasma. Although small smooth solu-
tions to this system (in the spirit of Fujita–Kato) are known to exist, the
existence of large weak solutions (in the spirit of Leray) in the energy space
remains unknown. This defect can be attributed to the difficulty of coupling
the Navier–Stokes equations with a hyperbolic system. We describe here re-
cent results aiming at building weak solutions to Navier–Stokes–Maxwell
systems in large functional spaces. In particular, we explain how, for any
initial data with finite energy, a smallness condition on the electromagnetic
field alone is sufficient to grant the existence of global solutions.
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1 Introduction
Consider a gas made up of charged particles interacting microscopically
through elastic collisions. At the macroscopic level, this gas behaves as
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a conducting fluid that will interact with any existing electromagnetic field.
Moreover, the motion of the charged particles will also produce an electro-
magnetic field, in accordance with the laws of classical electrodynamics.

The magnetohydrodynamic evolution of the gas will therefore be condi-
tioned by the complex interaction of an electrically conducting moving fluid
with a self-induced electromagnetic force.

Such fluids are typically found in the core of nuclear fusion reactors in
the form of plasmas, which are ionized gases. Another typical example of
an electrically conducting fluid consists in liquid metals, such as the liquid
iron found in the core of the earth, which is responsible for the geodynamo
effect.

We give now an account of some recent mathematical developments,
mainly from [1], concerning the study of plasmas (or conducting fluids).
We make here the somewhat arbitrary choice of focusing exclusively on
viscous incompressible regimes, because such physical characteristics lead
to interesting mathematical properties. Of course, there are numerous other
relevant regimes, but we will not discuss them.

We refer to [4] or [5] for a introduction to magnetohydrodynamics from
a physical viewpoint.

2 The Navier–Stokes–Maxwell systems
The behavior of a viscous incompressible fluid is described by the Navier–
Stokes equations

∂tu+ u · ∇u− µ∆u = −∇p+ F, div u = 0, (1)

where µ > 0 is the viscosity, t ∈ R+ and x ∈ R3 are the time and space
variables, u(t, x) stands for the velocity field of the (incompressible) fluid,
F (t, x) is a given force field, and the scalar function p(t, x) is the pressure
and is also an unknown. Note that, for convenience, we ignore the effect of
boundaries on the fluid by assuming the domain to be the whole space.

The validity of this model is well established at both physical and math-
ematical levels. We refer to [8] for a recent mathematical treatise on the
incompressible Navier–Stokes equations.

In a conducting fluid, it is also important to take into account the influ-
ence of the Lorentz force produced by the charged particles. The relevant
macroscopic field F is therefore the Lorentz force

F = nE + j ×B, (2)
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where E(t, x) and B(t, x) are the electric and magnetic fields respectively,
n(t, x) is the electric charge density and j(t, x) is the electric current.

The electromagnetic field is determined classically through Maxwell’s
equations {

∂tE −∇×B = −j, divE = n,

∂tB +∇× E = 0, divB = 0,
(3)

or its quasi-static approximation{
∇×B = j, divE = n,

∂tB +∇× E = 0, divB = 0.
(4)

Generally speaking, the coupling given by combining (1), (2) and (3) (or
(4)) provides now an incompressible Navier–Stokes–Maxwell system. Note,
however, that such a system is not closed yet, as it contains more unknowns
than equations. In fact, there remains to specify how the density n and the
current j are generated by the fluid. This is performed by incorporating the
so-called Ohm’s law into the system.

It turns out that there is more than one way of closing the Navier–
Stokes–Maxwell system, as there are several different Ohm’s laws that are
appropriate. We discuss now some of the available options.

2.1 Coupling I

The quasi-static system (4) is an approximation of (3) that is relevant in
many physical regimes. Indeed, in many practical situations, it is physi-
cally reasonable to neglect the so-called displacement current density ∂tE in
Maxwell’s equations (see [5]).

