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Resumo: Dadauma equacao as diferencas linear e homogénea, de coeficientes
constantes, comegamos por construir uma fungao continua interpolatéria da res-
pectiva solugao. Tal fungio é posteriormente usada para definir uma fungéo pa-
ramétrica, com valores em R?, que designamos por ‘retrato de fase’. Embora
com algum abuso de linguagem, a definicdo que propomos para retrato de
fase de uma equacdo as diferencas revela-se interessante para efeitos de es-
tudo da dindmica das solugoes de equagoes as diferencas, tal como acontece
com sistemas de equagoes diferenciais onde os denominados retratos de fase
constituem uma técnica bem conhecida. Como ilustragdo, apresentam-se
alguns exemplos de construcao da referida funcao interpolatéria bem como
de retratos de fase associados a certas equacdes as diferencas de segunda
ordem, em particular equagoes ligadas a sucessoes do tipo Fibonacci.

Abstract: Given a linear and homogeneous difference equation, with cons-
tant coefficients, we begin by constructing a continuous function which is
interpolatory of the difference equation solution. This function leads to a
R? valued parametric function which we call, with some language abuse,
‘phase portrait’ of the difference equation. The ‘phase portrait’ proves to
be an interesting tool in order to understand the dynamics of the soluti-
ons of a difference equation, similarly to the so called phase portrait in the
context of systems of ordinary differential equations. As an illustration we
present some examples where the referred interpolatory function is consi-
dered as well as phase portraits of certain second order difference equations
connected to some Fibonacci type sequences.

Palavras-chave: Equacio as diferengas, interpolacao, retrato de fase, su-
cessoes de Fibonacci.

1 Introducao

Dados k valores iniciais xg, x1,...,Zr_1, equagoes as diferengas (de ordem
k > 1, lineares, homogéneas e de coeficientes constantes),

Boletim da SPM 76, Dezembro 2018, pp. 41


mgraca @ math.tecnico.ulisboa.pt

42 SOLUGOES INTERPOLATORIAS DE EDF’S LINEARES

Ttk = Ok—1 Ty (k—1) T Qk—2 Tpt(k—2) T - -+ A1 Tpp1 + A0 T, (1)

onde ag # 0, ay,a9,...,ar_1 € R, ocorrem como modelos evolutivos em
inimeras aplicacoes, em particular como versao discreta de certas equa-
¢oOes diferenciais ordindrias com designagdo analoga. Uma vez que as so-
lugoes destas ultimas sdo geralmente fungdes continuas num certo dominio
real, é nosso objectivo inicial construir uma funcdo (pelo menos) continua
g : Rg — R, que interpole os dados, isto é, tal que g seja interpoladora
do conjunto infinito de pontos do plano (0, z¢), (1, 1), (2,x2),... . A abor-
dagem que propomos, embora elementar, constitui porventura uma ponte
com o chamado ‘método das func¢bes geradoras’ envolvendo fungGes e séries
complexas ([3], Ch. 7.4).

O ponto de vista interpolatério (Secgao [2)) oferece vantagens, quer do ponto
de vista tedrico como computacional, sugerindo conexdes entre temas tao
diversos como sucessdes recorrentes, sistemas lineares sobredeterminados,
equacgoes diferenciais, equacoes diofantinas, etc. Nomeadamente, ao asso-
ciarmos a uma equagao as diferengas uma funcio continua ¢ ‘contendo’ a
solucao do problema , somos naturalmente levados a considerar o respec-
tivo ‘retrato de fase’, no sentido descrito adiante na Seccao O retrato
de fase da sucessao (zn)n>0, obtém-se simplesmente considerando a fungao
paramétrica H(t) = (g(t),g(t + 1) — g(t)), para t > 0 (Definigao [3.1)).

