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Resumo: Dada uma equação às diferenças linear e homogénea, de coeficientes
constantes, começamos por construir uma função contínua interpolatória da res-
pectiva solução. Tal função é posteriormente usada para definir uma função pa-
ramétrica, com valores em R2, que designamos por ‘retrato de fase’. Embora
com algum abuso de linguagem, a definição que propomos para retrato de
fase de uma equação às diferenças revela-se interessante para efeitos de es-
tudo da dinâmica das soluções de equações às diferenças, tal como acontece
com sistemas de equações diferenciais onde os denominados retratos de fase
constituem uma técnica bem conhecida. Como ilustração, apresentam-se
alguns exemplos de construção da referida função interpolatória bem como
de retratos de fase associados a certas equações às diferenças de segunda
ordem, em particular equações ligadas a sucessões do tipo Fibonacci.

Abstract: Given a linear and homogeneous difference equation, with cons-
tant coefficients, we begin by constructing a continuous function which is
interpolatory of the difference equation solution. This function leads to a
R2 valued parametric function which we call, with some language abuse,
‘phase portrait’ of the difference equation. The ‘phase portrait’ proves to
be an interesting tool in order to understand the dynamics of the soluti-
ons of a difference equation, similarly to the so called phase portrait in the
context of systems of ordinary differential equations. As an illustration we
present some examples where the referred interpolatory function is consi-
dered as well as phase portraits of certain second order difference equations
connected to some Fibonacci type sequences.
Palavras-chave: Equação às diferenças, interpolação, retrato de fase, su-
cessões de Fibonacci.

1 Introdução

Dados k valores iniciais x0, x1, . . . , xk−1, equações às diferenças (de ordem
k ≥ 1, lineares, homogéneas e de coeficientes constantes),
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42 Soluções interpolatórias de EDF’s lineares

xn+k = ak−1 xn+(k−1) + ak−2 xn+(k−2) + . . .+ a1 xn+1 + a0 xn, (1)

onde a0 6= 0, a1, a2, . . . , ak−1 ∈ R, ocorrem como modelos evolutivos em
inúmeras aplicações, em particular como versão discreta de certas equa-
ções diferenciais ordinárias com designação análoga. Uma vez que as so-
luções destas últimas são geralmente funções contínuas num certo domínio
real, é nosso objectivo inicial construir uma função (pelo menos) contínua
g : R+

0 7→ R, que interpole os dados, isto é, tal que g seja interpoladora
do conjunto infinito de pontos do plano (0, x0), (1, x1), (2, x2), . . . . A abor-
dagem que propomos, embora elementar, constitui porventura uma ponte
com o chamado ‘método das funções geradoras’ envolvendo funções e séries
complexas ([3], Ch. 7.4).
O ponto de vista interpolatório (Secção 2) oferece vantagens, quer do ponto
de vista teórico como computacional, sugerindo conexões entre temas tão
diversos como sucessões recorrentes, sistemas lineares sobredeterminados,
equações diferenciais, equações diofantinas, etc. Nomeadamente, ao asso-
ciarmos a uma equação às diferenças uma função contínua g ‘contendo’ a
solução do problema (1), somos naturalmente levados a considerar o respec-
tivo ‘retrato de fase’, no sentido descrito adiante na Secção 3. O retrato
de fase da sucessão (xn)n≥0, obtém-se simplesmente considerando a função
paramétrica H(t) = (g(t), g(t+ 1)− g(t)), para t ≥ 0 (Definição 3.1).
Em particular, o retrato de fase de sucessões do tipo Fibonacci (ver em [1]
uma perspectiva histórica a respeito deste famoso matemático) evidencia
geometricamente uma propriedade fundamental destas sucessões ligada à
ocorrência do célebre ‘número de ouro’ (ver Proposição 3.1).
Como é bem sabido, para se resolver a equação (1), isto é, para se determi-
nar uma fórmula explícita da sucessão (xn)n≥0, os modelos possíveis dessa
solução dependem de as k raízes do polinómio característico associado à
equação serem, respectivamente, simples ou múltiplas. Embora aqui apenas
consideremos equações de segunda ordem, isto é, para k = 2 a abordagem
que propomos é generalizável para equações às diferenças de ordem superior.
Tanto no caso de raízes simples como no caso de raízes múltiplas do referido
polinómio característico, mostramos por indução matemática (Secção 2) que
o sistema linear, traduzindo as condições interpolatórias, é um sistema de
solução única (ver Proposições 2.1 e 2.2 e Exemplo 2.1, 2.2 e 2.3).
Na Secção 3 apresentamos um pequeno número de exemplos de construção
do ‘retrato de fase’ de equações às diferenças de segunda ordem do tipo
(1), em particular de um certo conjunto de sucessões de Fibonacci. O leitor
poderá ensaiar outros exemplos à sua escolha modificando convenientemente
o programa Mathematica [4] dado em Anexo.
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2 Equações às diferenças de segunda ordem