Furthermore, observe that the continuity equation

∂tn+ div j = 0 (5)

is expected to hold universally, for n and j respectively represent the density
and the flux of the same particles. Since j is necessarily solenoidal (i.e.
div j = 0) in the quasi-static approximation due to Ampère’s law j = ∇×B,
one deduces that n should be constant in time. The density n is therefore
fixed by the initial data and we might as well assume n = 0, for simplicity.

Now, recall that, in classical electrostatics, Ohm’s law simply states that
E and j are colinear. Here, accounting for the motion of the fluid and the
effect of Galilean transformations in Faraday’s equation ∂tB +∇× E = 0,
Ohm’s law becomes (see [5])

j = σ(E + u×B), (6)
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where the electrical conductivity σ > 0 is assumed to be constant throughout
the fluid.

All in all, combining (1), (2), (4) with (6), setting n = 0, and eliminating
j and E, leads to the magnetohydrodynamic system

∂tu+ u · ∇u− µ∆u = −∇p+ (∇×B)×B, div u = 0,

∂tB −
1
σ

∆B = ∇× (u×B), divB = 0.

This system couples the Navier–Stokes system with a parabolic equation
on the magnetic field B and has been studied extensively. As far as the
existence of global weak solutions is concerned, it does not present with any
additional difficulty when compared to the classical incompressible Navier–
Stokes system.

Indeed, one readily computes the formal energy inequality, for any t ≥ 0
and any initial data (u0, B0),

1
2
(
‖u‖2L2 + ‖B‖2L2

)
(t) +

∫ t

0

(
µ ‖∇u‖2L2 + 1

σ
‖∇B‖2L2

)
(s)ds

≤ 1
2
(
‖u0‖2L2 + ‖B0‖2L2

)
.

(7)

This energy inequality yields strong dissipative properties on both u and B.
In particular, the ensuing a priori bounds are suitable for the application
of Leray’s method of construction of global weak solutions (see [8]). More
precisely, it is possible to show that, for any suitable initial data (u0, B0) ∈
L2(R3), there exists a global weak solution

(u,B) ∈ L∞(R+, L2(R3)) ∩ L2(R+, Ḣ1(R3)).

The uniqueness of such solutions remains unknown, though.

2.2 Coupling II

The reduced form of Maxwell’s equations (4) may not be appropriate for
every physical setting, and there may be situations where one is led to
consider the evolution of the electromagnetic field (E,B) governed by the
full set of Maxwell’s equations (3). In this case, one may combine (1), (2)
and (6), with (3), which yields the Navier–Stokes–Maxwell system

∂tu+ u · ∇u− µ∆u = −∇p+ j ×B, div u = 0,
∂tE −∇×B = −j, j = σ (E + u×B) ,
∂tB +∇× E = 0, divB = 0,

(8)
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where we have neglected the contribution of the Coulombian force nE in
the Lorentz force for physical reasons (see [5]). This system couples now the
Navier–Stokes equations with a hyperbolic wave system, which significantly
changes the nature of solutions.

More precisely, formally computing the corresponding energy inequality,
one finds that, for any initial data (u0, E0, B0),

1
2
(
‖u‖2L2 + ‖E‖2L2 + ‖B‖2L2

)
(t) +

∫ t

0

(
µ ‖∇u‖2L2 + 1

σ
‖j‖2L2

)
(s)ds

≤ 1
2
(
‖u0‖2L2 + ‖E0‖2L2 + ‖B0‖2L2

)
.

(9)

When compared to (7), this energy inequality only provides a rather weak
control on the solutions, for there is no control on the regularity of the
magnetic field.

This lack of compactness prevents us from applying Leray’s method of
construction of weak solutions, because it is impossible to show the weak
stability of the non-linear term j × B solely based on the a priori bounds
given by the energy inequality. As a matter of fact, it is not yet known
whether, for any suitable initial data (u0, E0, B0) ∈ L2(R3), there exists a
global weak solution to the Navier–Stokes–Maxwell system (8).

