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1 Introduction

In this treatise we shall examine the identities and inequalities associated
with a valuation on a set (S,+, ·). For finite sets these give the “inclusion-
exclusion” (InEx) formulae and inequalities, while for probability the former
yields the Poincaré’s formula.

The basic valuation formula can directly be applied to such non-negative
functions as content or measure (volume, area, length, weight, size, proba-
bility), as well as dimension, min/max and gcd/lcm. In the former case it is
also possible to use indicator functions followed by the taking of a suitable
linear functional, such as expected value, which will get us back to proba-
bility. When f is multiplicative, an easier and non-inductive way of proving
the valuation formula is by using the symmetric functions of the roots f(ai)
of a suitable polynomial.

Throughout the paper, (S,+, ·) is a set S with two binary operations
“+” and “·”, which are commutative and associative, and we further assume
multiplicative idempontency a · a = a for all a ∈ S and the distributive law
a · (b+ c) = a · b+ a · c, for all a, b, c ∈ S. The target space is a set (T,⊕,⊗)
with binary operations ⊕ and ⊗.

In general, we do not assume idempotency for addition, but when we
do, we will clearly state that a + a = a for all a ∈ S as well. For instance,
(S,+, ·) can be a commutative distributive complemented lattice with a ·b =
a ∧ b = glb(a, b) and a+ b = a ∨ b = lub(a, b). The most important of these
is the power set (P(X),∪,∩).
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90 Inclusion–Exclusion

Definition 1.1. A function f: (S,+, ·)→(T,⊕,⊗) is called an α-valuation if

f(a+ b)⊕[α⊗f(a · b)] = f(a)⊕f(b), (1)

where α ∈ T and a, b ∈ S.

We shall examine the interplay between an α-valuation f and the oper-
ations of + and (·) defined on S, and ⊕ and ⊗ defined on T. When there
is no risk of ambiguity we shall as always write this as f(a+ b) + αf(ab) =
f(a) + f(b), in which the “multiplicative dot” has been dropped.

When T admits an additive inverse, we may rewrite this as f(a + b) =
f(a) + f(b) − αf(ab). Needless to say when α is absent or α = 1, we have
a more symmetric unit-valuation. When this is the case, we do not need to
define multiplication on T .

We shall primarily be interested in the case where (T,⊕,⊗) is R+, and
α = 1 + ε ≥ 1 (see [2]).

We shall examine additive as well as multiplicative results for α-
valuations. Non-zero values of ε are used for example in the exclusive-or
case (addition on a powerset), where α = 2 and f(a + a) = f(∅) = 0.
It should be noted that f(a + a) = (2 − α)f(a) and hence we have
f(a+ a) = f(a) iff α = 1.

2 Additive Results for α-valuations

We shall first need several definitions and notations dealing with triangular
“slices”.

For a given set S ⊆ N, with #(S) = M , we introduce the associated
collection of lists.

Definition 2.1. For k ≤M ,

V S
k = {(i1, . . . , ik); i1 < i2 < · · · < ik, ir ∈ S, ∀r = 1, . . . , k}.

We may alternatively think of this as the collection of all
(M
k

)
combi-

nations of the M objects in S, taken k at a time. For example V 2,3,4
2 =

{(2, 3), (2, 4), (3, 4)}. Initially we shall focus on S = {1, 2, . . . , n}, and
shorten V 1,2,...,n

k to U
(n)
k . In particular, U (n)

n = {(1, 2, . . . , n)} is made of
a single string.

Now let A = {x1, . . . , xn} be a collection of symbols. Then for a ∈ A
and V ⊆ Ak we define (V, a) = {(x1, . . . , xk, a); (x1, . . . , xk) ∈ V }. We now
have
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Lemma 2.1. U (n+1)
k = U

(n)
k ∪ (U (n)

k−1, n+ 1)

Proof. This is nothing but a partitioning of U (n+1)
k into terms that do or do

not contain the highest index n+ 1.

Next, we introduce a collection of functions gk : Ak → (T,⊕), k =
1, . . . , n, where T is a suitable set with addition ⊕. For each k = 1, 2, . . . , n
we now define

Definition 2.2.
⊕
U

(n)
k

gk(xi1 , . . . , xik) =
⊕

1≤i1<i2<···<ik≤n
gk(xi1 , xi2 , . . . , xik),

where the addition is in T .

We may now state:

Corollary 2.1.

(i)
⊕

U
(n+1)
k

gk(xi1 , . . . , xik) =
⊕
U

(n)
k

gk(xi1 , . . . , xik) ⊕
⊕
U

(n)
k−1

gk(xi1 , . . . , xik−1 , n+1).

(ii)
n+1⊕
k=1

⊕
U

(n+1)
k

gk(xi1 , . . . , xik)

=
n⊕
k=1

⊕
U

(n)
k

gk(xi1 , . . . , xik)⊕
n+1⊕
k=1

⊕
U

(n)
k−1

gk(xi1 , . . . , xik−1 , n+ 1).

Note that in the second summation the term with k = n + 1 is absent
as U (n)

n+1 = ∅.
As a special case, we choose gk(a1, . . . , ak) = (−α)kf(a1 · · · ak), where f

is an α-valuation from (S,+, ·) to T = R+ evaluated at the product of ai.
We further let a = (a1, a2, . . . ) be a sequence of elements from S and for
any b ∈ S we set ba= (ba1, ba2, . . . ).

For convenience we now also define the following “symmetric functions”

σ
(n)
k (a, f) =

∑
1≤i1<i2<···<ik≤n

f(ai1ai2 . . . aik).

Note that σ(n)
n (a, f) = f(a1 · · · an). When there is no risk of confusion

we shall drop the brackets in the superscript and use σnk instead of σ(n)
k .

Again, if f is an α-valuation from (S,+, ·) to R+ then we may recast
Corollary (2.1) in terms of f as
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Corollary 2.2.

(i) σn+1
k (a, f) = σnk (a, f) + σnk−1(ba, f),

where k = 1, 2, . . . , n+ 1 and b = an+1 .

(ii)
n+1∑
k=1

(−α)k−1σn+1
k (a, f) =

n∑
k=1

(−α)k−1σnk (a, f)+
n+1∑
k=1

(−α)k−1σnk−1(ba, f) .

For consistency, we let σn0 (ba, f) = f(b) for k = 1 in part (i) of Corollary
(2.1) and also note that σnk (a, f) is undefined for k > n.

We shall primarily be interested in the special sums,

Sn = Sn(a, f) = f(
n∑
i=1

ai),

where a = (a1, a2, . . . ). Using (1), we observe that

Lemma 2.2. If b = an+1, then

Sn+1(a) + αSn(ba) = Sn(a) + f(b) (2)

Proof. f(
n∑
i=1

ai + b) + αf [(
n∑
i=1

ai)b] = f(
n∑
i=1

ai) + f(b).