A equação às diferenças de segunda ordem

xn+2 = a1 xn+1 + a0 xn, a0 6= 0, n ≥ 0, (2)

com valores iniciais x0 = α, x1 = β, tem para equação característica

p(λ) = λ2 − a1 λ− a0 = 0 . (3)

Mostramos a seguir, respectivamente nos parágrafos 2.1 e 2.2, que o facto
do polinómio p possuir ou não raízes distintas é a informação crucial que
interessa na consideração dos dois tipos de soluções possíveis para a equação
às diferenças (2). No caso das raízes serem distintas e positivas, a solução
interpolatória g que obtemos é uma combinação linear de exponenciais de
variável real. No caso de alguma das raízes ser negativa ou complexa (sendo,
portanto, neste segundo caso, a outra raiz conjugada da primeira) a função
g é igualmente combinação linear de funções exponenciais. No entanto, tais
exponenciais tomam valores em C e iremos considerar apenas a parte real
desses valores. Em ambos os casos, para efeitos computacionais, a solução
real pretendida pode ser facilmente calculada recorrendo à função Re[ ],
disponível no sistema Mathematica [4].
Quanto às soluções da equação (2) temos o seguinte resultado ([2], Ch. 2.2):

Teorema 2.1. Considere-se a equação às diferenças (2) e a equação ca-
racterística associada (3). Sejam λ1 e λ2 as raízes do polinómio1 p e xn a
solução geral de (2). Então:
1. Se λ1 e λ2 são raízes reais e distintas,

xn = c1 λ
n
1 + c2 λ

n
2 , c1, c2 ∈ R .

2. Se λ1 = λ2 = λ,

xn = c1 λ
n + c2 nλ

n, c1, c2 ∈ R .

3. Se λ1 e λ2 são raízes complexas, λ1 = r ei θ e λ2 = r e−i θ,

xn = c1
(
r ei θ

)n
+ c2

(
r e−i θ

)n
, c1, c2 ∈ C,

= rn ((c1 + c2) cos(n θ) + i (c1 − c2) sin(n θ))
= rn (C1 cos(n θ) + C2 sin(n θ))

onde C1 = c1 + c2 e C2 = i (c1 − c2).
1 Note-se que, dado que a0 6= 0, o polinómio p não tem raízes nulas.