It should be emphasized now that, even though the above system (8)
elegantly combines the Navier–Stokes equations with the full Maxwell sys-
tem, it contains a disturbing physical inconsistency. Indeed, as previously
mentioned, we have neglected the term nE in (2), which suggests that n
should be zero. However, in this model, the electric current j is in general
not solenoidal, which violates the continuity equation (5).

This inconsistency will be resolved in the coming couplings (10) and (11)
below, which achieve to combine the Navier–Stokes equations with Maxwell’s
equations without breaking the continuity equation (5).

2.3 Coupling III

A systematic and rigorous study of hydrodynamic limits of Vlasov–Maxwell–
Boltzmann systems, in a viscous incompressible regime, has been conducted
in [2], where the following incompressible Navier–Stokes–Maxwell system
was derived:
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∂tu+ u · ∇u− µ∆u = −∇p+ j ×B, div u = 0,
∂tE −∇×B = −j, divB = 0,
∂tB +∇× E = 0, divE = 0,
j = σ (−∇p̄+ E + u×B) , div j = 0,

(10)

where the electromagnetic pressure p̄(t, x) is a new unknown. Observe that
the introduction of the pressure p̄ allows us to add a solenoidal condition on
both E and j to the system. As a result, the fluid is neutral n = 0 and the
continuity equation (5) holds.

As before, this system combines the incompressible Navier–Stokes equa-
tions with a hyperbolic system. One easily finds that solutions of (10)
formally verify the same energy inequality (9), which fails to provide the
necessary compactness to apply Leray’s method of proof of existence of weak
solutions. Again, it is unfortunately not yet known whether, for any suitable
initial data (u0, E0, B0) ∈ L2(R3), there exists a global weak solution to the
Navier–Stokes–Maxwell system (10).

2.4 Coupling IV

Yet another incompressible Navier–Stokes–Maxwell system was derived in
[2]. This new model turns out to be the most complete of them all, since it
involves all electromagnetic variables (including a non-trivial charge density
n). It takes the following form:

∂tu+ u · ∇u− µ∆u = −∇p+ nE + j ×B, div u = 0,
∂tE −∇×B = −j, divB = 0,
∂tB +∇× E = 0, divE = n,

j − nu = σ (−∇n+ E + u×B) .

(11)

Here, again, it is to be noted that the continuity equation (5) holds true.
It is possible to show, at least formally, that solutions of the above system

satisfy the energy inequality, for any initial data (u0, E0, B0, n0),

1
2
(
‖u‖2L2 + ‖E‖2L2 + ‖B‖2L2 + ‖n‖2L2

)
(t)

+
∫ t

0

(
µ ‖∇u‖2L2 + 1

σ
‖j − nu‖2L2

)
(s)ds

≤ 1
2
(
‖u0‖2L2 + ‖E0‖2L2 + ‖B0‖2L2 + ‖n0‖2L2

)
.
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As previously, the ensuing a priori bounds fail to provide enough control to
apply Leray’s method of proof of existence of weak solutions. It is there-
fore not yet known whether, for any suitable initial data (u0, E0, B0, n0) ∈
L2(R3), there exists a global weak solution to the Navier–Stokes–Maxwell
system (11).

3 A global existence result
We believe that the system (8) captures the essential mathematical difficul-
ties related to the coupling of the Navier–Stokes equations with Maxwell’s
system. We therefore present below the main result from [1] on the existence
of weak solutions to the Navier–Stokes–Maxwell system (8).

It should be mentioned here, though, that the two-dimensional case has
been previously succesfully handled in [10] (some subtle questions remain
open; see also [1] and [6] for some two-dimensional results). We will therefore
focus now exclusively on the three-dimensional setting of (8).