Em particular, o retrato de fase de sucessoes do tipo Fibonacci (ver em [I]
uma perspectiva histérica a respeito deste famoso matemédtico) evidencia
geometricamente uma propriedade fundamental destas sucessoes ligada a
ocorréncia do célebre ‘ntimero de ouro’ (ver Proposicao .

Como é bem sabido, para se resolver a equagio , isto é, para se determi-
nar uma férmula explicita da sucessao (2, )n>0, 0s modelos possiveis dessa
solucdo dependem de as k raizes do polinémio caracteristico associado a
equacao serem, respectivamente, simples ou multiplas. Embora aqui apenas
consideremos equacoes de segunda ordem, isto é, para k = 2 a abordagem
que propomos é generalizdvel para equacoes as diferencas de ordem superior.
Tanto no caso de raizes simples como no caso de raizes multiplas do referido
polinémio caracteristico, mostramos por indu¢ao matemaética (Sec¢ao|2)) que
o sistema linear, traduzindo as condic¢bes interpolatérias, ¢ um sistema de
solucdo unica (ver Proposigoes e e Exemplo e .

Na Secgéo [3] apresentamos um pequeno nimero de exemplos de construgao
do ‘retrato de fase’ de equagoes as diferencas de segunda ordem do tipo
, em particular de um certo conjunto de sucessoes de Fibonacci. O leitor
podera ensaiar outros exemplos & sua escolha modificando convenientemente
o programa Mathematica [4] dado em Anexo.
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2 Equacodes as diferencas de segunda ordem
A equagao as diferencas de segunda ordem
Tpio = A1 Tpi1 + aoXpn, ag#0, n>0, (2)
com valores iniciais zg = «, x1 = 3, tem para equacao caracteristica
p(A) =X —a;\—ap=0. (3)

Mostramos a seguir, respectivamente nos paragrafos @ e @, que o facto
do polinémio p possuir ou nao raizes distintas é a informacao crucial que
interessa na consideragao dos dois tipos de solugdes possiveis para a equagao
as diferencas . No caso das raizes serem distintas e positivas, a solugao
interpolatéria g que obtemos é uma combinacdo linear de exponenciais de
variavel real. No caso de alguma das raizes ser negativa ou complexa (sendo,
portanto, neste segundo caso, a outra raiz conjugada da primeira) a funcao
g € igualmente combinacao linear de func¢des exponenciais. No entanto, tais
exponenciais tomam valores em C e iremos considerar apenas a parte real
desses valores. Em ambos os casos, para efeitos computacionais, a solugao
real pretendida pode ser facilmente calculada recorrendo a funcado Rel ],
disponivel no sistema Mathematica [4].

Quanto as solucdes da equacio temos o seguinte resultado ([2], Ch. 2.2):

Teorema 2.1. Considere-se a equagdo ads diferencas e a equagdo ca-
racteristica associada . Sejam A\ e Ay as raizes do polinémiﬂp €T, a
solugao geral de (2). Entdo:

1. Se A\ e Ay sdo raizes reais e distintas,

a:n:cl)\?+cz)\g, c1,c0 €ER.
2. Se A1 =Xy = A,
Tp=c1 A" +can ", c1,¢0 €R .
3. Se M\ e Ao sdo raizes compleras, \1 = ret? e Ny = re*w,
T, = (rez ) + o (re‘l ) , c1,c0 € C,

™ ((c1 + c2) cos(n ) +i(c1 — c2) sin(nh))
=r" (Cy cos(nf) + Cy sin(n@))

onde C1 =c1+ ¢y e Cy =1i(c1 — ca).

! Note-se que, dado que ao # 0, o polinémio p ndo tem raizes nulas.
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Do Teorema [2.1] concluimos que, sendo A1 e Ao duas raizes distintas do
polinémio p em , a funcgdo interpolatéria real g serd uma combinagao
linear de fungoes reais do seguinte tipo:

(i) caso A1, A2 > 0, funcdes et ¢ gn(A2)t,

(ii) caso A; < 0 e Ay > 0, fungdes cos(mt) e(MDt ¢ eln(A2)t,

(iil) caso A1, Ay < 0, funcdes cos(mt) (MDY e cos(rt) e(A2Dt;

(iv) caso A € C (\g raiz conjugada), funcdes cos(n ) (Mt e sin(n §) et
onde r = [A\]| e § = Arg(A\1).