Our aim is to solve the recurrence (2) for Sn. When T does not admit
an additive inverse, we have to separate the even and odd values of n. We
shall first introduce the following summations.

Definition 2.3. (i) λnk =
k∑
i=1

α2i−2σn2i−1, 2k − 1 ≤ n,

(ii) µnk =
k∑
i=1

α2i−1σn2i, 2k ≤ n.

In this we dropped the superscript braces for convenience. For example,
λn1 = σn1 , λn2 = σn1 + α2σn3 , λn3 = σn1 + α2σn3 + α4σn5

and
µn1 = ασn2 , µn2 = ασn2 + α3σn4 , µn3 = ασn2 + α3σn4 + α5σn6 .

Here µn0 is not defined, or it can be taken as the additive identity in T ,
if it exists. Before we can use induction we need the following identities.

Lemma 2.3. Let b = an+1, then the following identities among {λnr } and
{µnr } hold.
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(i) λn+1
r (a) = λnr (a) + αµnr−1(ba) + f(b).

(ii) λn+1
r+1 (a) = λnr (a) + αµnr (ba) + f(b) + α2rσn2r+1(a).

(iii) µn+1
r (a) = µnr (a) + αλnr (ba).

(iv) µn+1
r (a) + α2r+1σn2r+1(ba) = µnr (a) + αλnr+1(ba).

Proof. Note that b = an+1 throughout.

(i) λnr (a)+αµnr−1(ba)+f(b) =
r∑

k=1
α2k−2σn2k−1(a)+α

{ r−1∑
k=1

α2k−1σn2k(ba)
}
+

f(b) = [σn1 (a) + f(b)] +
r∑

k=2
α2k−2σn2k−1(a) +

r−1∑
k=1

α2kσn2k(ba) = σn+1
1 (a) +

r−1∑
t=1

α2tσn2t+1(a) +
r−1∑
k=1

α2kαn2k(ba) = σn+1
1 (a) +

r−1∑
t=1

α2t[σn2t+1(a) + σn2t(ba)
]

=
r−1∑
k=0

α2kσn+1
2k+1(a) =

r∑
s=1

α2s−2σn+1
2s−1(a) = λn+1

r (a).

(ii) λnr (a) +αµnr (ba) + f(b) +α2rσn2r+1(a) = λnr (a) +αµnr−1(ba) + f(b) +
α2rσn2r+1(a)+α2rσn2r(ba) = λn+1

r (a)+α2rσn2r(ba)+α2rσn2r+1(a) = λn+1
r (a)+

α2rσn+1
2r+1(a) = λn+1

r+1 (a), which proves (ii).

(iii) The right hand side equals
r∑

k=1
α2k−1σn2k(a)+α

r∑
k=1

α2k−2σn2k−1(ba) =
r∑

k=1
α2k−1[σn2k(a) + σn2k−1(ba)

]
=

r∑
k=1

α2k−1σn+1
2k (a) = µn+1

r (a).

(iv) From the right hand side, we have
r∑

k=1
α2k−1σn2k(a) +

α
r+1∑
k=1

α2k−2σn2k−1(ba) =
r∑

k=1
α2k−1[σn2k(a) + σn2k−1(ba)] + α2r+1σn2r+1(ba),

which is the left hand side.

It should be noted that when 2r ≥ n, then σn2r+1 is absent. Moreover by
part (iii) and (iv) in Lemma 2.3, we also have

Corollary 2.3. (i) µ2m+2
m (a) = µ2m+1

m (a) + αλ2m+1
m (ba)

(ii) µ2m+2
m (a) + α2m+1σ2m+1

2m+1(ba) = µ2m+1
m (a) + αλ2m+1

m+1 (ba).

We are now ready for the following identities on Sn(a).

Theorem 2.1.

(i) S2m(a) + µ2m
m (a) = λ2m

m (a) for all m ∈ N , (3)

(ii) S2m+1(a) + µ2m+1
m (a) = λ2m+1

m+1 (a) for all m ∈ N ∪ {0} . (4)
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Proof. (a) Both results are clearly true for initial values of m (in other words,
m = 1 for part (i) and m = 0 for part (ii)). So let us assume that the result
is true for n = 2m, and then show it for n = 2m + 1. Consider (2) with
n = 2m and add µ2m

m (a) and αµ2m
m (ba) to both sides. This gives

S2m+1(a)+α[S2m(ba)+µ2m
m (ba)]+µ2m

m (a) = S2m(a)+µ2m
m (a)+f(b)+αµ2m

m (ba)

which by induction hypothesis reduces to

S2m+1(a) + αλ2m
m (ba) + µ2m

m (a) = λ2m
m (a) + f(b) + αµ2m

m (ba).

This in turn can be reduced by part (ii) and (iii) in Lemma (2.3) to

S2m+1(a) + µ2m+1
m (a) = λ2m+1

m+1 (a)− α2mσ2m
2m+1(a) = λ2m+1

m+1 (a).

(b) Next we assume that the result holds for n = 2m+ 1 and we will show
it holds for n = 2m+ 2. Consider (2) with n = 2m+ 1 and b = a2m+2, and
add µ2m+1

m (a) and αµ2m+1
m (ba) to both sides. This gives

S2m+2(a) + α[S2m+1(ba) + µ2m+1
m (ba)] + µ2m+1

m (a) =
= S2m+1(a) + µ2m+1

m (a) + f(b) + αµ2m+1
m (ba)

which by induction hypothesis reduces to

S2m+2(a) + αλ2m+1
m+1 (ba) + µ2m+1

m (a) = λ2m+1
m+1 (a) + αµ2m+1

m (ba) + f(b) .

On account of Lemma (2.3) part (iv) and Corollary (2.3), we see that

S2m+2(a) + µ2m+2
m (a) + α2m+1σ2m+1

2m+1(ba) = λ2m+2
m+1 (a).

Lastly, note that σ2m+1
2m+1(ba) = σ2m+2

2m+2(a) with b = a2m+2, and so we reach
S2m+2(a) + µ2m+2

m+1 (a) = λ2m+2
m+1 (a).

If T admits additive inverses, we have the following valuation formulæ.

Corollary 2.4. (i) Sn(a) = f(
n∑
i=1

ai) =
n∑
k=1

(−α)k−1σnk (a, f) (5)

(ii) S2m(a) = λ2m
m (a)− µ2m

m (a)
(iii) S2m+1(a) = λ2m+1

m+1 (a)− µ2m+1
m (a)

Proof. We may list the first few sums in which σnk = σnk (a):

S2 + ασ2
2 = σ2

1
S3 + (ασ3

2) = (σ3
1 + α2σ3

3)
S4 + (ασ4

2 + α3σ4
4) = (σ4

1 + α2σ4
3)

S5 + (ασ5
2 + α3σ5

4) = (σ5
1 + α2σ5

3 + α4σ5
5)
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S6 + (ασ6
2 + α3σ6

4 + α5σ6
6) = (σ6

1 + α2σ6
3 + α4σ6

5)
S7 + (ασ7

2 + α3σ7
4 + α5σ7

6) = (σ7
1 + α2σ7

3 + α4σ7
5 + α6σ7

7) .

