On Linear Equations in Modules

Patricia Couto G. Mauro
Universidade Federal da Integração Latino-Americana
Avenida Tancredo Neves, 6731
85867-970 Foz do Iguaçu, PR Brasil
e-mail: patricia.mauro@unila.edu.br
Dinamérico P. Pombo Jr.
Universidade Federal Fluminense
Rua Professor Marcos Waldemar de Freitas Reis, s/no. 24210-201 Niterói, RJ Brasil
e-mail: dpombojr@gmail.com

Resumo: Nesta nota obtemos uma condição necessária e suficiente para que uma equação linear proveniente de uma aplicação linear entre dois módulos sobre um anel principal admita uma solução.
Abstract: A necessary and sufficient condition for a linear equation arising from a linear mapping between two modules over a principal ring to admit a solution is established.
palavras-chave: anéis principais; módulos; equações lineares.
keywords: principal rings; modules; linear equations.

1 Introduction

It is known (p. 162 of [1]) that for a linear equation $u(x)=y_{0}$ arising from a linear mapping u between two vector spaces over a field and an element y_{0} of the codomain of u to admit a solution, it is necessary and sufficient that y_{0} be an element of the orthogonal of the kernel of the transpose of u. Nevertheless that fact cannot be extended to the context of modules. As a matter of fact, in Exercise 10, p. 265 of [1], the construction of a linear mapping u which is neither injective nor surjective and whose transpose is bijective is indicated. Therefore any element y_{0} of the codomain of u which does not belong to the image of u belongs to the orthogonal of the kernel of the transpose of u. The main purpose of this note is to obtain an extension of the above-mentioned result, valid in the context of modules over a principal ring, in whose statement the concept of dual of a module is understood in a known sense.

2 Linear equations in modules over a principal ring

Let R be an arbitrary principal ring, K the field of fractions of R and R_{0} the R-module K / R. Then R_{0} is an injective R-module [2, A X.18], a fact that will play a central role in our work (see the proof of Proposition 2.1). For each R-module E the dual of E is the R-module E^{\prime} of all R-linear mappings from E into R_{0} [4;7, p. 116]. For two arbitrary R-modules E, F and an arbitrary R-linear mapping u from E into F, u^{t} will denote the R-linear mapping from F^{\prime} into E^{\prime} defined by $u^{t}(\psi)=\psi \circ u$ for $\psi \in F^{\prime}$.

The next result will be important for our purposes.
Proposition 2.1 Let E be an R-module and $x \in E \backslash\{0\}$. Then there is $a \varphi \in E^{\prime}$ such that $\varphi(x) \neq 0$.

Proof: Since the result is well known when R is a field, we shall assume that R is not a field. Let $\pi: K \rightarrow R_{0}$ be the canonical surjection, $M=[x]$ and let $\theta \in K \backslash R$ be fixed. Since R_{0} in an injective R-module, the R-linear mapping

$$
v: \lambda x \in M \mapsto \pi(\lambda \theta) \in R_{0}
$$

can be extended to an R-linear mapping $\varphi \in E^{\prime}$. Moreover, $\varphi(x)=v(x)=$ $\pi(\theta) \neq 0$, which concludes the proof.

Definition 2.2 Let E be an R-module, $A \subset E$ and $B \subset E^{\prime}$. The orthogonal of A (resp. B) is the submodule $A^{\perp}=\left\{\varphi \in E^{\prime} ; \varphi(x)=0\right.$ for all $\left.x \in A\right\}$ of E^{\prime} (resp. $B^{\perp}=\{x \in E ; \varphi(x)=0$ for all $\varphi \in B\}$ of E).

Proposition 2.3 Let M be a submodule of an R-module E and $x \in$ $E \backslash M$. Then there exists a $\varphi \in E^{\prime}$ such that $\varphi \in M^{\perp}$ and $\varphi(x) \neq 0$.