Sendo A\ uma raiz dupla do polinémio p, a funcdo interpolatéria real g é
combinacdo linear das funcdes "Mt e t Nt 1o caso em que A > 0, e das
funcoes cos(mt) e e ¢ cos(mt) e™IAE 1o caso em que A < 0.

Os Exemplos [2.7] 2.2] e 2.3 adiante ilustram o célculo de funcdes interpola-
térias g para algumas equagoes as diferencas de segunda ordem.

2.1 Raizes distintas

Para A = a? + 4a¢ > 0, o polinémio p em tem duas raizes distintas
(reais ou complexas conjugadas), A1, Ay # 0, tais que
a1 + VA ap — VA

5 A== )

Atendendo a as raizes Aq, Ao satisfazem as relagdoes fundamentais

A =

)\%:al)\l—l—ao
)\%:al)\g—l—ao .

()

No caso em que A1, Ay > 0, mostramos adiante (ver Proposicao [2.1) que a
seguinte funcao continuaﬂ g:R— R,

g(t) =1 Xi + ¢ X;, (6)

onde ¢q, ¢o sdo constantes, é solugdo da equacao as diferengas (2)), no sentido
de que existem constantes c; e co para as quais é satisfeita a infinidade de
condi¢bes interpolatérias, g(0) = o, g(1) = e g(j) = z;, para j = 2,3,.. .,
isto é, a funcdo ¢ considerada interpola a seguinte tabela com um ntmero
infinito de nods inteiros ndo negativos,

t; 10 1 2 3
;| g X1 X2 X3

2 Neste caso a funcdo g € C® (]Rar ). No entanto, para o efeito interpolatério basta-nos
que a funcéo seja continua e, posteriormente , quando se tratar de ‘retratos de fase’, basta
que a funcéo g seja pelo menos de classe C*.
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A solucdo explicita da equacao as diferencas ¢é dada por

Tn =g(n) =c1 AT + ca Ay, n=0,1,2,... (7)
onde ¢ e ¢y sdo constantes (unicas), solugdo das equagoes g(0) = zg e
g(1) = 1.

Os casos em A1 ou Ay é um nimero negativo, ou quando A e Ag sdo com-
plexos sdo também contemplados.

Observacdo : No caso particular de ay, ag e zg, z1 serem inteiros, a sucessao
(k)k>0 € constituida por nimeros inteiros e, por conseguinte, o grafico da
funcdo continua g dada por @, possui uma infinidade de pontos P, =
(k,g(k)), de coordenadas inteiras (‘latice’), isto é, P € Z2.

2.1.1 Solucdo na forma exponencial

Quando A1, Ao sdo nimeros reais positivos, a funcao real g dada em @ pode
ser escrita na forma de combinacdo linear de fungbes exponenciais

g(t) =1 et 4y ln(2)t t e Ry, (8)

Para contemplar os casos em que A1 ou Ao sdo nimeros negativos, a fungao
g devera ser definida como

g(t) = Relc )t 4 ¢y eln(;\2)t], te RS,
i ) ‘ (9)
onde A; = \;, se \; >0, Ai = |il €7, se Ay <0 .
(Re designa a parte real de um ntimero complexo). Repare-se que

(e’ ™)t _ J(n(IXi)+im)t _ (Nt gimt _ JIn([Ai])t (cos(mt) + i sin(nt))

e assim, Re[eln(p‘i‘e”)t] = cos (mt) eln(lAi)t

Um caso em que Ay =1 > 0e Ay = —1 < 0 é ilustrado no Exemplo [2.1]
Para os dados iniciais considerados neste exemplo, a funcio