More generally,

S2m+(ασ2m
2 +α3σ2m

4 + · · ·+α2m−1σ2m
2m) = σ2m

1 +α2σ2m
3 + · · ·+α2m−2σ2m

2m−1

and
S2m+1 + (ασ2m+1

2 + α3σ2m+1
4 + · · ·+ α2m−1σ2m+1

2m )

= σ2m+1
1 + α2σ2m+1

3 + · · ·+ α2mσ2m+1
2m+1 .

Examples If an additive inverse exists, we may write

(i) f(a+b+c) = f(a)+f(b)+f(c)− α[f(ab)+f(ac)+f(bc)]+α2f(abc). (6)

(ii) f(a+ a) = (2− α)f(a)
f(a+ b+ b) = f(a) + (2− α)f(b)− (2− α)αf(ab). (7)

3 The valuation inequalities

Throughout let f be an α-valuation from (S,+, ·) to R+. We begin by
considering the matrices M = (mij) and N = (nij) with

mij = λ2m
i − µ2m

j , for 1 ≤ i, j ≤ m

nij = λ2m+1
i − µ2m+1

j , for 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ m.

Then

mij ≤ mi+1,j , mi,j+1 ≤ mij and nij ≥ ni,j+1, ni+1,j ≥ nij .

In other words, the elements in the matrix M as well as N increase from
right to left and top to bottom. We shall next use induction to prove the
valuation inequalities. We first assume the validity for even n and prove it
for odd n, and then reverse the parity.

Theorem 3.1. (a) For n = 2m with m ∈ N and any k ≥ 1,

(a1)S2m≤σ2m
1 (a)−ασ2m

2 (a)+· · ·+α2kσ2m
2k+1(a)=λ2m

k+1−µ2m
k , if k+1≤m, (8)

(a2)S2m≥σ2m
1 (a)−ασ2m

2 (a) + · · · −α2k−1σ2m
2k (a)=λ2m

k −µ2m
k , if k≤m. (9)
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(b) For n = 2m+ 1 with m ∈ N ∪ {0} and any k ≥ 1,
(b1)S2m+1 ≤ σ2m+1

1 (a)−ασ2m+1
2 (a) + · · ·+α2kσ2m+1

2k+1 (a) = λ2m+1
k+1 − µ

2m+1
k ,

if k ≤ m,
(b2)S2m+1 ≥ σ2m+1

1 (a)−ασ2m+1
2 (a)+ · · ·−α2k−1σ2m+1

2k (a)=λ2m+1
k −µ2m+1

k ,
if k ≤ m.

Proof. (a) The inequalities clearly hold for the initial values of m (in other
words, m = 1 for part (a) and m = 0 for part (b)), so let us assume they
both hold for all values of r ≤ n and that b = an+1. Recall that

Sn+1 = f(
n∑
i=1

ai + b) = f(
n∑
i=1

ai) + f(b)− αf [
n∑
i=1

(aib)].

By induction hypothesis, in the first summation on the right hand side,
we may apply the inequality from (8) with 2k + 1 terms and sequence a,
while in the second summation we apply (9) with 2k terms and sequence
ba, respectively. This gives

S2m+1 ≤ [σ2m
1 (a) − ασ2m

2 (a) + · · · + α2kσ2m
2k+1(a)] + f(b) − α[σ2m

1 (ba) −
ασ2m

2 (ba) + · · · − α2k−1σ2m
2k (ba)]

= [f(b) + σ2m
1 (a)]− α[σ2m

2 (a) + σ2m
1 (ba)] + · · ·+ α2k[σ2m

2k+1(a) + σ2m
2k (ba)]

= σ2m+1
1 (a)− ασ2m+1

2 (a) + · · ·+ α2kσ2m+1
2k+1 (a).

On the other hand, if we apply (9) in the first summation on the right hand
side, with 2k terms and sequence a, and apply (8) with 2k − 1 terms and
sequence ba, then we obtain

S2m+1 ≥ [σ2m
1 (a) − ασ2m

2 (a) + · · · − α2k−1σ2m
2k (a)] + f(b) − α[σ2m

1 (ba) −
ασ2m

2 (ba) + · · ·+ α2k−2σ2m
2k−1(ba)]

= [f(b) + σ2m
1 (a)]− α[σ2m

2 (a) + σ2m
1 (ba)] + · · · − α2k−1[σ2m

2k (a) + σ2m
2k−1(ba)]

= σ2m+1
1 (a)− ασ2m+1

2 (a) + · · · − α2k−1σ2m+1
2k (a).

Next, we assume that (b1) and (b2) hold for r ≤ 2m + 1 and use (a1) and
(a2) in the α-evaluation formula for 2m+ 2,

S2m+2(a) = S2m+1(a) + f(b)− αS2m+1(ba)

to give

S2m+2 ≤ [σ2m+1
1 (a)−ασ2m+1

2 (a)+· · ·+α2kσ2m+1
2k+1 (a)]+f(b)−α[σ2m+1

1 (ba)−
ασ2m+1

2 (ba) + · · · − α2k−1σ2m+1
2k (ba)] = [f(b) + σ2m+1

1 (a)] − α[σ2m+1
2 (a) +

σ2m+1
1 (ba)] + · · · + α2k[σ2m+1

2k+1 (a) + σ2m+1
2k (ba)] = σ2m+2

1 (a) − ασ2m+2
2 (a) +

· · ·+ α2kσ2m+2
2k+1 (a).
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Likewise, noting that k + 1 ≤ m+ 1, we reach

S2m+2 ≥ [σ2m+1
1 (a) − ασ2m+1

2 (a) + · · · − α2k+1σ2m+1
2k+2 (a)] + f(b) −

α[σ2m+1
1 (ba) − ασ2m+1

2 (ba) + · · · + α2kσ2m+1
2k+1 (ba)] = [f(b) + σ2m+1

1 (a)] −
α[σ2m+1

2 (a) + σ2m+1
1 (ba)] + · · · − α2k+1[σ2m+1

2k+2 (a) + σ2m+1
2k+1 (ba)] =

σ2m+2
1 (a)− ασ2m+2

2 (a) + · · · − α2k+1σ2m+2
2k+2 (a),

which completes the proof.

The InEx inequalities suggest that there should be inequalities relat-
ing the symmetric functions. We shall now show this, for the case where
αf(ab) ≤ f(a) and k+ 1 ≤ n ≤ 2k+ 1. We first need some basic facts about
the binomial sets. We shall denote the existence of an injective map from
V 1,...,n
k+1 into V 1,..n

k by V 1,...,n
k+1 ↪→ V 1,...,n

k .