Proof: Let $\pi: E \rightarrow E / M$ be the canonical surjection; $\pi(x) \neq 0$ because $x \notin M$. By Proposition 2.1, there is a $w \in(E / M)^{\prime}$ so that $w(\pi(x)) \neq 0$. Then $\varphi:=w \circ \pi \in E^{\prime}, \varphi \in M^{\perp}$ and $\varphi(x)=w(\pi(x)) \neq 0$.

Corollary 2.4 If M is a submodule of an R-module E, then $M=M^{\perp \perp}$, where $M^{\perp \perp}:=\left(M^{\perp}\right)^{\perp}$.

Proof: Obviously, $M \subset M^{\perp \perp}$. On the other hand, if $x \in E \backslash M$, Proposition 2.3 ensures the existence of a $\varphi \in M^{\perp}$ such that $\varphi(x) \neq 0$; consequently, $x \in E \backslash M^{\perp \perp}$.

Proposition 2.5 If u is an R-linear mapping from an R-module E into an R-module F and A is a subset of E, then $(u(A))^{\perp}=\left(u^{t}\right)^{-1}\left(A^{\perp}\right)$. In particular, $(\operatorname{Im}(u))^{\perp}=\operatorname{Ker}\left(u^{t}\right)$.

Proof: For $\psi \in F^{\prime}, \psi \in(u(A))^{\perp}$ if and only if $\left(u^{t}(\psi)\right)(x)=0$ for all $x \in A$, which is the same as $u^{t}(\psi) \in A^{\perp}$, which finally means that $\psi \in\left(u^{t}\right)^{-1}\left(A^{\perp}\right)$.

Corollary 2.6 For u as in Proposition 2.5, one has $\operatorname{Im}(u)=$ $\left(\operatorname{Ker}\left(u^{t}\right)\right)^{\perp}$.

Proof: By Corollary 2.4 and Proposition 2.5,

$$
\operatorname{Im}(u)=(\operatorname{Im}(u))^{\perp \perp}=\left((\operatorname{Im}(u))^{\perp}\right)^{\perp}=\left(\operatorname{Ker}\left(u^{t}\right)\right)^{\perp}
$$

Theorem 2.7 Let u be an R-linear mapping from an R-module E into an R-module F and $y_{0} \in F$. In order that the equation $u(x)=y_{0}$ admits a solution $x \in E$, it is necessary and sufficient that $y_{0} \in\left(\operatorname{Ker}\left(u^{t}\right)\right)^{\perp}$.

Proof: Follows immediately from Corollary 2.6.

In the special case where R is a discrete valuation ring, Theorem 2.7 was proved in [6] by means of topological arguments.

Finally we would like to mention that topological analogues of results obtained in the present note may be found, for example, in [3] and 5].

References

[1] N. Bourbaki, Algèbre, Chapitre 2, Troisième édition, Actualités Scientifiques et Industrielles 1236, Hermann, Paris, 1967.
[2] N. Bourbaki, Algèbre, Chapitre 10, Masson, Paris, 1980.
[3] J. Dieudonné, "La dualité dans les espaces vectoriels topologiques", Ann. Sci. Ecole Norm. Sup., No. 59 (1942), pp. 107-139.
[4] I. Kaplansky, "Dual modules over a valuation ring. I", Proc. Amer. Math. Soc., No. 4 (1953), pp. 213-219.
[5] P. C. G. Mauro e D. P. Pombo Jr., "Linearly topologized modules over a discrete valuation ring", Boll. Unione Mat. Ital., No. 7 (2015), pp. 253-278.
[6] P. C. G. Mauro e D. P. Pombo Jr., "Addendum to the paper "Linearly topologized modules over a discrete valuation ring"", Boll. Unione Mat. Ital., No. 10 (2017), pp. 591-594.
[7] P. Samuel, Théorie Algébrique des Nombres, Collection Méthodes, Hermann, Paris, 1967.

