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Resumo: Este artigo apresenta a aplicação do estudo sobre o método de
BenTaher-Rachidi para a resolução de sequências numéricas lineares e recor-
rentes de ordem superior. Assim, obtém-se a fórmula de Binet, pelo método
de BenTaher-Rachidi, nas sequências de Lucas, Pell, Leonardo, Mersenne,
Oresme, Jacobsthal, Padovan, Perrin e Narayana.
Abstract This article presents the application of the study on the
BenTaher-Rachidi method for the solving of linear and recurrent numer-
ical sequences of higher order. Thus, Binet’s formula is obtained, using
the BenTaher-Rachidi method, in the sequences of Lucas, Pell, Leonardo,
Mersenne, Oresme, Jacobsthal, Padovan, Perrin and Narayana.
palavras-chave: fórmula de Binet; método BenTaher-Rachidi; método
tradicional; sequências numéricas.
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1 Introduction
Sequences have been extensively studied in mathematical literature over
the years due to their wide applicability. A linear recursive sequence is
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defined as one that has an infinite number of terms, generated by a linear
recurrence, called the recurrence formula, which allows the calculation of
its immediate predecessor terms. However, this recurrence is not the only
way to define linear recursive sequences, and it is still necessary to know its
initial elements.

You can extract several properties and theorems from the recurrence
of a sequence. There are several methods of solving a recurrence taking
into account its characteristics: linear, non-linear, homogeneous and non-
homogeneous order [8]. It is possible to obtain the terms of a sequence
without the need to apply the recurrence formula, that is, through the gen-
erating matrix or other mechanisms, such as Binet’s formula.

Usually, when using Binet’s formula, the solving of a linear system is
necessary, however [15] present a technique that consists of finding the nec-
essary terms without using a linear system for cases in which there is a
matrix of Vandermonde. With that, [8] presented a comparison between
the traditional method of solving a recurrence with the BenTaher-Rachidi
method.

Continuing the work of [8], we will introduce the traditional and
BenTaher-Rachidi’s methods of solving a recurrence, and we will also present
linear sequences that fulfilled a recurrence, whose characteristic polynomial
has simple roots, namely: Lucas sequence, Pell, Leonardo, Mersenne, Jacob-
sthal, Padovan, Perrin and Narayana. The BenTaher-Rachidi method will
also be applied to these sequences in order to obtain their respective Binet’s
formulas using this alternative method presented.

2 Methods of resolving a recurrence
Primarily, Binet’s formula was described in terms of another formula, in-
troducing the notion of Binet’s factorial formula. However, its resolution
is still linked to the resolution of linear systems, which can be solved using
the Vandermonde system. Thus, we have that each numerical sequence of
the linear and recurrent type presents its respective characteristic polyno-
mial. Therefore, it is necessary to know their respective roots to perform
the calculation of the Binet’s formula. Generally, for this calculation using
the traditional method, one has to solve the Vandermonde system or invert
the associated matrices, making the calculation difficult. Therefore, another
method, called the BenTaher-Rachidi method, is then studied, facilitating
this mathematical calculation [15].
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2.1 Traditional method

In [8], we can find two methods of solving a recurrence. The first, called
traditional method, consists of using the formula,

Vn =
s∑

i=1

mi−1∑
j=0

βi,jn
j

λn
i , (1)

for n ≥ 0, which βi,j are coefficients determined through a linear system of r
equations that are used as boundary condition the coefficients (Vj)0≤j≤r−1,
and s is the number of distinct roots of the polynomial characteristic of the
given recurrence.

As a way of exemplifying, the resolution for the Fibonacci sequence,
presenting its recurrence formula Fn = Fn−1 + Fn−2, n ≥ 2, with F0 =
0, F1 = 1 characteristic polynomial λ2 − λ − 1 = 0, whose roots are λ1 =
1−
√

5
2 , λ2 = 1+

√
5

2 . Using the formula presented in Equation 1, we have that:
Fn = β1,0λ

n
1 + β2,0λ

n
2 . For this, it is necessary to calculate the values of the

coefficients β1,0 and β2,0. Therefore, it is possible to integrate the data of
the polynomial with the recurrence formula, to then assemble a system of
equations, such as {

β1,0 + β2,0 = F0
λ1β1,0 + λ2β2,0 = F1

For that, it is necessary that the system of equations be solved, which
presents difficulties for the calculation of sequences of higher order than
the second order.