Boletim da SPM 76, Dezembro 2018, pp. 41-56



44 Soluções interpolatórias de EDF’s lineares

Do Teorema 2.1, concluímos que, sendo λ1 e λ2 duas raízes distintas do
polinómio p em (3), a função interpolatória real g será uma combinação
linear de funções reais do seguinte tipo:
(i) caso λ1, λ2 > 0, funções eln(λ1) t e eln(λ2) t;
(ii) caso λ1 < 0 e λ2 > 0, funções cos(π t) eln(|λ1|) t e eln(λ2) t;
(iii) caso λ1, λ2 < 0, funções cos(π t) eln(|λ1|) t) e cos(π t) eln(|λ2|) t;
(iv) caso λ1 ∈ C (λ2 raiz conjugada), funções cos(n θ) eln(r) t e sin(n θ) eln(r) t,
onde r = |λ1| e θ = Arg(λ1).
Sendo λ uma raiz dupla do polinómio p, a função interpolatória real g é
combinação linear das funções eln(λ) t e t eln(λ) t, no caso em que λ > 0, e das
funções cos(π t) eln(|λ|) t e t cos(π t) eln(|λ|) t, no caso em que λ < 0.
Os Exemplos 2.1, 2.2 e 2.3 adiante ilustram o cálculo de funcões interpola-
tórias g para algumas equações às diferenças de segunda ordem.

2.1 Raízes distintas
Para ∆ = a2

1 + 4 a0 > 0, o polinómio p em (3) tem duas raízes distintas
(reais ou complexas conjugadas), λ1, λ2 6= 0, tais que

λ1 = a1 +
√

∆
2 , λ2 = a1 −

√
∆

2 . (4)

Atendendo a (3) as raízes λ1, λ2 satisfazem as relações fundamentais

λ2
1 = a1 λ1 + a0
λ2

2 = a1 λ2 + a0 .
(5)

No caso em que λ1, λ2 > 0, mostramos adiante (ver Proposição 2.1) que a
seguinte função contínua2 g : R 7→ R,

g(t) = c1 λ
t
1 + c2 λ

t
2, (6)

onde c1, c2 são constantes, é solução da equação às diferenças (2), no sentido
de que existem constantes c1 e c2 para as quais é satisfeita a infinidade de
condições interpolatórias, g(0) = α, g(1) = β e g(j) = xj , para j = 2, 3, . . .,
isto é, a função g considerada interpola a seguinte tabela com um número
infinito de nós inteiros não negativos,

ti 0 1 2 3 . . .

xi x0 x1 x2 x3 . . .

2 Neste caso a função g ∈ C∞(R+
0 ). No entanto, para o efeito interpolatório basta-nos

que a função seja contínua e, posteriormente , quando se tratar de ‘retratos de fase’, basta
que a função g seja pelo menos de classe C1.
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A solução explícita da equação às diferenças (2) é dada por

xn = g(n) = c1 λ
n
1 + c2 λ

n
2 , n = 0, 1, 2, . . . (7)

onde c1 e c2 são constantes (únicas), solução das equações g(0) = x0 e
g(1) = x1.
Os casos em λ1 ou λ2 é um número negativo, ou quando λ1 e λ2 são com-
plexos são também contemplados.
Observação : No caso particular de a1, a0 e x0, x1 serem inteiros, a sucessão
(xk)k≥0 é constituída por números inteiros e, por conseguinte, o gráfico da
função contínua g dada por (6), possui uma infinidade de pontos Pk =
(k, g(k)), de coordenadas inteiras (‘látice’), isto é, Pk ∈ Z2.

2.1.1 Solução na forma exponencial

Quando λ1, λ2 são números reais positivos, a função real g dada em (6) pode
ser escrita na forma de combinação linear de funções exponenciais

g(t) = c1 e
ln(λ1) t + c2 e

ln(λ2) t, t ∈ R+
0 , (8)

Para contemplar os casos em que λ1 ou λ2 são números negativos, a função
g deverá ser definida como

g(t) = Re [c1 e
ln(λ̃1) t + c2 e

ln(λ̃2) t], t ∈ R+
0 ,

onde λ̃i = λi, se λi > 0, λ̃i = |λi| ei π, se λi < 0 .
(9)