Lemma 3.1. If k+1 ≤ n ≤ 2k+1 then we can find an injection (one-to-one
map) from V 1,...,n

k+1 into V 1,..n
k .

Proof. The proof follows by induction on n, and is very similar to that of
Theorem (3.1) in that we have to separate even and odd values of n. When
n = 3, the only possible values for k are k = 1 or 2. The result is now easily
seen for these cases because

(3
2
)

=
(3

1
)

and the injection is supplied by taking the
“complement” in {1, 2, 3}. On the other hand, because

(3
3
)

= 1, we can drop any
one of the 3 digits in V 1,2,3

3 ={(1, 2, 3)}, to obtain a unique image in V 1,2,3
2 .

Let us now assume thatV 1,2,...,2m
k+1 ↪→ V 1,2,...,2m

k for all k such that k+1 ≤ 2m ≤
2k + 1, in other words, k = m,m + 1, . . . , 2m − 1. Now we wish to
show that V 1,2,...,2m+1

k+1 ↪→ V 1,2,...,2m+1
k again for all k such that k + 1 ≤

2m + 1 ≤ 2k + 1, in other words, k = m, . . . , 2m. We observe that
V 1,2,...,2m+1
k can be written as a disjoint union, by separating the terms

that start with a digit 1 from those that start with a digit 2 etc. In-
deed, through this natural decomposition, we have a bijection between
V 1,...,2m+1
m+1 and V̂ 2,...,2m+1

m ∪ V̂ 3,...,2m+1
m ∪· · ·∪ V̂ m+2,...,2m+1

m where V̂ a+1,...,b
m =

{(a, x1, . . . , xm) | a+ 1 ≤ x1 < · · · < xm ≤ b} ⊂ V 1,...,b
m+1 . Obviously there is a

natural bijection between V̂ a+1,...,b
m and V a+1,...,b

m by dropping the first coor-
dinate of the vectors. Hence we note that the number of list in V̂ 2,...,2m+1

m

equals
(2m
m

)
, while the number in V̂ 3,...,2m+1

m is
(2m−1

m

)
etc. By the hypothesis

we can find injections from each of the V r,r+1,...,2m+1
m into V r,r+1,...,2m+1

m−1 for
all r = 2, . . . ,m+ 2. That is, we have, by the induction hypothesis,

V 2,3,...,2m+1
m ↪→ V 2,3,...,2m+1

m−1 ,

V 3,4,...,2m+1
m ↪→ V 3,4,...,2m+1

m−1 ,
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...

V m+2,...,2m+1
m ↪→ V m+2,...,2m+1

m−1 .

Combining these and the natural bijections between V̂ a+1,...,b
n and V a+1,...,b

n ,
we have an injection from V 1,2,...,2m+1

m+1 into V̂ 2,3,...,2m+1
m−1 ∪ V̂ 3,4,...,2m+1

m−1 ∪ · · · ∪
V̂ m+2,...,2m+1
m−1 which is a subset of V 1,2,...,2m+1

m .
It similarly follows that V 1,2,...,2m+1

m+2 ↪→ V 1,2,...,2m+1
m+1 etc. Combining these

and the natural bijections between V̂ a+1,...,b
n and V a+1,...,b

n , the end result is
that V 1,2,...,2m+1

k+1 ↪→ V 1,2,...,2m+1
k for k = m, . . . , 2m. Hence this shows that

if the result holds for even n then it also holds for the next odd n.
Let us now turn to the converse and assume that

V 1,2,...,2m−1
k+1 ↪→ V 1,2,...,2m−1

k for k ≥ m− 1.

We wish to show that

V 1,2,...,2m
m+1 ↪→ V 1,2,...,2m

m , V 1,2,...,2m
m+2 ↪→ V 1,2,...,2m

m+1 , . . . , V 1,2,...,2m
2m ↪→ V 1,2,...,2m

2m−1 .

We focus on the first term with k = m, and again write it as a disjoint union
of subsets, as

V 1,2,...,2m
m+1 = V̂ 2,...,2m

m ∪ V̂ 3,...,2m
m ∪ · · · ∪ V̂ m+1,...,2m

m .

It again follows by the induction hypothesis that

V 2,...,2m
m ↪→ V 2,...,2m

m−1 , V 3,...,2m
m ↪→ V 3,...,2m

m−1 ,. . . , and V m+1,...,2m
m ↪→ V m+1,...,2m

m−1 .

The end result is that V 1,2,...,2m
m+1 ↪→ V 1,2,...,2m

m . It similarly follows for the
other pieces, giving the desired injection

V 1,2,...,2m
k+1 ↪→ V 1,2,...,2m

k

for all k = m, . . . , 2m− 1, i.e. for all k such that k + 1 ≤ 2m ≤ 2k + 1.

We can now capitalize on the existence of the injection to derive the fol-
lowing inequalities for the “symmetric” functions. In the following Corollary,
we do not need to assume the existence of the additive inverse in T .

Corollary 3.1. Suppose that αf(ab) ≤ f(a). Then for k + 1 ≤ n ≤ 2k + 1,

σnk (a) ≥ ασnk+1(a) (10)

Proof. We first observe that #(σnk (a))=
(n
k

)
. Now because of the injection, we
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can associate to each term f(ai1ai2 . . . aik+1) in σnk+1(a) a distinct term
f(aj1 · · · ajk) in σnk (a) obtained from the former by deleting exactly one of
the air . Since αf(ab) ≤ f(a), we see that αf(ai1ai2 · · · aik+1) ≤ f(aj1 · · · ajk)
and hence that ασnk+1(a) ≤ σnk (a).

Remark For the case where αf(ab) ≤ f(a), half of the valuation inequal-
ities follow from the local fact that σnk (a) ≥ ασnk+1(a).

4 Additive valuation formula for multiplicative
valuations with f(ab) = f(a)f(b).

(a) When f is ”multiplicative” i.e. f(ab) = f(a)f(b), then the valuation
formula can be simplified. In this case the symmetric functions simplify to

σk = σk(a, f) =
∑

1≤i1<i2<···<ik≤n
f(ai1)f(ai2) · · · f(aik).

Then
f(

n∑
i=1

ai) = σ1 − ασ2 + α2σ3 − . . . (−1)n−1αn−1σn

= 1
α

[
1−

n∏
i=1

(1− αf(ai))].
(11)

A particularly important example is that of the indicator function χA(s)
of a set A. We shall examine these functions shortly in detail.

(b) On the other hand, if we have for each a in S a ”complement” a′ in S
such that
(i) (a+ b)′ = a′b′ and (ii) f(a′) = 1−αf(a), then we can obtain (11) directly
via

f(
n∑
i=1

ai) = 1
α [1− f [(

n∑
i=1

ai)′]] = 1
α [1− f [

n∏
i=1

a′i]]

= 1
α [1−

n∏
i=1

f(a′i)] = 1
α [1−

n∏
i=1

[1− αf(ai)]]
(12)

(c) For the case when α = 1, it suffices to have a “complement” a′ such that

f(a) = f(ab′) + f(ab) .