Thus, solving the determined system, we have that

β1,0 = − 1
λ2 − λ1

= − 1√
5

and β2,0 = 1
λ2 − λ1

= 1√
5

Finally, the Binet’s formula of the Fibonacci sequence is given by

Fn = 1√
5

[(
1 +
√

5
2

)n

−
(

1−
√

5
2

)n]
.

In [15], it is possible to establish some new expressions of the Binet’s for-
mula for the sequences without using the resolution-based approach of the
linear system, therefore approaching a method based only on combinatorial
expression of sequences.

In this work, it is possible to find variations in the resolutions of the
Binet’s formula, be they: for the simple roots of the equation, for roots
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with multiplicities and for sequences of orders greater than or equal to two.
Nevertheless, applications of these new expressions of Binet’s formula are
presented to solve the usual linear systems of Vandermonde equations. Fur-
thermore, explicit formulas are obtained for the inverse entries of their as-
sociated matrices. Illustrative examples and a comparison is made with two
current methods and some numerical aspects of the results that have been
presented.

2.2 BenTaher-Rachidi method

The second method discussed is the BenTaher-Rachidi method, which is
a technique presented in [15]. This method consists of finding the coefficients
βi,0 of the linear system (2), without the need to use a linear system for cases
in which A is a Vandermonde matrix.

β1,0 + β2,0 + · · ·+ βr,0 = V0
λ1β1,0 + λ2β2,0 + · · ·+ λrβr,0 = V1

...
λr−1

1 β1,0 + λr−1
2 β2,0 + · · ·+ λr−1

r βr,0 = Vr−1

(2)

This linear system can be written as Ax = b, where A is a Vandermonde ma-
trix, x is the unknown vector βi,0 and b is the vector of conditions recurrence
contour.

Furthermore, it is worth noting that a Vandermonde matrix is defined
by a square matrix in which each column (or row) is a geometric progression
where the first term is 1. 

1 1 · · · 1
λ1 λ2 · · · λm

...
λm

1 λm
2 · · · λm

m

 .

Thus, the solution of a homogeneous linear recurrence whose characteristic
polynomial has only simple roots is given by the equation,

Vn =
r∑

i=1

1
p′(λi)

r−1∑
p=0

Ap

λp+1
i

λn
i , (3)

for n ≥ r, where Ap = ar−1Vp + · · ·+ apVr−1.
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It is noteworthy that this BenTaher-Rachidi method does not require the
resolution of a linear system. Thus, in the article [8], this method is applied
to solve the polynomial characteristic of the Fibonacci sequence, thus finding
the Binet’s formula of this sequence. Furthermore, a comparison was made
with the traditional method to show that it is possible to arrive at the same
solution regardless of the method used.

With this, next, we will solve the polynomial characteristic of other
linear sequences to present a new obtainment of the Binet’s formula of these
sequences.

3 Application of the BenTaher-Rachidi method
In this section, the BenTaher-Rachidi method will be applied to the numeri-
cal sequences of linear and recurring character, establishing a new alternative
for the calculation of the Binet formula. Emphasizing that the respective
application for the Fibonacci sequence has already been carried out in the
work of [8], then the Lucas, Pell, Leonardo, Mersenne, Oresme, Jacobsthal,
Padovan, Perrin and Narayana sequences are addressed.

3.1 Lucas Sequence

Lucas’s sequence was developed by French mathematician Édouard Ana-
tole Lucas (1842-1891), in which he made some mathematical contributions
such as the well-known Tower of Hanoi [2]. And yet, the mathematician
performed tests for prime numbers based on linear and recurring sequences,
thus establishing a relationship of the twelfth prime number of Mersenne,
a 39-digit number that remained the largest prime number for many years,
and being the highest prime number found without the aid of computational
and technological resources [14].