A(t) = =24 = 2 (1),

interpola os dados para t = j, com j = 0,1,2,..., mas a funcdo h néo
estd definida quando ¢ nao é inteiro. A correspondente funcdo continua é
obtida considerando a expressao @ Assim, sem quebra de generalidade,
nas Proposi¢oes e a seguir, assume-se que oS nimeros reais Ai, Ay sao
distintos, ndo nulos, e positivos. Caso algum desses ntimeros seja negativo
a funcdo g a considerar devera ter a forma da expressao @
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Proposicao 2.1. Dada a equacio as diferencas , cujo polinémio carac-
teristico possui duas raizes reais distintas e ndo nulas, A1, a, A1 # Ao, a
fungdo continua g dada em @ (ou a sua versdo @) satisfaz as condicoes
interpolatorias

9(j)==zj, j=0,1,2,... . (10)
Demonstragdo. As constantes ¢ e co podem calcular-se univocamente, por-
quanto as condigoes g(0) = zg e g(1) = z1 equivalem a existéncia de solugao
do sistema linear

1+ c2 =X
Acl+Xcy =x1 .
A solugéo do sistema existe e é tinica ja que A1 # Mg,
To Ay — X1 T1 — To M
=2 oA 11
S W 2= T (11)

Vamos mostrar por inducdo que g satisfaz um ntmero infinito de condigoes
interpolatérias nos inteiros nao negativos, isto é, que g(x;) = x;, qualquer
que seja j > 1. Fixado j, tome-se para hipdteses de inducao as igualdades

9gj—-1) =a A{_l + cz')\%_l =z (12)
9(J) =c1 N + o\ =xj .
Prove-se que g(j + 1) = z11. Dado que

gi+1) =aXT +eaXt
=c1 M} )\{_1 +c2 A3 )\%_1 ,

atendendo as relagoes fundamentais , obtém-se

g(j + 1) =C (a1 /\1 + ao) )\]1_1 + co (a1 Ao —|— a()) )\%_1
= ag (01 /\]1_1 + ¢ )\j2_1) + a1 (Cl )\]1 + ¢y )\‘%) .

Levando em conta as hipoteses de indugao e a defini¢ao recursiva da equagao
a diferencas considerada, resulta

gj+1)=a1xzj+aoxj_1 =Tjq1 . O

Corolario 2.1. A solugdo explicita da equacdo as diferencas @ € a Sucessao
Ty = g(n), n=0,1,... (13)

O Corolério [2.1] resulta trivialmente de se substituir na func¢io g a variavel

real ¢t pela variavel inteira n > 0.
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Para o caso em que A1 e Ay sdo raizes complexas conjugadas, a funcio g
deverd ser definida na forma

g(t) = Re [cl et 4 6 eln(’\Q)t} , te Rf{ .

As constantes ¢y e ¢g sdo sempre complexas conjugadas e quando t = n,
para n = 0,1,..., temos que ¢ eVt 4 ¢y (A2t q55ume um valor real
(ver Teorema [2.1)) e, portanto,

In(A1)n n(A2)n

g(n)=cre +cgel = A+ Ny =z, .

2.2 Raizes multiplas

Dada a equacdo as diferencas , se z ¢ uma raiz dupla do seu polinémio
caracteristico, p(x) = 92 — a1 * — agp, tem-se

2 —ax—ag=(x—2)2=a>-2zx+2%.

Comparando os coeficientes, resulta

2= —ag, e z:%. (14)

Note-se que terd de ser aj # 0.