(Re designa a parte real de um número complexo). Repare-se que

eln(|λi|ei π) t = e(ln(|λi|)+i π) t = eln(|λi|) t ei π t = eln(|λi|) t (cos(π t) + i sin(π t))

e assim, Re[eln(|λi|ei π) t] = cos (π t) eln(|λi|) t .
Um caso em que λ1 = 1 > 0 e λ2 = −1 < 0 é ilustrado no Exemplo 2.1.
Para os dados iniciais considerados neste exemplo, a função

h(t) = −2λt2 = −2 (−1)t,

interpola os dados para t = j, com j = 0, 1, 2, . . ., mas a função h não
está definida quando t não é inteiro. A correspondente função contínua é
obtida considerando a expressão (9). Assim, sem quebra de generalidade,
nas Proposições 2.1 e 2.2 a seguir, assume-se que os números reais λ1, λ2 são
distintos, não nulos, e positivos. Caso algum desses números seja negativo
a função g a considerar deverá ter a forma da expressão (9).
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Proposição 2.1. Dada a equação às diferenças (2), cujo polinómio carac-
terístico possui duas raízes reais distintas e não nulas, λ1, λ2, λ1 6= λ2, a
função contínua g dada em (6) (ou a sua versão (9)) satisfaz as condições
interpolatórias

g(j) = xj , j = 0, 1, 2, . . . . (10)

Demonstração. As constantes c1 e c2 podem calcular-se univocamente, por-
quanto as condições g(0) = x0 e g(1) = x1 equivalem à existência de solução
do sistema linear {

c1 + c2 = x0
λ1 c1 + λ2 c2 = x1 .

A solução do sistema existe e é única já que λ1 6= λ2,

c1 = x0 λ2 − x1
λ2 − λ1

, c2 = x1 − x0 λ1
λ2 − λ1

. (11)

Vamos mostrar por indução que g satisfaz um número infinito de condições
interpolatórias nos inteiros não negativos, isto é, que g(xj) = xj , qualquer
que seja j ≥ 1. Fixado j, tome-se para hipóteses de indução as igualdades

g(j − 1) = c1 λ
j−1
1 + c2 λ

j−1
2 = xj−1

g(j) = c1 λ
j
1 + c2 λ

j
2 = xj .

(12)

Prove-se que g(j + 1) = xj+1. Dado que

g(j + 1) = c1 λ
j+1
1 + c2 λ

j+1
2

= c1 λ
2
1 λ

j−1
1 + c2 λ

2
2 λ

j−1
2 ,

atendendo às relações fundamentais (5), obtém-se

g(j + 1) = c1 (a1 λ1 + a0)λj−1
1 + c2 (a1 λ2 + a0)λj−1

2
= a0 (c1 λ

j−1
1 + c2 λ

j−1
2 ) + a1(c1 λ

j
1 + c2 λ

j
2) .

Levando em conta as hipóteses de indução e a definição recursiva da equação
à diferenças considerada, resulta

g(j + 1) = a1 xj + a0 xj−1 = xj+1 .

Corolário 2.1. A solução explícita da equação às diferenças (6) é a sucessão

xn = g(n), n = 0, 1, . . . (13)

O Corolário 2.1 resulta trivialmente de se substituir na função g a variável
real t pela variável inteira n ≥ 0.
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Para o caso em que λ1 e λ2 são raízes complexas conjugadas, a função g
deverá ser definida na forma

g(t) = Re
[
c1 e

ln(λ1) t + c2 e
ln(λ2) t

]
, t ∈ R+

0 .

As constantes c1 e c2 são sempre complexas conjugadas e quando t = n,
para n = 0, 1, . . ., temos que c1 e

ln(λ1) t + c2 e
ln(λ2) t assume um valor real

(ver Teorema 2.1) e, portanto,

g(n) = c1 e
ln(λ1)n + c2 e

ln(λ2)n = c1 λ
n
1 + c2 λ

n
2 = xn .

2.2 Raízes múltiplas
Dada a equação às diferenças (2), se z é uma raiz dupla do seu polinómio
característico, p(x) = x2 − a1 x− a0, tem-se

x2 − a1 x− a0 = (x− z)2 = x2 − 2 z x+ z2 .

Comparando os coeficientes, resulta

z2 = − a0, e z = a1
2 . (14)

Note-se que terá de ser a1 6= 0.