The existence of three-dimensional global mild solutions to (8), for small
initial data, has also been previously addressed in [6] (and some previous
works), where it was shown that, for any sufficiently small initial data
(u0, B0, E0) ∈ Ḣ

1
2 (R3), there exists a global mild solution (u,E,B) ∈

C(R+, Ḣ
1
2 ) to (8) (uniqueness of solutions is also available in this setting).

As for weak solutions, the following theorem from [1] provides the exis-
tence of global solutions to (8), for any initial data (u0, B0, E0) ∈ L2(R3),
provided the high frequencies of the electromagnetic field are controlled in
some suitable norm.

Theorem 1 ([1]). There is a constant C∗ > 0 such that, if the initial data
(u0, E0, B0) ∈ L2 × (H

1
2 )2, with div u0 = divB0 = 0, satisfies

‖(E0, B0)‖
Ḣ

1
2
C∗e

C∗‖(u0,E0,B0)‖2
L2 ≤ 1 ,

then there is a global weak solution to (8) satisfying the energy inequality
(9).

The strategy of proof of this result follows the usual procedure of ap-
proximating (8) with a regularized system, in order to justify all formal a
priori bounds, and then passing to the limit by showing the weak stability
of the system.

As previously explained, the a priori bounds provided by the energy
inequality (9) are not enough to deduce the weak stability of the non-linear
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term j ×B. However, in Theorem 1, the hyperbolic structure of Maxwell’s
equations is used to propagate the bound on the initial electromagnetic
field in Ḣ

1
2 . In fact, it is shown therein that the electromagnetic field is

uniformly bounded in L∞(R+, Ḣ
1
2 ), which is then sufficient to establish the

weak stability of j ×B.
All relevant a priori bounds on (8) are obtained through non-linear en-

ergy estimates performed in Besov spaces. Even though the general strategy
remains rather standard, these estimates are complex and sometimes tech-
nical. They rely heavily on a precise use of paraproduct estimates, a careful
analysis of the damped wave flow produced by Maxwell’s system (3) and,
most importantly, on crucial endpoint parabolic estimates to control the
Stokes flow.

These endpoint parabolic estimates provide a new fundamental tool for
the analysis of partial differential equations, particularly for models from
fluid dynamics. We are therefore going to give a self-contained account of
the main ideas behind such estimates in the next section.

We refer to [1] for the full justification of the above theorem.

4 Endpoint parabolic estimates
We show now how to derive the crucial parabolic estimates that are used in
the proof of Theorem 1. Such estimates hold in any dimension d ≥ 1 and
show that solutions to the heat equation can gain up to two derivatives with
respect to the source terms in Besov spaces, without resorting to the usual
Chemin–Lerner spaces (see [1] for a definition of such spaces). In fact, we
believe that this is an important principle that could be useful beyond its
application to the proof of Theorem 1.

We introduce now a standard dyadic decomposition

Id =
∑
k∈Z

∆k,

where the Fourier multiplier operators ∆k act on a function by localizing its
frequencies ξ to a domain {2k−1 ≤ |ξ| ≤ 2k+1}.

Recall that the homogeneous Besov space Ḃs
p,q(Rd), for any s ∈ R and

1 ≤ p, q ≤ ∞, is then defined by the norm

‖f‖Ḃsp,q(Rd) =

 ∞∑
k=−∞

2ksq ‖∆kf‖qLp(Rd)

 1
q

,
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if q <∞, and with the obvious modifications in case q =∞. We refer to [1]
for a precise definition of these spaces using the same notation.

We consider solutions of the forced heat equation

∂tw −∆w = f, w|t=0 = 0. (12)

Such solutions can be expressed by the Duhamel representation formula

w(t) =
∫ t

0
e(t−τ)∆f(τ)dτ. (13)

Our first result provides a sharp estimate showing how the heat flow
provides a gain of regularity of at most (but not equal to) two derivatives.