Proposicao 2.2. Dada uma equacao as diferencas , cujo polinémio ca-
racteristico possui uma raiz ndo nule z, de multiplicidade dois, a fungdo
continua

g(t) =12l +eatst = (a1 +cat) 2', teRT (15)

satisfaz as condicoes interpolatérias
9(j)==zj, j=0,1,2,.... (16)

Demonstracdo. As constantes ¢q e ¢o determinam-se univocamente conside-
rando as condi¢oes interpolatorios g(0) = zg e g(1) = 1. Obtém-se,

1 =X
1 —zmg w1 —ai/2mg 231 — a1 g (17)

c = =
2 z ay/2 a1

De modo semelhante ao que se fez na prova da Proposicao [2.1] para mostrar
que tal fungdo g satisfaz as condic¢Oes interpolatérias para qualquer inteiro
ndo negativo, considere-se agora para base de inducdo as igualdades

Q(J: —1) =(a+e(G-1)7" =z

9(4) =(c1+coj) 27 =z . (18)
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Prove-se que g(j + 1) = 11, isto é,
g+ =(a+e(+1) 2 =az;+awj .

Atendendo a que a; = 2z e ag = —22 (ver ), resulta da segunda expres-

sao em que

ai x; :2z(c1+62j)zj,

e da primeira expressao em
apzj_1=—22(c1 +ea(j—1)) 2271

Entao,
Tj+1 =a1%;+agT;j—1
=2 (c1+c2f) 7T = (a1 +ea(j 1)) ZH!
=(c1+2cj—caj+eg) 20T
=(a+e2(j+1)) 27T = g(zj41) - O

Corolario 2.2. A solugdo explicita da equacdo as diferencas @ € a sucessao
xn = g(n), n=0,1,... (19)
O Corolério 2.2 resulta de substituir a varidvel real ¢ pelo inteiro n > 0.

2.3 Exemplos

Exemplo 2.1. (Duas raizes reais de sinal contrario)
A equacéao as diferencas
Tpy2 =Tn, n=0,1,..., onde zo=-2, z;=2,
define recursivamente a sucessao periédica, de periodo dois,
~2,2,-2,2,... .
A equacao caracteristica associada é da forma
M —1=0, donde M\ =1)=—1.
Assim, a fun¢do modelo correspondente, para j =0,1,2,..., é da forma

g(t) = c1 + ca (—1),
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sendo que (c1, ¢2) satisfaz as condigdes interpolatérias ¢g(0) = —2, g(1) = 2,
isto é,

c1+ ¢ = -2

c—cp= =2
donde ¢; = 0 e co = —2. Por conseguinte, a fungao continua,

g(t) = —2 Re [eM(=101] = _3 Re[ei™!] = —2 cos(rt), te Ry

¢ interpolatéria dos dados ja que g(j) = z;, para j > 0. Na Figura
observa-se o grafico da funcao g e os pontos, (j, z;) que satisfazem a equacao
as diferencas dada, no intervalo 0 <t < 20.

o
1
Ll
@
~ 0
1
1]
5 -1
_27‘ ‘ ‘ ‘ ‘
0 5 10 15 20
t
Fig. 1. zpyo=zn, n=0,1,2,... zg=-2,21=2.

Exemplo 2.2. (Duas raizes reais negativas)
Seja xpto=—"Tr,11—10x,, n>0, £o=0, x; =1. Interessa-nos saber se existe

lim Pkl — Tk (20)
k—ro0 T

O polinémio caracteristico associado a equacao as diferencas dada tem raizes
negativas \; = —2 e Ay = —5. Por conseguinte, a funcao interpoladora (com
valores complexos), seja h, é da forma

h(t) = e(In(2)+im)t + ¢y e(n(B)+im)t _ 1 eln(—2)t + ey eln(=5)¢
= 1 ™ (cos(mt) + i sin(mt)) + co O (cos(nt) + i sin(wt)) .

Assim, a funcéo interpoladora real escreve-se como

g(t) = ¢ cos(mt) @t 4 ¢y cos(mt) P >0 .
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Levando em consideracao as condigoes iniciais, g(0) =0 e g(1) = 1, obtém-
se cp = 1/3, ca = —1/3. Logo, a fungao interpoladora dos dados é definida
como

g(t) = % cos(rt) (2t —51), £>0.