Proposição 2.2. Dada uma equação às diferenças (2), cujo polinómio ca-
racterístico possui uma raíz não nula z, de multiplicidade dois, a função
contínua

g(t) = c1 z
t + c2 t z

t = (c1 + c2 t) zt, t ∈ R+
0 (15)

satisfaz as condições interpolatórias

g(j) = xj , j = 0, 1, 2, . . . . (16)

Demonstração. As constantes c1 e c2 determinam-se univocamente conside-
rando as condições interpolatórios g(0) = x0 e g(1) = x1. Obtém-se,

c1 = x0

c2 = x1 − z x0
z

= x1 − a1/2x0
a1/2

= 2x1 − a1 x0
a1

.
(17)

De modo semelhante ao que se fez na prova da Proposicão 2.1, para mostrar
que tal função g satisfaz as condições interpolatórias para qualquer inteiro
não negativo, considere-se agora para base de indução as igualdades

g(j − 1) = (c1 + c2 (j − 1)) zj−1 = xj−1
g(j) = (c1 + c2 j) zj = xj .

(18)
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Prove-se que g(j + 1) = xj+1, isto é,

g(j + 1) = (c1 + c2 (j + 1)) zj+1 = a1 xj + a0 xj−1 .

Atendendo a que a1 = 2 z e a0 = −z2 (ver (14)), resulta da segunda expres-
são em (18) que

a1 xj = 2 z (c1 + c2 j) zj ,

e da primeira expressão em (18)

a0 xj−1 = − z2 (c1 + c2 (j − 1)) zj−1.

Então,
xj+1 = a1 xj + a0 xj−1

= 2 (c1 + c2 j) zj+1 − (c1 + c2 (j − 1)) zj+1

= (c1 + 2 c2 j − c2 j + c2) zj+1

= (c1 + c2 (j + 1)) zj+1 = g(xj+1) .

Corolário 2.2. A solução explícita da equação às diferenças (6) é a sucessão

xn = g(n), n = 0, 1, . . . (19)

O Corolário 2.2 resulta de substituir a variável real t pelo inteiro n ≥ 0.

2.3 Exemplos
Exemplo 2.1. (Duas raízes reais de sinal contrário)

A equação às diferenças

xn+2 = xn, n = 0, 1, . . . , onde x0 = −2, x1 = 2,

define recursivamente a sucessão periódica, de período dois,

−2, 2,−2, 2, . . . .

A equação característica associada é da forma

λ2 − 1 = 0, donde λ1 = 1, λ2 = −1 .

Assim, a função modelo correspondente, para j = 0, 1, 2, . . ., é da forma

g(t) = c1 + c2 (−1)j ,

Boletim da SPM 76, Dezembro 2018, pp. 41-56



Mário M. Graça 49

sendo que (c1, c2) satisfaz as condições interpolatórias g(0) = −2, g(1) = 2,
isto é, {

c1 + c2 = −2
c1 − c2 = = 2,

donde c1 = 0 e c2 = −2. Por conseguinte, a função contínua,

g(t) = −2 Re
[
e(ln(|−1|)+i π) t

]
= −2 Re

[
ei π t

]
= −2 cos(π t), t ∈ R+

0

é interpolatória dos dados já que g(j) = xj , para j ≥ 0. Na Figura 1
observa-se o gráfico da função g e os pontos, (j, xj) que satisfazem a equação
às diferenças dada, no intervalo 0 ≤ t ≤ 20.

0 5 10 15 20

-2

-1

0

1

2

t

g
(t
)
=
-
2
R
e
ⅇ
ⅈ
π
t 

Fig. 1: xn+2 = xn, n = 0, 1, 2, . . . x0 = −2, x1 = 2.