Lemma 2. Let σ ∈ R, 1 < r < m < ∞ and p ∈ [1,∞]. If f belongs to
Lr([0, T ], Ḃσ+ 2

r
p,∞ ), then the solution of the heat equation (12) satisfies

‖w‖
Lm([0,T ],Ḃσ+2+ 2

m
p,1 )

. ‖f‖
Lr([0,T ],Ḃσ+ 2

r
p,∞ )

.

Proof. First, observe that, employing the representation formula (13), there
is an independent constant C > 0 such that

‖∆kw(t)‖Lp .
∫ t

0
e−C(t−τ)22k‖∆kf(τ)‖Lpdτ. (14)

In particular, we obtain that

‖w(t)‖
Ḃ
σ+2+ 2

m
p,1

.
∫ t

0

∑
k∈Z

e−C(t−τ)22k2k(σ+2+ 2
m

)‖∆kf(τ)‖Lpdτ

.
∫ T

0
h(t− τ)‖f(τ)‖

Ḃ
σ+ 2

r
p,∞

dτ,

where we denoted

h(λ) =
∑
k∈Z

1{λ>0}e
−Cλ22k22k(1+ 1

m
− 1
r

),

which is a well-defined convergent series whenever 1 + 1
m −

1
r > 0.

Next, for any λ > 0, choosing j ∈ Z so that 22j ≤ λ < 22(j+1), observe
that

h(λ) ≤
∑
k∈Z

e−C22(j+k)22k(1+ 1
m
− 1
r

)

= 2−2j(1+ 1
m
− 1
r

) ∑
k∈Z

e−C22k22k(1+ 1
m
− 1
r

) . λ−(1+ 1
m
− 1
r

).
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It therefore follows that, since 0 < 1 + 1
m −

1
r < 1 and 1 < m, r < ∞, by

virtue of the Hardy–Littlewood–Sobolev inequality,

‖w(t)‖
LmḂ

σ+2+ 2
m

p,1

.

∥∥∥∥∥
∫ T

0
|t− τ |−(1+ 1

m
− 1
r

)‖f(τ)‖
Ḃ
σ+ 2

r
p,∞

dτ

∥∥∥∥∥
Lm

. ‖f‖
LrḂ

σ+ 2
r

p,∞

which concludes the proof of the lemma.

Note that the gain of regularity in the preceding result corresponds to
2 − 2(1

r −
1
m). In particular, the loss of 2(1

r −
1
m) is reminiscent of Bern-

stein inequalities in connection with the Littlewood–Paley theory (see [3,
Section 2.1.1]) and Sobolev embeddings.

Further observe that, according to the preceding proof, the constant in
the main estimate of Lemma 2 blows up as r tends to m with the same
behavior as the sharp constant of the Hardy–Littlewood–Sobolev inequality
(see [9] for a characterization of this sharp constant). However, we do not
know whether this behavior is sharp for Lemma 2.

We are now particularly interested in the endpoint case r = m of the
preceding lemma, which would correspond formally to a gain of exactly two
derivatives and is central to the proof of Theorem 1.

Unfortunately, the preceding proof fails miserably in this case, since it
would require an endpoint application of the Hardy–Littlewood–Sobolev in-
equality, which is impossible. Instead, we are able to establish the following
crucial endpoint lemma.

Lemma 3 ([1]). Let σ ∈ R, 1 ≤ q ≤ r <∞ and p ∈ [1,∞]. If f belongs to
Lr([0, T ], Ḃσ

p,q), then the solution of the heat equation (12) satisfies

‖w‖Lr([0,T ],Ḃσ+2
p,q ) . ‖f‖Lr([0,T ],Ḃσp,q) .

The proof presented here is self-contained and is somewhat simpler than
the one from [1] because it avoids abstract interpolation altogether.

Proof. By duality, it is enough to prove that, if g is a function in La′([0, T ])
with a = r

q ≥ 1 and 1
a + 1

a′ = 1, then∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt . ‖f‖q
Lr([0,T ],Ḃσp,q)

‖g‖La′ ([0,T ]).

