
On the area-preserving Domain-Straightening
Theorem

Mário Bessa and Pedro Morais
Universidade da Beira Interior
Rua Marquês d’Ávila e Bolama
6201-001 Covilhã, Portugal
e-mail: bessa@ubi.pt,pmorais@ubi.pt

Resumo: O clássico teorema da retificação do domínio no plano garante
que, sob determinadas condições de não degeneracidade da derivada da fun-
ção f : R2 → R num ponto p existem abertos U e V de R2, p ∈ V e um
difeomorfismo h : U → V tal que f ◦ h tem todas as suas curvas de nível em
h−1(V ) contidas em retas. Provamos que tal deformação h pode ser feita
preservando a área.

Abstract: The classical Domain-Straightening Theorem on the plane says
that under a non-degeneracy condition on the derivative of a map f : R2 → R
in a point p there exists a neighborhood V ⊂ R2 of p, U ⊂ R2 and a
diffeomorphism h : U → V such that f ◦ h has all level curves in h−1(V )
defined by straight lines. We prove that such deformation h can be made
area-preserving.
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1 Area-preserving flowbox theorem
There is a lemma in Celestial Mechanics which says that there are no per-
fect coordinate systems. Indeed, the problem that we have at hand can be
made extremely simple just by picking the right coordinates. It is no coin-
cidence that this observation came accross in this particular area which is
rich on imposing constraints related with the invariance of volume forms,
symplectic forms, contact forms, et cetera. Yet, we may wonder why there
is the need for coordinate systems preserve some invariants? Actually, when
working with perturbations of flows/vector fields it is convenient to have
good coordinates to perform perturbations explicitly, furthermore, once we
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perturb maintaining the invariant (e.g. volume form) we would like to ‘re-
turn’ to the initial scenario and so we are keenly interested that these change
of coordinates keep the geometric invariant unchanged, otherwise they are
completely useless. Let us consider a simple and enlightening example re-
lated with a perturbation of an orbit of a planar flow F t associated to a
divergence-free vector field F : R2 → R2 (i.e. (F t)′ = F and ∇ · F = 0).
From Liouville’s formula we know that

detDqF
t = exp

(∫ t

0
∇ · F (F s(q)) ds

)
, (1)

for all q ∈ R2 and t ∈ R. Hence ∇ · F = 0 implies that detDqF
t = 1 and so

F t preserves the area. When perturbing the F t orbit of a point we begin by
perturbing F by F̂ however we must keep ∇ · F̂ = 0 otherwise, by (1), F̂ t

may no longer preserve the area. This can be a hard task but if we, by some
manner or means, could begin with a trivial divergence-free vector field like
F = (1, 0), even defined in a neighborhood of the points we want to perturb,
then we fairly simplify our problem.

When trivializing coordinates are considered the examples are immense
and just to mention some we have: Darboux charts on contact and also
symplectic forms [9, 1], the generalization of Darboux charts (Carathéodory-
Jacobi-Lie theorem) [11], the volume-preserving Moser charts [14]; the flow-
box theorems on R-actions (i.e. flows) proved in [1] for the general case,
proved in [3] for the volume-preserving case followed by [2, 7] and proved in
[15, 1] for Hamiltonian flows followed by [4, 6]; flowbox-like theorems on Rn-
actions [11] followed by the symplectic [13] and also the volume-preserving
counterpart [5]. The examples continue on and on as the quadratic charts
provided by Morse and Morse-Palais lemmas [10] show. Here we will be in-
terested in conservative coordinates and in particular in the area-preserving
Domain-Straightening Theorem. A proof of this theorem aka canonical form
for a submersion and without any kind of area-preserving constraits can be
found in lots of places e.g. [12, § 8]. In brief terms it says that if f : R2 → R
has a nonzero derivative at p, then f can be ‘straightened out’ that is to say
that around p its level curves can be transformed into lines under a suitable
change of coordinates. Here the novelty is that we perform the straightened
in a conservative fashion (see Theorem 2) and so we begin by proving a
flowbox theorem for area-preserving flows. Since we are dealing with flows
in R2 the proof can be simplified avoiding the use of Dacorogna-Moser PDE
(see [8]) as it was used e.g. in [3, 5]. Given a diffeomorphism ϕ let ϕ∗ ∂

∂x

stand for the push-forward of ∂
∂x := (1, 0) by ϕ.
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Theorem 1 (Area-preserving flowbox theorem) Let be given an open
set A ⊂ R2, a Cr (r ≥ 1) divergence-free vector field F : A→ R2 and p ∈ A
such that F (p) 6= ~0. Then there exist open sets U and V and a Cr area-
preserving diffeomorphism ϕ : U → V such that p ∈ V and ϕ∗ ∂

∂x = F for all
q ∈ U .