Lucas studied the Fibonacci sequence and in one of his generalizations,
created the Lucas sequence, where he changed only the two initial values to
2 and 1, remaining with the same recurrence. The Lucas numbers form a
second order sequence, linear and recurring, having its recurrence formula
Ln = Ln−1 + Ln−2, for n ≥ 2, with L0 = 2 and L1 = 1. Its characteristic
polynomial is identical to that of Fibonacci, x2 − x − 1, having the same
roots and presenting the same relationship with the gold number. Thus,
Binet’s formula for the Lucas sequence is given by, [13],

Ln =
(

1 +
√

5
2

)n

+
(

1−
√

5
2

)n

(4)
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Using the characteristic polynomial p(λ) = λ2 − λ − 1, deriving p we get
the polynomial p′(λ) = 2λ − 1 and we can calculate p′(λ1) = −

√
5 and

p′(λ2) =
√

5.

Using the boundary conditions, we can calculate A0 = a1L0 + a0L1 = 3
and A1 = a1L1 = 1, where a0 = 1 and a1 = 1, given by the coefficients
of the recurrence relation. With that, using the formula (3), recurrence is
given by

Ln = 1
p′(λ1) .

(
A0

λ0+1
1

+ A1

λ1+1
1

)
λn

1 + 1
p′(λ2) .

(
A0

λ0+1
2

+ A1

λ1+1
2

)
λn

2

By replacing the previously obtained values, it is possible to obtain

Ln = 1
−
√

5

 3[
1−
√

5
2

]1 + 1[
1−
√

5
2

]2


(

1−
√

5
2

)n

+ 1√
5

 3[
1 +
√

5
2

]1 + 1[
1 +
√

5
2

]2


(

1 +
√

5
2

)n

= 1
−
√

5

(
3.2(1−

√
5) + 4

(1−
√

5)2

)(
1−
√

5
2

)n

+ 1√
5

(
3.2(1 +

√
5) + 4

(1 +
√

5)2

)(
1 +
√

5
2

)n

=
(

6
√

5− 10
6
√

5− 10

)(
1−
√

5
2

)n

+
(

10 + 6
√

5
10 + 6

√
5

)(
1 +
√

5
2

)n

=
(

1−
√

5
2

)n

+
(

1 +
√

5
2

)n

resulting in the same answer obtained in Equation (4).

3.2 Pell Sequence

Pell’s sequence carries this name in honor of the English mathematician
John Pell (1611-1685), known for being extremely reserved, which made
him recognized as one ot the most enigmatic mathematicians of the 17th
century [9]. In [2], Pell acquired credit for the development of the study of
Pell’s equations, or Diophantine equation, described by x2 −Ay2 = 1, with
x and y numbers integers and A not squared whole.
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Pell’s sequence was already known in Greek antiquity around 100 years
after Christ, as part of an ancient algorithm to create successive approxi-
mations to

√
2, known as Theon’s ladder. This sequence has the recurrence

formula defined by Pn = 2Pn−1 + Pn−2, n ≥ 2 and its initial values are
P0 = 0 and P1 = 1.

This sequence has a characteristic polynomial defined by x2−2x−1 = 0
where one root is positive, known as the silver number (2.41), and its other
root is a negative number [2]. This silver number represents the convergence
relationship between the neighboring terms of the sequence. From the poly-
nomial characteristic of the Pell sequence, it is possible to obtain its Binet’s
formula, by the traditional method, as was done in [11]. With that, we have
that its Binet’s formula is presented as

Pn = (1 +
√

2)n − (1−
√

2)n

2
√

2
(5)

Now, using the BenTaher-Rachidi method and using the characteristic poly-
nomial p(λ) = λ2 − 2λ− 1, deriving p we get the polynomial p′(λ) = 2λ− 2
and we can calculate p′(λ1) = −2

√
2 and p′(λ2) = 2

√
2.

Using the boundary conditions, we can calculate A0 = a1P0 + a0P1 = 2
and A1 = a1P1 = 1, where a0 = 2 and a1 = 1, given by the coefficients of
the recurrence relation. Thus, using the formula (3), the recurrence is given
by

Pn = 1
p′(λ1)

(
A0

λ0+1
1

+ A1

λ1+1
1

)
λn

1 + 1
p′(λ2)

(
A0

λ0+1
2

+ A1

λ1+1
2

)
λn

2

By replacing the previously obtained values, it is possible to obtain:

Pn = 1
−2
√

2

(
2

(1−
√

2)1
+ 1

(1−
√

2)2

)
(1−

√
2)n

+ 1
2
√

2

(
2

(1 +
√

2)1
+ 1

(1 +
√

2)2

)
(1 +

√
2)n

= 1
−2
√

2

(
2− 2

√
2 + 1

(1−
√

2)2

)
(1−

√
2)n + 1

2
√

2

(
2 + 2

√
2 + 1

(1 +
√

2)2

)
(1 +

√
2)n

= 1
−2
√

2

(
3− 2

√
2

3− 2
√

2

)
(1−

√
2)n + 1

2
√

2

(
3 + 2

√
2

3 + 2
√

2

)
(1 +

√
2)n

= 1
2
√

2
[(1 +

√
2)n − (1−

√
2)n]

resulting in the same answer obtained in Equation (5).
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3.3 Leonardo Sequence

Historically, little is known about Leonardo’s sequence. The authors of [2]
believe that these numbers were studied by Leonardo de Pisa, known as
Leonardo Fibonacci, and, therefore, has not been proven in any work in
the literature, due to the lack of research related to that sequence. This
sequence is very similar to the Fibonacci sequence, including a relationship
between Leonardo’s numbers and Fibonacci numbers. This relationship is
defined by [7] as Len = 2Fn+1 − 1.

Leonardo’s sequence was initially presented by [7], in which there are
two recurrences for this sequence, namely: Len = Len−1 + Len−2 + 1 and
Len = 2Len−1 − Len−3, for n ≥ 2, being Le0 = Le1 = 1. Its characteristic
polynomial is given by x3− 2x2 + 1 = 0, in which there are three real roots,
one equal to 1 and the other two equal to the roots of the characteristic

Fibonacci equation, x2 = 1 +
√

5
2 and x3 = 1−

√
5

2 [2, 17]. It is worth
mentioning that these Leonardo numbers have their convergence relation
between the neighboring terms of the sequence as being the gold number
(1.61), as well as the result of one of its real roots. As for their Binet’s
formula, [7] define it using the relationship Len = 2Fn+1−1 and the Binet’s
formula of the Fibonacci sequence. With that, we have that the Binet
formula for Leonardo’s sequence is given by

Len = 2
(
xn+1

2 − xn+1
3

x2 − x3

)
− 1, (6)

on what x2 = 1 +
√

5
2 and x3 = 1−

√
5

2 are the roots of the polynomial
characteristic of the sequence.

Now, using the BenTaher-Rachidi method and using the characteristic
polynomial

p(λ) = λ3 − 2λ2 + 1,

deriving p we get the polynomial p′(λ) = 3λ2 − 4λ and we can calculate

p′(λ1) = −1, p′(λ2) = 5−
√

5
2 and p′(λ3) = 5 +

√
5

2 .

Using the boundary conditions, we can calculate

A0 = a2Le0 + a1Le1 + a0Le2 = 5 and A1 = a2Le1 + a1Le2 = −1,
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where a0 = 2, a1 = 0 and a2 = −1, as given by the coefficients of the
recurrence relation. Thus, using the formula (3), the recurrence is given by,

Len = 1
p′(λ1)

(
A0

λ0+1
1

+ A1

λ1+1
1

+ A2

λ2+1
1

)
λn

1

+ 1
p′(λ2)

(
A0

λ0+1
2

+ A1

λ1+1
2

+ A2

λ2+1
2

)
λn

2 + 1
p′(λ3)

(
A0

λ0+1
3

+ A1

λ1+1
3

+ A2

λ2+1
3

)
λn

3

By replacing the previously obtained values, it is possible to obtain

Len = 1
−1

(
5
11 + (−1)

12 + (−3)
13

)
1n

+ 1
5−
√

5
2

.

 5

(1 +
√

5
2 )1

+ (−1)

(1 +
√

5
2 )2

+ (−3)

(1 +
√

5
2 )3

(1 +
√

5
2

)n

+

1
5 +
√

5
2

.