To this end, we first write∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt =
∑
k∈Z

∫ T

0
g(t)‖∆kw(t)‖qLp2

k(σ+2)qdt.
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Furthermore, we deduce from (14) that

‖∆kw(t)‖qLp . 2−k(2q−2)
∫ t

0
e−C(t−τ)22k‖∆kf(τ)‖qLpdτ,

which implies that∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt

.
∑
k∈Z

∫ T

0

∫ t

0
|g(t)|e−C(t−τ)22k‖∆kf(τ)‖qLp2

k(σq+2)dτdt.

Next, we introduce a maximal operator defined by

Mg(τ) = sup
ρ>0

∫ T

0
ρ1{t−τ≥0}e

−(t−τ)ρ|g(t)|dt.

Classical results from harmonic analysis (see [7, Theorems 2.1.6 and 2.1.10])
establish that M is bounded over Lb ([0, T ]), for any 1 < b ≤ ∞. One can
now write that∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt .
∑
k∈Z

∫ T

0
Mg(τ)‖∆kf(τ)‖qLp2

kσqdτ,

whence, by definition of Ḃσ
p,q,∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt .
∫ T

0
Mg(τ)‖f(τ)‖q

Ḃσp,q
dτ.

We finally conclude, by Hölder’s inequality, that∫ T

0
Mg(τ)‖f(τ)‖q

Ḃσp,q
dτ . ‖Mg‖La′ ([0,T ])‖f‖

q

Lr([0,T ],Ḃσp,q)

. ‖g‖La′ ([0,T ])‖f‖
q

Lr([0,T ],Ḃσp,q)
,

which completes the proof of the lemma.

References
[1] Diogo Arsénio and Isabelle Gallagher. Solutions of Navier–Stokes–

Maxwell systems in large energy spaces. Trans. Amer. Math. Soc.,
2019. In production.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 27-38



38 Recent progress on the mathematical theory of plasmas

[2] Diogo Arsénio and Laure Saint-Raymond. From the Vlasov–Max-
well–Boltzmann system to incompressible viscous electro-magneto-
hydrodynamics. Vol. 1. EMS Monographs in Mathematics. European
Mathematical Society (EMS), Zürich, 2019.

[3] Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin. Fourier
analysis and nonlinear partial differential equations, volume 343 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer, Heidelberg, 2011.

[4] Dieter Biskamp. Nonlinear magnetohydrodynamics, volume 1 of Cam-
bridge Monographs on Plasma Physics. Cambridge University Press,
Cambridge, 1993.

[5] Peter Alan Davidson. An introduction to magnetohydrodynamics. Cam-
bridge Texts in Applied Mathematics. Cambridge University Press,
Cambridge, 2001.

[6] Pierre Germain, Slim Ibrahim, and Nader Masmoudi. Well-posedness of
the Navier-Stokes-Maxwell equations. Proc. Roy. Soc. Edinburgh Sect.
A, 144(1):71–86, 2014.

[7] Loukas Grafakos. Classical Fourier analysis, volume 249 of Graduate
Texts in Mathematics. Springer, New York, second edition, 2008.

[8] Pierre Gilles Lemarié-Rieusset. The Navier–Stokes problem in the 21st
century. Boca Raton, FL: CRC Press, 2016.

[9] Elliott H. Lieb. Sharp constants in the Hardy-Littlewood-Sobolev and
related inequalities. Ann. of Math., 118(2):349–374, 1983.

[10] Nader Masmoudi. Global well posedness for the Maxwell-Navier-Stokes
system in 2D. J. Math. Pures Appl., 93(6):559–571, 2010.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 27-38


	Introduction
	The Navier–Stokes–Maxwell systems
	Coupling I
	Coupling II
	Coupling III
	Coupling IV

	A global existence result
	Endpoint parabolic estimates