Atendendo a que

g(t+1) — g(t) = cos(mt) % (—3.2t + 6.5t> ,

resulta (t41) ) 32 +2.5)
_9 —gt) ol— .
Q(t) - g(t) - ot _ 5t ’
Assim,
, o (=25 42
fim Q) =3 i 1 = 6

Por conseguinte, o limite em (20 existe e tem o valor de —6.
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Exemplo 2.3. (Duas raizes complexas conjugadas)
Para a equacéo

1 1
o _ =
2 n+1 2

o polinémio caracteristico possui duas raizes complexas conjugadas (logo
distintas)

Tpio = Tp, onde n>0, e xg=-2, 1 =—1, (21)

1 , 1 :
)\121(1‘}‘1\/?), )\2—1(1—7/\/?) .
Denotando por h a fungao de varidvel real com valores complexos h(t) =

c1 AL + 2 \S, as constantes ¢; e ¢y calculam-se como solugdo das equagoes
h(0) = xo e h(1) = z1. Obtém-se,
1

= % (—7—|—i\ﬁ), 2= (—7—i\ﬁ> .
Por conseguinte, a funcdo g(t) = Re (61 et 4y eln()‘2)t) , ondeteR,
interpola os pontos (j,x;), para j > 0, conforme é mostrado na Figura 2| na
qual se considerou o intervalo t € [—3, 20].

e e T |

5
4
3
_ 2
5 4
o PN eeeeeooceeooos
Neo—o""
0 5 10 15 20
t
) 1
Fig. 2: xn+2:§xn+1—§xn, n=0,1,2,... x9g=-2,21=-—1.

Uma vez que [A;| < 1 e |A2] < 1, conclui-se imediatamente da expressao
calculada para a funcao g que

tlg(r)log(t) =0.

Dado que g(j) = z; para j > 0, podemos concluir igualmente que a sucessao
considerada é tal que
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lim z, =0,
n—oo

conforme sugere a observacao do grafico apresentado na Figura

3 Retratos de fase de equacdes as diferencas

glt)=-2 Re(.‘ " ’)

al HEE D
2 a
2| -4
-2 4
2 2 )
2 s
g 2 -4
B 2] a
N 2| -4
5 2 2
2 -y
-2 -2 4
2] -4
2 &
2| -4
-4 . ) R L [-2 4
-2 -1 0 1 2 2 -4

a(t)
Fig. 3: zpio=2n, n=0,1,2,... zg=-2,21 =2.

As funcgoes g anteriormente consideradas sao particularmente tteis para de-
senhar o ‘retrato de fase’ associado a solugdo de uma dada equacio as di-
ferencas. Tais retratos permitem-nos observar a evolucdo da sucessdao ao
longo do ‘tempo’ t, o seu comportamento assimptoético (isto é para n sufi-
cientemente grande) — em particular quando desejamos estudar a dindmica
de sucessoes recursivas em fungao dos valores iniciais zg = «, x1 = § consi-
derados, ou quando estamos interessados em observar o comportamento de
classes de sucessoes distintas em fun¢do dos parametros aj € ag.

Dado que para quaisquer valores iniciais xg e x1, a funcao interpolatéria g
é Unica, podemos definir a seguinte fungdo H, a qual serda designada por
‘retrato de fase’ associado a equagao as diferencas ([2)):

Definicao 3.1. Designamos por ‘retrato de fase’ associado a equagdo ds
diferencas , a funcao H : Rg — R?, definida por

H(t)=(g(t),g(t +1) —g(t)), teRy . (22)

Da mesma forma que a cada termo x,, da sucessao (x,,),>0 podemos associar
um ponto P,, = (2, Zn+1 — ) do plano, atendendo a que g é interpolatéria
de (xn)n>0 , a funcdo H satisfaz as igualdades