4.1 Examples of Valuation equalities

Let us now turn to the various applications of the valuation formula.

Indeed, most of these deal with a collection of subsets of set X as the poset
(P(X),⊆) and the lattice (S,+, ·)=(P(X),∪,∩), where in addition, f is some
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type of “content/size” such as volume, area, length or cardinality. We shall
denote the collection of all finite subsets of set X, by F (X).

Example 4.1. Let (S,+, ·) = (F (X),∪,∩) with f(A) = #(A), the cardi-
nality of A. Then

#(
n⋃
k=1

Ak) =
n∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

#(Ai1 ∩Ai2 ∩ · · · ∩Aik) .

Example 4.2. Let I(R) be an algebra or σ-algebra of intervals, with
Lebesgue measure as length. Suppose S is a the collection of unions
of intervals of R, and let f(A) be the length of `(A) of A, so that
(S,+, ·) = (I(R),∪,∩). Then

`(
n⋃
k=1

Ak) =
n∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

`(Ai1 ∩Ai2 ∩ · · · ∩Aik) .

Example 4.3. (S,+, ·) = (F ,∪,∩), where F ⊂ P(Ω) is a σ-field on Ω and
(Ω,F ,P) is a probability triple. We set f(A) = P (A), the probability of A.
Then P is a valuation and hence we have the Poincare formula:

P (
n⋃
k=1

Ak) =
n∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

P (Ai1 ∩Ai2 ∩ · · · ∩Aik) .

Needless to say, no indicator functions, expected values or integrals were
needed to derive this.

Example 4.4. Let (S,+, ·) = (R+,max,min) and let f be the identity map.
(This is not non-negative, so we have at first to restrict S to R+.)

Now for two real numbers a and b, it is easily seen that max(a, b) = a +
b−min(a, b) and min{a,max(b, c)} = max{min(a, b),min(a, c)}, so that the
identity map is a valuation. This gives

max{a1, . . . , an} = (a1 + · · ·+ an)−
∑
i<j

min{ai, aj}+

+
∑
i<j<k

min{ai, aj , ak} − · · ·+ (−1)n−1 min{a1, a2, . . . , an}.

Example 4.5. Let S be a collection of all the subsets of X with (S,+, ·) =
(P(X),∪,∩). For any prime p, and any valuation f with α = 1, we have
the multiplicative formula,
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pf(∪n
i=1Ai) =

n∏
i=1

pf(Ai).
∏

1≤i<j<k≤n

pf(Ai∩Aj∩Ak)...
∏

1≤i1<···<im≤n

p
f(Ai1∩···∩Aim )

.∏
i<j

pf(Ai∩Aj )...
∏

1≤i1<···<i`≤n

p
f(Ai1∩···∩Ai`

) ,

where m := max{k ≤ n | k is odd} and ` := max{k ≤ n | k is even}.

Example 4.6. S = N and a ≤ b if and only if a | b.
Any positive integer can be expressed as a unique product of prime pow-
ers a = pk1

1 p
k2
2 . . . pkr

r , with p1 < p2 < . . . . If b is likewise expanded
as b = pt11 p

t2
2 . . . ptrr , then clearly a | b iff ki ≤ ti for all i. Moreover

(a, b) = gcd(a, b) =
∏
p
min{ki,ti}
i and [a, b] = lcm(a, b) =

∏
p
max{ki,ti}
i . Since

min/max obey the InEx law on N, we may conclude that the gcd and lcm
satisfy the multiplicative version of the InEx law. In other words,

[a1, . . . , an] =

n∏
i=1

ai ·
∏

1≤i1<i2<i3≤n
(ai1 , ai2 , ai3) · · ·

∏
1≤i1<···<im≤n

(ai1 , . . . , aim)∏
1≤i1<i2≤n

(ai1 , ai2) · · ·
∏

1≤i1<···<i`≤n
(ai1 , . . . , ai`)

,

(13)
where m := max{k ≤ n | k is odd} and ` := max{k ≤ n | k is even}. For
example,

[a, b, c] = abc(a,b,c)
(a,b)(a,c)(b,c) and

[a, b, c, d] = abcd(a,b,c)(a,b,d)(a,c,d)(b,c,d)
(a,b)(a,c)(a,d)(b,c)(b,d)(c,d)(a,b,c,d)

(14)

This is a “multiplicative version” of the Inclusion Exclusion rule for an
evaluation map f with α = 1 such as

f(a+ b+ c) = f(a) + f(b) + f(c)− [f(ab) + f(ac) + f(bc)] + f(abc).

Example 4.7. Let S be the collection of all subspaces of a vector space U ,
with V + W being the vector space direct sum and V ·W = V ∩W . Then
f(V ) = dim(V ) is a valuation on S with α = 1, and

dim(
n∑
k=1

Vk) =
n∑
k=1

(−1)k−1 ·
∑

1≤i1<i2<···<ik≤n
dim(Vi1 ∩ Vi2 ∩ · · · ∩ Vik)

Example 4.8. S = Zn2 = {x = (x1, . . . , xn) |xi ∈ Z2 ,∀i = 1, . . . , n}
with coordinate-wise addition and scalar multiplication. These operations
are commutative, multiplication is idempotent and distributes over addition.
The Hamming metric h(a) counts the number of ones in the vector a. It is
a valuation that satisfies the “cosine rule”

h(a + b) = h(a) + h(b)− 2h(a.b), (15)

which is the InEx equation with α = 2.
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Example 4.9. S = Bn = {x; (x1, . . . , xn) |xi ∈ B ,∀i = 1, . . . , n} with the
Boolean scalar operations x + y = x ∨ y and x · y = x ∧ y. The vector
operations are again defined coordinate-wise. The Hamming metric is again
a valuation, but this satisfies In-Ex equation with α = 1, i.e.

h(a + b) = h(a) + h(b)− h(a.b) (16)

5 Examples of Valuation inequalities

Example 5.1. (S,+, ·) = (F ,∪,∩), where F ⊂ P(Ω) is a σ-field on Ω and
(Ω,F ,P) is a probability triple such that f(A) = P (A), the probability of A.
We have

(i) P (
n⋃
k=1

Ak) ≤
n∑
k=1

P (Ai) , (Boole’s law)

(ii) P (
n⋃
k=1

Ak) ≥
n∑
k=1

P (Ai)−
∑

1≤i1<i2≤n
P (Ai1 ∩Ai2) .