Exemplo 2.2. (Duas raízes reais negativas)

Sejaxn+2 =−7xn+1−10xn, n≥0, x0 =0, x1 =1. Interessa-nos saber se existe

lim
k→∞

xk+1 − xk
xk

. (20)

O polinómio característico associado à equação às diferenças dada tem raízes
negativas λ1 = −2 e λ2 = −5. Por conseguinte, a função interpoladora (com
valores complexos), seja h, é da forma

h(t) = c1 e
(ln(2)+i π) t + c2 e

(ln(5)+i π) t = c1 e
ln(−2) t + c2 e

ln(−5) t

= c1 e
ln(2) t (cos(πt) + i sin(π t)) + c2 e

ln(5) t (cos(πt) + i sin(π t)) .

Assim, a função interpoladora real escreve-se como

g(t) = c1 cos(π t) eln(2) t + c2 cos(π t) eln(5) t, t ≥ 0 .
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Levando em consideração as condições iniciais, g(0) = 0 e g(1) = 1, obtém-
se c1 = 1/3, c2 = −1/3. Logo, a função interpoladora dos dados é definida
como

g(t) = 1
3 cos(π t) (2t − 5t), t ≥ 0 .

Atendendo a que

g(t+ 1)− g(t) = cos(π t) 1
3
(
−3 . 2t + 6 . 5t

)
,

resulta
Q(t) = g(t+ 1)− g(t)

g(t) = 3 (−2t + 2 . 5t)
2t − 5t .

Assim,

lim
t→∞

Q(t) = 3 lim
t→∞

(−2/5)t + 2
(2/5)t − 1 = −6 .

Por conseguinte, o limite em (20) existe e tem o valor de −6.
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Exemplo 2.3. (Duas raízes complexas conjugadas)
Para a equação

xn+2 = 1
2 xn+1 −

1
2 xn, onde n ≥ 0, e x0 = −2, x1 = −1, (21)

o polinómio característico possui duas raízes complexas conjugadas (logo
distintas)

λ1 = 1
4
(
1 + i

√
7
)
, λ2 = 1

4
(
1− i

√
7
)
.

Denotando por h a função de variável real com valores complexos h(t) =
c1 λ

t
1 + c2 λ

t
2, as constantes c1 e c2 calculam-se como solução das equações

h(0) = x0 e h(1) = x1. Obtém-se,

c1 = 1
7
(
−7 + i

√
7
)
, c2 = 1

7
(
−7− i

√
7
)
.

Por conseguinte, a função g(t) = Re
(
c1 e

ln(λ1) t + c2 e
ln(λ2) t

)
, onde t ∈ R,

interpola os pontos (j, xj), para j ≥ 0, conforme é mostrado na Figura 2, na
qual se considerou o intervalo t ∈ [−3, 20].

Fig. 2: xn+2 = 1
2 xn+1 −

1
2 xn, n = 0, 1, 2, . . . x0 = −2, x1 = −1.

Uma vez que |λ1| < 1 e |λ2| < 1, conclui-se imediatamente da expressão
calculada para a função g que

lim
t→∞

g(t) = 0 .

Dado que g(j) = xj para j ≥ 0, podemos concluir igualmente que a sucessão
considerada é tal que
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lim
n→∞

xn = 0,

conforme sugere a observação do gráfico apresentado na Figura 2.

3 Retratos de fase de equações às diferenças

Fig. 3: xn+2 = xn, n = 0, 1, 2, . . . x0 = −2, x1 = 2.

As funções g anteriormente consideradas são particularmente úteis para de-
senhar o ‘retrato de fase’ associado à solução de uma dada equação às di-
ferenças. Tais retratos permitem-nos observar a evolução da sucessão ao
longo do ‘tempo’ t, o seu comportamento assimptótico (isto é para n sufi-
cientemente grande) – em particular quando desejamos estudar a dinâmica
de sucessões recursivas em função dos valores iniciais x0 = α, x1 = β consi-
derados, ou quando estamos interessados em observar o comportamento de
classes de sucessões distintas em função dos parâmetros a1 e a0.
Dado que para quaisquer valores iniciais x0 e x1, a função interpolatória g
é única, podemos definir a seguinte função H, a qual será designada por
‘retrato de fase’ associado à equação às diferenças (2):