Proof:
No loss of generality comes from assuming p = ~0 and F (p) = ∂

∂x . Let
F t = (F t

1, F
t
2) be the flow associated to F = (F1, F2). Clearly, there exists

a vertical transversal section {0}×]− ε, ε[ through p for some ε > 0. Let us
consider now, for a small ε̂ > 0, a diffeomorphism φ̂ : ] − ε̂, ε̂[→] − ε, ε[ such
that φ̂(0) = 0. Consider a small neighborhood U of ~0 on which makes sense
the following definition: given (x̂, ŷ) ∈ U let ϕ̂(x̂, ŷ) = F x̂(0, φ̂(ŷ)). Taking
x̂ = 0 we have ∂

∂ŷF
x̂
1 (0, φ̂(ŷ)) = 0 and also ∂

∂ŷF
x̂
2 (0, φ̂(ŷ)) = ∂

∂ŷ φ̂(ŷ) = φ̂′(ŷ).
Thus computing the derivatives when x̂ = 0 and taking into account that
the first column is the time-derivative of a flow, say the vector field, we
obtain:

D(0,ŷ)ϕ̂ =
(
F1(F 0(0, φ̂(ŷ))) 0
F2(F 0(0, φ̂(ŷ))) φ̂′(ŷ)

)
(2)

and
detD(0,ŷ)ϕ̂ = φ̂′(ŷ)F1(0, φ̂(ŷ)). (3)

Since we would like to have detDϕ̂(0, ŷ) = 1 we need to solve the first order
differential equation, with initial condition φ̂(0) = 0, given by

φ̂′(ŷ) = 1
F1(0, φ̂(ŷ))

, (4)

and reescaling the domain a little bit if necessary. By transversality and
smoothness assumptions, (4) has a unique solution φ. Finally, for (x̂, ŷ) ∈ U ,
we define the diffeomorphism ϕ : U → V by

ϕ(x̂, ŷ) = F x̂(0, φ(ŷ)). (5)

Using the chain rule we get:

D(x̂,ŷ)ϕ = D(x̂,ŷ)F
x̂(0, φ(ŷ)) = D(x̂,ŷ)F

x̂ϕ(0, ŷ) = Dϕ(0,ŷ)F
x̂ ·D(0,ŷ)ϕ. (6)

Using the multiplicative property of the determinant, the fact that F is
divergence-free, (2) equipped with the solution φ of (4), and Liouville’s
formula

detDqF
x̂ = exp

(∫ x̂

0
∇ · F (F t(q)) dt

)
(7)
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we obtain:

detD(x̂,ŷ)F
x̂(0, φ(ŷ)) = detDϕ(0,ŷ)F

x̂ · detD(0,ŷ)ϕ = 1.

We are left to see that F is the push-forward of ∂
∂x by ϕ. This means

that F (q) = Dϕ ∂
∂x(ϕ−1(q)). Recall that ∂

∂x := (1, 0). Let (x, y) = ϕ(x̂, ŷ).
Noticing that DqF

t · F (q) = F (F t(q)) we obtain,

ϕ∗
∂

∂x
(x, y) = D(x̂,ŷ)ϕ

∂

∂x
ϕ−1(x, y) = D(x̂,ŷ)ϕ

∂

∂x
(x̂, ŷ)

(6)= Dϕ(0,ŷ)F
x̂ ·D(0,ŷ)ϕ · (1, 0) = Dϕ(0,ŷ)F

x̂ F (ϕ(0, ŷ))

= F (F x̂(ϕ(0, ŷ))) = F (F x̂(0, φ(ŷ))) (5)= F (ϕ(x̂, ŷ)). �

2 Area-preserving Domain-Straightening Theo-
rem

Formaly, the Domain-Straightening Theorem says that given an open set
A ⊂ R2, a Cr (r ≥ 2) function f : A→ R and p ∈ A such that f(p) = 0 and
∇f(p) 6= ~0, then there exist open sets U and V and a Cr diffeomorphism
h : U → V such that p ∈ V and f ◦ h(x, y) = y for all (x, y) ∈ U . By
making use of Theorem 1 and a somehow subtly trivial property of the vector
perpendicular to the gradient and with the same norm (see (8) bellow) we
will obtain:

Theorem 2 (Area-preserving Domain-Straightening Theorem)
Let be given an open set A ⊂ R2, a Cr (r ≥ 2) function f : A → R and
p ∈ A. If f(p) = 0 and ∇f(p) 6= ~0, then there exist open sets U and V
and an area-preserving Cr diffeomorphism h : U → V such that p ∈ V and
f ◦ h(x, y) = y for all (x, y) ∈ U .

Proof:
We assume that p = ~0. Take a neighborhood V ⊂ R2 of p such that ∇f(q) 6=
~0 for all q ∈ V . Let ∇f(q) =

(
∂f
∂x (q), ∂f

∂y (q)
)
and we consider the vector field

tangent to the level curves of f defined as ∇⊥f(q) =
(

∂f
∂y (q),−∂f

∂x (q)
)
for

q ∈ V . By Clairaut-Schwarz theorem we have

div(∇⊥f(q)) = ∇ · ∇⊥f(q) = 0 (8)

and so, by (7), the flow formed by the integral curves of ∇⊥f is area-
preserving. Take h = ϕ given by Theorem 1. We are left to check that
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f ◦ h(x, y) = y for all (x, y) ∈ U . We take partial derivatives and in one
hand we get

D(x,y)(f◦ϕ)·(1, 0) = Dϕ(x,y)f ·D(x,y)ϕ·(1, 0) = ∇f(ϕ(x, y))·∇⊥f(ϕ(x, y)) = 0.

On the other hand we have

D(x,y)(f ◦ ϕ) · (0, 1) = Dϕ(x,y)f ·D(x,y)ϕ · (0, 1) = ∇f(ϕ(x, y)) · (0, φ′(y))

= ∂f

∂y
(ϕ(x, y))φ′(y) = 1,

by (4) and taking in consideration that the first component of the vector
field ∇⊥f is ∂f

∂y (ϕ(x, y)). As ϕ(0, 0) = F 0(0, 0) = ~0 and p = ~0 we get
f ◦ ϕ(x, y) = y for all (x, y) ∈ U . �
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