Example 5.2. Next let (S,+, ·) = (R,max,min) and let f be the identity
map (extended from R+). We have

max{a1, . . . , an} ≤ (a1 + · · ·+ an) ,
max{a1, . . . , an} ≥ (a1 + · · ·+ an)−

∑
i<j

min{ai, aj} ,

max{a1, . . . , an} ≤ (a1 + · · ·+ an)−
∑
i<j

min{ai, aj}+
∑

i<j<k
min{ai, aj , ak} .

Example 5.3. Applying the above to prime powers we arrive at

[a, b, c, d] ≤ abcd ,
[a, b, c, d] ≥ abcd

(a,b)(a,c)(a,d)(b,c)(b,d)(c,d) ,

[a, b, c, d] ≤ abcd
(a,b)(a,c)(a,d)(b,c)(b,d)(c,d)(a, b, c)(a, b, d)(a, c, d)(b, c, d),

where we actually attain equality in the last inequality above.

6 Indicator functions

Many of the applications of the “inclusion-exclusion” formula using sets can
be derived using the indicator functions (also called characteristic functions).
The main purpose of introducing these functions is to convert manipulations
involving sets into manipulations involving functions. i.e. turn a Boolean
algebra into a Boolean ring. Let us now recap some of its properties.
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Given a set S and a subset A ⊂ S, the indicator function of A, χA : S →
{0, 1} is defined by

χA(s) =
{

1 ifs ∈ A
0 if s /∈ A .

Closely related is the function

φA(s) = 1− 2χA(s) =
{

1 ifs ∈ A
−1 if s /∈ A .

Again, for subsets A,B,C, . . . of S and ∪,∩ and ⊕ stand for union,
intersection and the operation, “exclusive or (XOR)”, i.e. A⊕B = (A ∩
Bc) ∪ (B ∩Ac) and A⊕A = (A ∩Ac) ∪ (A ∩Ac) = ∅.

For real valued functions on S we define f ≤ g iff f(s) ≤ g(s) for all
s ∈ S. We shall also abbreviate χAi to χi, when necessary. Some of the
valuation maps associated with indicator functions are demonstrated below.

1. χA∪B = χA + χB − χA∩B φA∪B = φA + φB − φA∩B (1-valuations)

2. χA⊕B = χA + χB − 2χAχB (2-valuation) , φ(A⊕B) = φA.φB

3. χ provides a commutative valuation on (P(X),∪,∩) with α = 1 and
as such the derivation of (12) holds. It is traditional to derive this as

χ∪Ai = 1− χ∩Ac
i

= 1−
n∏
i=1

(1− χAi) = σ1 − σ2 + · · ·+ (−1)n−1σn,

which rewrites as

χ∪Ai =
n∑
1
χi −

∑
i<j

χiχj +
∑
i<j<k

χiχjχk + · · ·+ (−1)n−1χ1χ2 . . . χn .

(17)

4. Since χ is a 2-valuation with α = 2 on (P(X),⊕,∩) with ⊕ = XOR,
we have from (11)

χ⊕n
i=1Ai = σ1 − 2σ2 + 4σ3 + · · ·+ (−1)n−12n−1σn.

5.
n∑
k=1

∏
i 6=k

(1 − χi) =
n∑
k=1

∏
i 6=k

χAc
i

=
n∑
k=1

χ(
⋂

i 6=k

Ac
i ) =

n∑
k=1

χ(
⋃

i 6=k

Ai)c = n −

n∑
k=1

χ⋃
i 6=k

Ai
,

which parallels Lagrange interpolation.
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6. Since indicator functions are multiplicative and act on sets, the val-
uation inequalities can also be derived using combinatorics. This is
instructive in its own right. The valuation inequalities for indicator
functions take the following forms,

(i) χ∪Ai ≤
n∑
1
χi

(ii) χ∪Ai ≥
n∑
1
χi −

∑
i<j

χiχj

(iii) χ∪Ai ≤
n∑
1
χi −

∑
i<j

χiχj +
∑

i<j<k
χiχjχk

(iv) χ∪Ai ≥
∑r
k=1(−1)k−1 ·

∑
1≤i1<···<ik≤n

χi1χi2 . . . χik when r is even

(v) χ∪Ai ≤
r∑

k=1
(−1)k−1 ·

∑
1≤i1<···<ik≤n

χi1χi2 . . . χik when r is odd.

To prove these using sets, it suffices to show the inequality at any point
s in the union. Now the union ∪Ai is made up of 2n disjoint subsets
(called atoms or petals) of the form Bi = A1∩A2 · · ·∩Ai∩Aci+1 · · ·∩Acn
etc. and it suffices to show that the inequalities hold for for some fixed
s ∈ Bi. For the remaining subsets the result follows by symmetry. As
an example we consider the case where r = 3.
If s ∈ B1 = A1 ∩A2 · · · ∩Ai ∩Aci+1 · · · ∩Acn then s ∈ A1 ∩A2 · · · ∩Ai
and the left hand side which equals χ∪Ai(s) yields the value 1. On the
other hand the right hand side gives the value:

(i
1
)
−
(i

2
)

+
(i

3
)
. The

result now follows from the binomial identity

r∑
k=0

(−1)k
(
i

k

)
=
{

0 if r = i(i−1
r

)
(−1)r if r < i.

(18)

This yields the desired inequalities:
(i)
(n

0
)
≥
(n

1
)
−
(n

2
)

+ · · ·+ (−1)r−1(n
r

)
when r is even and

(ii)
(n

0
)
≤
(n

1
)
−
(n

2
)

+ . . . + (−1)r−1(n
r

)
when r is odd.

7 Multiplicative Formulae for α-valuations

Let f be an α-valuation on (S,+, ·). We begin by noting that if α = 1 + ε
where ε ≥ 0, then

f(a+b)f(a ·b) = f(a)f(b)− [f(a)−f(a ·b)][f(b)−f(a ·b)]−ε[f(a ·b)]2 (19)
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and also

α.f(a+ b)f(a · b) = f(a)f(b)− [f(a)− αf(a · b)][f(b)− αf(a · b)]. (20)

These immediately imply the following In-Ex inequalities.

Corollary 7.1. (I) If f(a · b) ≤ f(a) then

f(a+ b)f(a · b) ≤ f(a)f(b)− ε[f(a · b)]2 ≤ f(a)f(b) . (21)

If α = 1 then

f(a+ b)f(a · b) = f(a)f(b) iff f(a) = f(a · b) = f(b).

If α > 1 then

f(a+ b)f(a · b) = f(a)f(b) iff f(a) = f(a · b) = f(b) = 0.

(II) If αf(a · b) ≤ f(a) with α > 1, then

αf(a+ b)f(a · b) = f(a)f(b) iff f(a) = αf(a · b) = f(b) .