 5

(1−
√

5
2 )1

+ (−1)

(1−
√

5
2 )2

+ (−3)

(1−
√

5
2 )3

(1−
√

5
2

)n

= −1 +

 1(
5−
√

5
2

)



5
(

1 +
√

5
2

)2

−
(

1 +
√

5
2

)
− 3(

1−
√

5
2

)3


(

1 +
√

5
2

)n

+

 1(
5 +
√

5
2

)



5
(

1−
√

5
2

)2

−
(

1−
√

5
2

)
− 3(

1−
√

5
2

)3


(

1−
√

5
2

)n

= −1 +

(
2(

5−
√

5
))
5

(
6 + 2

√
5

4

)
− 1

2 −
√

5
2 − 3(

6− 2
√

5
4

)(
1−
√

5
2

)
(1 +

√
5

2

)n

+

(
2(

5 +
√

5
))
5

(
6− 2

√
5

4

)
− 1

2 +
√

5
2 − 3(

6− 2
√

5
4

)(
1−
√

5
2

)
(1−

√
5

2

)n
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= −1 +

(
2(

5−
√

5
))


15
2 + 5

√
5

2 − 1
2 −
√

5
2 −

6
2(

16 + 8
√

5
8

)
(1 +

√
5

2

)n

+

(
2(

5 +
√

5
))


15
2 −

5
√

5
2 − 1

2 +
√

5
2 −

6
2(

16 + 8
√

5
8

)
(1−

√
5

2

)n

By doing algebraic manipulations, it is possible to write the equation as

Len = −1 + 2√
5

(
1 +
√

5
2

)n+1

− 2√
5

(
1−
√

5
2

)n+1

= 2√
5

[(
1 +
√

5
2

)n+1

−
(

1−
√

5
2

)n+1
]
− 1

resulting in the same answer obtained in Equation (6).

3.4 Mersenne Sequence

The Mersenne numbers make up the Mersenne sequence, such numbers hon-
oring the Frenchman Marin Mersenne (1588-1648). Marin Mersenne was a
Franciscan who offered his home for meetings with contemporary scientists,
such as Descartes, Galileo, Fermat, Pascal and Torricelli with an interest in
discussing and studying mathematics and scientific subjects [2]. Mersenne
contributed to number theory, specifically Mersenne’s prime numbers, which
are all natural numbers in the formMn = 2n−1 where n is a natural number.

The Mersenne sequence has as its recurrence formula Mn = 3Mn−1 −
2Mn−2, for n ≥ 2, being M0 = 0 and M1 = 1 their initial values. And yet,
this sequence has a second degree polynomial, x2 − 3x+ 2 = 0, where they
have two real roots, one equal to 2 and the other equal to 1. We have that
the Binet’s formula of the Mersenne sequence is presented by [4], where it
is defined as

Mn = 2n − 1, n ≥ 0. (7)

Using the characteristic polynomial p(λ) = λ2−3λ+2, deriving p we get the
polynomial p′(λ) = 2λ− 3 and we can calculate p′(λ1) = −1 and p′(λ2) = 1.

Using the boundary conditions, we can calculate A0 = a1V0 + a0V1 =
a1M0 +a0M1 = 3 and A1 = a1V1 = a1M1 = −2, where a0 = 3 and a1 = −2,
given by the coefficients of the recurrence relation. Thus, using the formula
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(3), the recurrence is given by,

Mn = 1
p′(λ1) .

(
A0

λ0+1
1

+ A1

λ1+1
1

)
λn

1 + 1
p′(λ2) .

(
A0

λ0+1
2

+ A1

λ1+1
2

)
λn

2

By replacing the previously obtained values, it is possible to obtain:

Mn = 1
−1 .

( 3
11 + −2

12

)
1n + 1

1 .
( 3

21 + (−2)
22

)
2n

= −1(3− 2) + 2n
(3

2 −
1
2

)
= 2n − 1

resulting in the same answer obtained in Equation (7).

3.5 Oresme Sequence

The Oresme sequence was created by the German philosopher Nicole Oresme
(1320 - 1382), being a linear and recurrent second order sequence [3]. This
sequence exposes a graphical representation of qualities and speeds, it is also
believed that Oresme used primitive ideas, known today as the improper
integral, to perform the sum of the infinite series, obtaining a value of 2.