Definição 3.1. Designamos por ‘retrato de fase’ associado à equação às
diferenças (2), a função H : R+

0 7→ R2, definida por

H(t) = (g(t), g(t+ 1)− g(t)) , t ∈ R+
0 . (22)

Da mesma forma que a cada termo xn da sucessão (xn)n≥0 podemos associar
um ponto Pn = (xn, xn+1−xn) do plano, atendendo a que g é interpolatória
de (xn)n≥0 , a função H satisfaz as igualdades

H(j) = (xj , xj+1 − xj) = Pj , j = 0, 1, , 2, . . . (23)
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Fig. 4: xn+2 = 1
2 xn+1 −

1
2 xn, n = 0, 1, 2, . . . x0 = −2, x1 = −1.

Assim, do ponto de vista cinemático, os pontos Pj do plano coordenado
representam a ‘posição’ do termo xj da solução da equação às diferenças,
sendo a sua ‘velocidade’ representada pela segunda coordenada de Pj . Estas
considerações de carácter geométrico justificam a designação aqui adoptada
para retrato de fase da solução de uma equação às diferenças, representado
pela função paramétrica (22).
Na Figura 3 mostra-se o retrato de fase da sucessão considerada no Exemplo
2.1 e na Figura 4 é representado o retrato de fase correspondente ao Exemplo
2.3. Note-se que as abcissas e ordenadas figuradas neste caso são pontos de
Q, como se evidencia na tabela que acompanha a Figura 4.
O carácter periódico da solução (xn)n≥0 da equação às diferenças do primeiro
exemplo é imediatamente aparente na Figura 3, enquanto a evolução ‘espiral’
da sucessão (xn)n≥0 do segundo exemplo é observável na Figura 4. O retrato
de fase permite-nos prever a ocorrência do ponto (0, 0) como estado limite
do processo evolutivo modelado pela equação às diferenças (21) do Exemplo
(2.3), confirmando o que se disse na parte final deste exemplo.

3.1 Sucessões tipo Fibonacci
A classe de sucessões de segunda ordem

xn+2 = xn + xn−1, x0 = α ∈ Z, x1 = β ∈ Z, (24)
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Fig. 5: Retrato de fase da sucessão de Fibonacci.

goza de reputação universal, uma vez que para α = 0, β = 1 a sucessão
(xn)n≥0 é a famosa sucessão de Fibonacci [1]. Para qualquer elemento da
classe o polinómio característico tem duas raízes reais distintas,

λ1 = 1 +
√

5
2 ' 1.618 > 0, λ2 = 1−

√
5

2 ' −0.618 < 0 .

A maior raiz é o famoso ‘número de ouro’ Φ = (1 +
√

5)/2. Na Figura
5 é mostrado o retrato de fase da sucessão de Fibonacci. A observação do
respectivo gráfico, leva-nos a conjecturar que, assimptoticamente, o gráfico
da função g(t+1)−g(t) deverá conter pontos numa certa direcção invariante,
ou seja, que existe limt−>∞(g(t+ 1)− g(t))/g(t) . Atendendo aos valores da
tabela da Figura 5, tal limite deverá ser aproximadamente 13/21 ' 0.62. De
facto, para uma infinidade de equações às diferenças do tipo (24) o referido
limite existe e toma o valor 1/Φ, conforme previsto na seguinte proposição:

Proposição 3.1. Sejam α ∈ Z, β ∈ Z valores iniciais da classe de equações
às diferenças (24). Se existir

lim
t→∞

g(t+ 1)− g(t)
g(t) , (25)

tal limite é o número 1/Φ.

Demonstração. Sabemos que g(t) = c1 λ
t
1 + c2 λ

t
2. Admitamos que c1 6= 0 e

c1 + c2 (λ2/λ1)t 6= 0. Então,
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g(t+1)−g(t)
g(t) = c1λ

t+1
1 +c2 λ

t+1
2 −c1λ

t
1−c2λ

t
2

c1 λt1 + c2 λt2

= c1λ
t
1(λ1−1)+c2λ

t
2(λ2−1)

λt1 (c1+c2(λ2/λ1)t) = c1(λ1−1)+c2(λ2/λ1)t(λ2−1)
c1+c2(λ2/λ1)t .