Corollary 7.2. (i) If f(a · b) ≤ f(a), then

f(a+ b)f(a · b) ≤ f(a)f(b)− ε[f(a · b)]2 ≤ f(a)f(b) . (22)

(ii) If αf(a · b) ≤ f(a) then

f(a+ b)f(a · b) ≤ 1
α
f(a)f(b) . (23)

Needless to say, when α ≥ 1, the assumption that αf(a · b) ≤ f(a) is
much stronger than that of f(a·b) ≤ f(a). In particular, for XOR operation,
this will generally NOT be true.

Examples with α = 1 and ε = 0

(i) If (S,+, ·) = (F (X),∪,∩) and f(·) = #(·), then we have

#(A∪B).#(A∩B) = #(A).#(B)−#(Ac∩B)#(A∩Bc) ≤ #(A).#(B) (24)

(ii) If S = F , a σ-field in P(X), (+, ·) = (∪,∩) and f(·) = P (·) a probability
measure, then

P (A∪B)P (A∩B) = P (A)P (B)−P (Ac∩B)P (A∩Bc) ≤ P (A)P (B) (25)
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(iii) If S = R, (+, ·) = (max,min) and f = identity, then

max(a, b) ·min(a, b)) = a · b− (a−min{a, b})(b−min{a, b}) = ab (26)

The latter follows from the fact that a−min{a, b} = max{a−b, 0}, therefore
we get to [a−min{a, b}][b−min{a, b}] = 0 .

(iv) Applying (iii) to integer prime powers we arrive at

[a, b](a, b) = a · b.

As such we actually have equality in the latter two “inequalities”.

(v) Let S be the collection of all subspaces of a vector space U , with V +W
being the vector space direct sum and V ·W = V ∩W . Then f(V ) = dim(V )
is a valuation on S, and

dim(V1+V2)dim(V1∩V2) = dim(V1)dim(V2)− [dim(V1)−dim(V1 ∩ V2)]
×[dim(V1)−dim(V1 ∩ V2)]

≤ dim(V1)dim(V2).

8 InEx equalities and inequalities for n ≤ 3.

Consider InEx equation for three elements

f(a+ b+ c) = f(a) + f(b) + f(c)− α[f(ab) + f(ac) + f(bc)] + α2f(abc) .

There are numerous equalities that follow from it, and some of these are non-
trivial. Also the difference between the cases where α = 2 (XOR operation)
and α 6= 2 becomes striking.

8.1 InEx equalities

We first present some of necessary equalities that must hold as a consequence
of InEx for an α-valuation with α ≥ 1.

1. f(ab+ a) = f(a)− (α− 1)f(ab) ≥ f(a),
which we refer to as a “weak version” of InEx. This in turn implies

2. f(a+ a) = (2− α)f(a) and thus f(a+ a) = f(a) iff α = 1.
For the XOR operation, this means that f(a+ a) = 0.

3. f(a+ b+ b) = f(a) + (2− α)f(b)− α(2− α)f(ab).

Boletim da SPM 76, Dezembro 2018, pp. 89-112



R.E. Hartwig, Min Kang 107

4. We also have

f(ab+ ac) = f(ab+ ac+ bc) + α(2− α)t− f(bc)
= f(ab+ c) + f(ac)− f(c) . (27)

where t = f(abc). Now if αf(ab) ≤ f(b) for all a and b then αt ≤ f(ab)
as well as αt ≤ f(ac). We then have f(ab+ac) = f(ab)+f(ac)−αt ≥
αt+ αt− αt = αt. In particular, for α ≥ 1,

f(abc) ≤ αf(abc) ≤ f(ab+ ac).

5. The following identities follow from InEx and can actually be used to
characterize it for an α-valuation.

f(a)− f(ab+ ac) = f(a+ c)− f(ab+ c) + (α− 1)f(ac)
= f(a) + f(c)− f(ac)− f(ab+ c). (28)

Lemma 8.1. The following are equivalent for α ≥ 1 and n = 3:

(i) InEx identity
(ii) f(a)− f(ab+ ac) = f(a+ c)− f(ab+ c) + (α− 1)f(ac) and

f(ab+ a) = (1− α)f(ab) + f(a)
(29)

Proof. The necessity follows from the above equalities (28). For suffi-
ciency, suppose (29) holds, and set c = b. Then we get f(a)− f(ab+
ab) = f(a + b) − f(ab + b) + (α − 1)f(ab) in which we substitute the
weak InEx identity f(ab+ b) = (1−α)f(ab) + f(b) to give the desired
result.

8.2 InEx Inequalities

We next come to some of the inequalities spawned by InEx. First, we note
that f(a+ b)− f(a) = f(b)− αf(ab), with α ≥ 1, ensures that

αf(ab) ≤ f(b)⇔ f(a) ≤ f(a+ b). (30)

A useful consequence is

Corollary 8.1.

t = f(abc) ≤ αf(abc) ≤ f(ab) ≤ f(ab+ ac). (31)
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We also have

Lemma 8.2. Let αf(ab) ≤ f(a) with α ≥ 1. Then all the following state-
ments hold.

(i) f(ab) ≤ f(a) for all a and b,

(ii) f(a(b+ c)) ≤ f(a) for all a,b and c,

(iii) f(ab+ c) ≤ f(b) + f(c)− f(bc) for all a,b and c,

(iv) f(ab+ c) ≤ f(b+ c) + εf(bc) for all a,b and c,

(v) f(ab)−αf(abc) ≤ f(b)−f(bc) for all a,b and c (monotonicity inequality)

Proof. (i) holds and also clearly (i) implies (ii). The equivalence of (ii), (iii)
and (iv) follows at once from the identity:

0≤f(b)−f(ab+bc) = f(b+c)−f(ab+c)+εf(bc)=f(b)+f(c)−f(bc)−f(ab+c).

The equivalence of (ii) and (v) follows from the identity

0 ≤ f(b)− f(ab+ bc) = f(b)− f(ab)− f(bc) + αf(abc).

For α = 1, we may combine Lemma 8.2 (v) with the inequality (30). In
addition, the monotone inequality corresponds to q ≤ q + r in the following
Venn diagram.

w

B

A

C

p q r

s
t
u

v

p q r

A B

Figure 1: Three sets

Furthermore, it is clear from (30) that

0 ≤ α2f(abc) ≤ αf(ab) ≤ f(a)

and

3α2f(abc) ≤ α[f(ab) + f(ac) + f(bc)] ≤ [f(a) + f(b) + f(c)] .
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8.3 Generalizations of the InEx Inequality to 3-d.

Let us now examine possible generalization of the 2-d InEx inequality

f(a+ b)f(ab) ≤ f(a)f(b) , (32)

to the sum f(a+ b+ c), assuming that α = 1 and f(ab) ≤ f(a).
There are numerous “sharp” generalizations, that all reduce to (32),

when two of the variables are set equal. We shall present three of these
under the assumption that the addition is also idempotent.