H(]):(xmxj-‘-l_x]):P] ]:0717727 (23)
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=R (r)[[f ]] A3 [i]]]
7 2|2 2 7 2|2 2
1.5 Xn |Xn:s1= Xn
-2 1
1 3
2
1 1
1.0 : H
3 5
i | s
E 1 7
o s T1e
& 05 5 X
‘; 16 32
h= 17
=) ';_z 64
3 ES
00 Q s |
s | 2
11 45
-05 AN
-2.0 -1.5 -1.0 -0.5 0.0 0.5
a(t)
) 1 1
Fig. 41 zpq0 = §$n+]_ — §xn, n=0,1,2,... x9g=-2,x1=-—1.

Assim, do ponto de vista cinemadtico, os pontos P; do plano coordenado
representam a ‘posicao’ do termo x; da solucao da equacao as diferencas,
sendo a sua ‘velocidade’ representada pela segunda coordenada de P;. Estas
consideracoes de cardcter geométrico justificam a designacao aqui adoptada
para retrato de fase da solugdo de uma equacdo as diferengas, representado
pela funcao paramétrica .

Na Figura[3|mostra-se o retrato de fase da sucessao considerada no Exemplo
[2.1]e na Figura[d] é representado o retrato de fase correspondente ao Exemplo
Note-se que as abcissas e ordenadas figuradas neste caso sao pontos de
Q, como se evidencia na tabela que acompanha a Figura [4

O carécter periédico da solucao (z,)n>0 da equacao as diferencas do primeiro
exemplo é imediatamente aparente na Figura[3] enquanto a evolugao ‘espiral’
da sucessao (5 )n>0 do segundo exemplo é observéavel na Figura . O retrato
de fase permite-nos prever a ocorréncia do ponto (0,0) como estado limite
do processo evolutivo modelado pela equagao as diferencas do Exemplo
, confirmando o que se disse na parte final deste exemplo.

3.1 Sucessoes tipo Fibonacci

A classe de sucessbes de segunda ordem

Tpt2 =Ty +Tp—1, Top=0QE Z, x1= B € Z, (24)
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12

Xni1~ Xp

=

10+

g(t+1)-g(t)

S N A~ O ©

N| = x
N &l o vl w| M R ko2
o | W N e

[y
w

Fig. 5: Retrato de fase da sucessdo de Fibonacci.

goza de reputacao universal, uma vez que para o = 0, § = 1 a sucessdo
(Zn)n>0 € a famosa sucessdo de Fibonacci [I]. Para qualquer elemento da
classe o polindmio caracteristico tem duas raizes reais distintas,

1++5 1-+5
2

AL = 5 ~1.618 >0, A=

A maior raiz é o famoso ‘ntimero de ouro’ ® = (1 4+ +/5)/2. Na Figura
¢é mostrado o retrato de fase da sucessdo de Fibonacci. A observacdo do
respectivo grafico, leva-nos a conjecturar que, assimptoticamente, o grafico
da fungao g(t+1)—g(t) devera conter pontos numa certa direc¢do invariante,
ou seja, que existe lim;_> oo (g(t+1) — g(t))/g(t) . Atendendo aos valores da
tabela da Figura tal limite devera ser aproximadamente 13/21 ~ 0.62. De
facto, para uma infinidade de equagdes as diferengas do tipo (24)) o referido
limite existe e toma o valor 1/®, conforme previsto na seguinte proposi¢ao:

~ —0.618 <0 .

Proposicao 3.1. Sejam o € Z, B € Z valores iniciais da classe de equagies
as diferencas . Se existir

i gt +1)—g(t)

t—o0 g(t) ’ (25)

tal limite é o nimero 1/®.