Atendendo a que |λ2/λ1| < 1, resulta

lim
t→∞

g(t+ 1)− g(t)
g(t) = c1 (λ1 − 1)

c1
= λ1−1 = 1

Φ .

Fig. 6: Retrato de fase de sucessões de Fibonacci com x0, x1 assumindo
valores com passo 0.1 .

Considerando o conjunto de valores iniciais (de passo 0.1), x0 = α ∈
{−1.1,−1.0, . . . , 0.9, 1.0, 1.1}, e x1 = β ∈ {−1.1,−1.0, . . . , 0.9, 1.0, 1.1},
mostra-se na Figura 6 o retrato de fase das correspondentes sucessões
xn+2 = xn+1 + xn. A figura sugere a existência do limite do quociente
((g(t + 1) − g(t))/g(t), de valor 1/Φ ' 0.618, correspondente ao declive de
aproximadamente 35.4◦, que poderemos atribuir a um segmento de recta fa-
cilmente identificável na figura, cujo declive está de acordo com o enunciado
na Proposição 3.1.

4 Anexo

A fim de que o leitor possa desenhar o retrato de fase para equações às
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diferenças do tipo xn+2 = a1 xn+1 + a0 xn, com valores iniciais x0 = α,
x1 = β, é incluído abaixo código Mathematica, cujos dados deverão ser
modificados em função do problema a tratar. A nomenclatura do código
é análoga à utilizada ao longo do texto e, por isso, não foram incluídos
comentários adicionais.

ClearAll["Global`*"];

SetOptions[ParametricPlot, BaseStyle → {Bold, 18},

Frame → True, ImageSize → 500];

tmin = 0;

tmax = 10;

cab = {"xn", "xn+1- xn"}; (* legenda para tabela *)

Manipulate[

a1 = 1/2 ; a0 = -1/2;

Δ = a1 ^2 + 4 a0;

λ1 = (a1 + Sqrt[Δ])/2;

λ2 = (a1 - Sqrt[Δ])/2;

x[0] := α; x[1] := β;

x[n_] := a1 x[n - 1] + a0 x[n - 2];

h[t_] := c1 λ1 ^t + c2 λ2 ^t;
{c11, c22} = {c1, c2} /. Solve[{h[0] ⩵ α, h[1] ⩵ β}, {c1, c2}][[1]];

g[t_] := Re[c11 Exp[Log[λ1] t] + c22 Exp[Log[λ2] t]];
tab = Table[{x[n], x[n + 1] - x[n]}, {n, 0, tmax}];

{ParametricPlot[{g[t], g[t + 1] - g[t]}, {t, tmin, tmax},

PlotStyle → {Black},

Frame → True,

AspectRatio → 1,

PlotRange → Automatic,

FrameLabel → {"g(t)", "g(t+1)-g(t)"},

PlotLabel → Style["g(t)= " <> ToString[g[t] // TraditionalForm], 12],

Epilog → {PointSize[0.02], Blue, Point[tab]}], " ",

Style[Grid[Prepend[tab, cab], Frame → All], Bold, 16],

Grid[{{" c1=", c11, " c2=", c22},

{{"λ1=", λ1, N[λ1]} // Column,

{"λ2=", λ2, N[λ2]} // Column,

{"x[n]= " <> ToString[a1 // TraditionalForm] <> " x[n-1]

" <> ToString[a0 // TraditionalForm] <> " x[n-2]"} // Row

}}]} // Row,

{α, {-2, -1, 0, 2}}, {β, {-1, 0, 1, 2}}]

Fig. 7: Código para representação do retrato de fase H(t) =
(g(t), g(t+ 1)− g(t)) .
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