Our first method is to replace b by b + c in the inequality (32). This
gives

f(a+ b+ c)f [a(b+ c)] ≤ f(a)f(b+ c), (33)

which we combine with

f(abc) ≤ f(ab) ≤ f(ab+ ac) (34)

to arrive at

f(a+ b+ c)f(abc) ≤ f(a+ b+ c)f [a(b+ c)] ≤ f(a)f(b+ c) . (35)

Rotating the variables we may conclude that

f(a+ b+ c)f(abc) ≤ min{f(a)f(b+ c), f(b)f(a+ c), f(c)f(a+ b)}. (36)

This result is sharp, in the sense that if we set b = c, this reduces to

f(a+ b)f(ab) ≤ min{f(a)f(b), f(b)f(a+ b), f(b)f(a+ b)} = f(a)f(b) ,

as f(a) ≤ f(a+ b).
Alternatively, we may multiply (35) by f(bc) and use InEx identity for

n = 2, to arrive at

f(a+ b+ c)f(abc)f(bc) ≤ f(a)f(b+ c)f(bc) ≤ f(a)f(b)f(c) . (37)

Rotating the variables then yields

f(a+ b+ c)f(abc) max{f(ab), f(ac), f(bc)} ≤ f(a)f(b)f(c) . (38)

Setting b = c, shows that f(a + b)f(ab) max{f(ab), f(ab), f(b)} ≤
f(a)f(b)f(b), which reduces to (32). Based on the inequalities that we
have seen for the additive case, it would be natural to expect that for a
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sub-multiplicative valuation, with f(ab) ≤ f(a) and one may expect the
following to hold

f(a+ b+ c)f(ab)f(ac)f(bc) ≤ f(a)f(b)f(c)f(abc). (39)

However, numerical tests prove that this is not true, even for probability
measures. In fact, the inequality (39)

(t+ p+ q + r + s+ u+ v)(t+ q)(t+ s)(t+ u) ≤
≤ t(t+ p+ q + s)(t+ q + r + u)(t+ s+ u+ v) (40)

is violated when we set p = q = r = s = u = v = 1
10 and t = 1

100 for instance.
However, a slight perturbation from this does hold as below.

(t+ p+ q + r + s+ u+ v)[(t+ q)(t+ s)(t+ u)− qsu] ≤
≤ t[(t+ p+ q + s)(t+ q + r + u)(t+ s+ u+ v) + qsu]. (41)

We may re-express this as

f(a+ b+ c)[f(ab)f(ac)f(bc)− qsu] ≤ f(abc)[f(a)f(b)f(c) + qsu], (42)

where q = f(ab)− f(abc), s = f(ac)− f(abc) and u = f(bc)− f(abc). If we
set b = c, then q = 0, and we are back to n = 2 case.

Note that the outer layer of “petals” are p, r and v while the inner layer
is made up of q, s and u. The sum ab + ac + bc corresponds to the inner
“flower” of the Venn diagram, made up of the petals q, s, u and t. The proof
of the inequality (42) will be given later when we actually clarify when the
equality holds.

Examples

(i) For a probability measure, we may state:

P (A ∪B)P (A ∩B) ≤ P (A)P (B) (43)

with the equality holding if and only if P (A \B) = 0 = P (B \ A). Also we
have

P (A∪B∪C)P (A∩B∩C) ≤ min{P (A)P (B∪C), P (B)P (A∪B), P (C)P (A∪B)}
(44)

as well as

P (A∪B∪C)P (A∩B∩C) max{P (A∩B), P (A∩C), P (B∩C)} ≤ P (A)P (B)P (C).
(45)
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(ii) For a probability measure, the inequality (42) becomes

P (A ∪B ∪ C)
[
P (A ∩B)P (A ∩ C)P (B ∩ C)

−
[
[P (A ∩B)− P (A ∩B ∩ C)][[P (A ∩ C)− P (A ∩B ∩ C)] (46)
×[P (B ∩ C)− P (A ∩B ∩ C)]

]]
≤ P (A ∩B ∩ C)

[
P (A)P (B)P (C)

+[P (A ∩B)− P (A ∪B ∪ C)][P (A ∩ C)− P (A ∩B ∩ C)]
×[P (B ∩ C)− P (A ∩B ∩ C)]

]
,

which reduces to (43) when B = C.
To see when we actually achieve equality in (42), we start by expressing

both sides as polynomials in t. We let

(t+ p+ q + r + s+ u+ v)[(t+ q)(t+ s)(t+ u)− qsu]
= t4 + e3t

3 + e2t
2 + e1t+ e0 − f(a+ b+ c) · qsu

and set

t[(t+p+q+s)(t+q+r+u)(t+s+u+v)+qsu] = t4 +f3t
3 +f2t

2 +f1t+t.qsu .

For the two sides to be equal we must have

(f3− e3)t3 + (f2− e2)t2 + (f1− e1)t+ qsu.t+f(a+ b+ c).qsu− e0 = 0. (47)

Now note that f3 = e3 while f2 − e2 = (pu + qv + rs) + (pr + pv + rv),
e0 = [f(a+ b+ c)− t](qsu) and f1 − e1 = λ− 2qsu, where

λ = (pqv + pvu) + (prs+ pru) + (rsv + rvq) + (q2v + u2p+ s2r) + prv.

Substituting these gives

[(pu+ qv + rs) + (pr + pv + rv)]t2 + (λ− 2qsu)t+ (qsu)t+
+f(a+ b+ c)qsu− [f(a+ b+ c)− t]qsu = 0

and consequently
t[t(f2 − e2) + λ] = 0.

We can now conclude that the inequality (42) must hold since the difference
between the two sides in (41) is given by t[t(f2−e2)+λ], in which each term
is non-negative.

We close by examining the equality case. Indeed, since all terms are
non-negative, they must vanish and we have the following two cases.
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Case (i) t = 0 or Case (ii) t 6= 0. In the latter case we must have f2 = e2
and λ = 0.

The equality f2 = e2 ensures that

pu = 0, qv = 0, rs = 0, pr = 0, pv = 0, rv = 0. (48)

The first three contain “cross products” between inner and outer petals while
the latter three involve only the three outer petals. These conditions in turn
imply that λ = 0.

Let us close with some relevant comments and open questions.

9 Remarks and open Questions

1. We have seen a partial parallel between the additive and multiplicative
inequalities for valuations. It would be of interest to find more general
multiplicative inequalitiesfor valuations.

2. In how far does convexity play a role? We have met the consequences
of composing an evaluation map with the exponential functions. If
would be interesting to explore the composition of an evaluation map
with other convex or concave functions.

3. Investigations into sub-valuation for which f(a + b) ≤ f(a) + f(b) −
αf(a · b) would be of interest. The catch, however, is that inequalities
cannot be lined up in this case.

4. Do analogous inequalities exist for multinomial coefficients?

5. The derivation of the valuation inequalities may be done by replacing
the assumption that an additive inverse exists, by the assumption that
a partial order exists.
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