Demonstragio. Sabemos que g(t) = c1 A} + co A, Admitamos que ¢; # 0 e
c1+co (Ag/)\l)t 75 0. Entao,
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g(t+1)—g(t) _ 01/\’i+1 +co )\é+1 —c N =)

g(t) a1 N+ e A
_ AN (A —1)+eaXh (A2 —1) _ c1( A1 —1)+ea( X2 /A1) (Aa—1)
At (er+ea(A2/A1)h) c1tc2(Aa/Ar)!t ‘
Atendendo a que [A2/\1| < 1, resulta
t+1) —g(t c1 (A1 —1 1
HOog( +g()t) g9(t) _ 1(;1 ):/\1_1:5‘ B

g(t+1)-g(t)

Fig. 6: Retrato de fase de sucessées de Fibonacci com zg,x; assumindo
valores com passo 0.1 .

Considerando o conjunto de valores iniciais (de passo 0.1), zp = «a €
{-1.1,-1.0,...,09,1.0,11}, e 1 = B € {-1.1,-1.0,...,0.9,1.0,1.1},
mostra-se na Figura [0] o retrato de fase das correspondentes sucessoes
Tpi2 = Tpe1 + T,. A figura sugere a existéncia do limite do quociente
((gt+1) —g(t))/g(t), de valor 1/® ~ 0.618, correspondente ao declive de
aproximadamente 35.4°, que poderemos atribuir a um segmento de recta fa-
cilmente identificavel na figura, cujo declive estd de acordo com o enunciado
na Proposicao (3.1

4 Anexo

A fim de que o leitor possa desenhar o retrato de fase para equagoes as
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diferencas do tipo xp4+2 = a1 Tp41 + aoTpn, com valores iniciais xgp = «,
r1 = [, é incluido abaixo cdédigo Mathematica, cujos dados deverao ser
modificados em fun¢do do problema a tratar. A nomenclatura do cédigo
é andloga a utilizada ao longo do texto e, por isso, nao foram incluidos
comentarios adicionais.

ClearAll["Global «"];
SetOptions[ParametricPlot, BaseStyle » {Bold, 18},
Frame » True, ImageSize » 500];
tmin=0;
tmax = 10
cab = {"X,", "Xn.1- Xa"}; (* legenda para tabela x)
Manipulate[
al=1/2;a0=-1/2;
A=al”2+4a0;
Al = (al+Sqrt[al) /2;
A2 = (al-Sqrt[Aa]) /2;
x[0] :=aj; x[1] := B3
x[n ] :=alx[n-1] +a@x[n-2];
h[t ] :=clAlArt+c222/t;
{cl1, €22} = {c1, c2} /. Solve[{h[0] =a, h[1] =B}, {cl, c2}]1[[1]];
g[t ] :=Re[cllExp[Log[Al] t] +c22Exp[Log[A2] t1];
tab = Table[{x[n], x[n+1] -x[n]}, {n, O, tmax}];
{ParametricPlot[{g[t], g[t+1] -g[t]}, {t, tmin, tmax},
PlotStyle » {Black},
Frame - True,
AspectRatio -1,
PlotRange -» Automatic,

FrameLabel » {"g(t)", "g(t+1)-g(t)"},
PlotLabel » Style["g(t)= " <> ToString[g[t] // TraditionalForm], 12],
Epilog » {PointSize[0.02], Blue, Point[tab]}], " ",

Style[Grid[Prepend[tab, cab], Frame » Al1], Bold, 16],
Grid[{{" c1=", cl1, " c2=", c22},
{{"A1=", A1, N[A1]} // Column,
{"22=", X2, N[A2]} // Column,
{"x[n]= "<>ToString[al // TraditionalForm] <>" x[n-1]
" <> ToString[a® // TraditionalForm] <>" x[n-2]"} // Row
}}1} // Row,
{a;, {-2, -1, 0, 2}}, {B, {-1, 0, 1, 2}}]

Fig. 7: Co6digo para representagdo do retrato de fase H(t) =
(9(t), 9(t +1) = g(1)) -
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