The Oresme sequence is defined for every n > 2 by

On+2 = On+1 +
(
−1

4

)
On,

and the initial conditions O0 = 0, O1 = O2 = 1
2 . Its characteristic polyno-

mial is given by x2 − x + 1
4 , where λ = 1

2 being its real root of multiplicity
2. Using the traditional method via the Binet formula, we have

On = α0

(1
2

)n

+ α1n

(1
2

)n

,

for n > 0. Given the initial conditions, we obtain α0 = 0 and α1 = 1. Thus,
we get On = n

(
1
2

)n
.

Now we will apply the Bentaher-Rachidi method in the general setting
to the Oresme sequence. That is, as matter of fact, we need to appeal the
general sitting of this method, when the associated characteristic polynomial
of the linear recursive sequence owns distincts roots of multiplicity > 1,
introducing the Stirling numbers of the first kind. Indeed, applying the
Theorem 2.9 [15] in this case, we have

On = A0Vn−2 +A1Vn−3,
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12 Application of the BenTaher-Rachidi method

for every n > 2, where Vn = (c0 + c1n)
(

1
2

)n
, with c0 = 1 and c1 = S1,1 = 1

(S1,1 are the first kind Stirling numbers), A0 = −1
4V0 + V1 and A1 = −1

4V1.
Thereby, a direct calculation yields

On = 1
2

(1
2

)n

(1 + n− 2)− 1
8

(1
2

)n−3
(1 + n− 3) = n

2n

3.6 Jacobsthal Sequence

The Jacobsthal sequence was defined by the German mathematician Ernest
Erich Jacobsthal (1882-1965), this sequence has a great similarity with the
Fibonacci sequence and presents several applications of which we can ex-
emplify the use of these numbers in the area of computing in directives to
change the program execution flow [2].

Jacobsthal sequence is defined by recurrence Jn = Jn−1+2Jn−2, for n ≥ 2
and being J0 = 0 and J1 = 1 their initial conditions. This sequence carries
many mathematical properties, highlighting its characteristic polynomial
x2−x−2 = 0, having two real roots, x1 = −1 and x2 = 2 [2], where the root
equal to 2 also represents the convergence relationship between neighboring
terms of the sequence. Due to the characteristic polynomial, we have the
Binet’s formula for the Jacobsthal sequence is given by [6], being defined as

Jn = 2n − (−1)n

3 (8)

From the characteristic polynomial p(λ) = λ2− λ− 2, deriving p we get the
polynomial p′(λ) = 2λ− 1 and we can calculate p′(λ1) = −3 and p′(λ2) = 3.
Using the boundary conditions, we can calculate A0 = a1J0 + a0J1 = 1 and
A1 = a1J1 = 2, where a0 = 1 and a1 = 2, given by the coefficients of the
recurrence relation. Thus, using the formula (3), the recurrence is given by,

Jn = 1
p′(λ1)

(
A0

λ0+1
1

+ A1

λ1+1
1

)
λn

1 + 1
p′(λ2)

(
A0

λ0+1
2

+ A1

λ1+1
2

)
λn

2

By replacing the previously obtained values, it is possible to obtain

Jn = 1
−3

( 1
−11 + 2

(−1)2

)
(−1)n + 1

3

( 1
21 + (2)

22

)
2n

= −1
3(−1 + 2)(−1)n + 1

3

(1
2 + 1

2

)
2n

= −1
3(−1)n + 1

32n

= 1
3[2n − (−1)n]
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resulting in the same answer presented in Equation (8).

3.7 Padovan Sequence

This sequence was created by the Italian architect Richard Padovan (1935-),
it is considered as a cousin of the Fibonacci sequence [1], the first being a
linear, recurring, third order and integer sequence. And yet, in the work
of [16, 18] there is an emphasis on the mathematical historical process of
this sequence, the Dutchman Hans Van Der Laan (1904 - 1991), who stands
out after the Second World War, used the early Christian abbey basilica
as an example to train architects in rebuilding churches [19]. The process
of rebuilding the churches had been carried out by Lan and his brother,
eventually discovering a new standard of measurement given by an irrational
number, a number known as a plastic number or radiant number, and was
first studied by Gérard Cordonnier.

Padovan sequence is defined by recurrence Pan = Pan−2 + Pan−3, for
n ≥ 3 and being Pa0 = Pa1 = Pa2 = 1 it is initial terms, still presenting
its respective characteristic polynomial x3 − x− 1 = 0, having three roots

x1 = 3

√
1
2 +

√
1
4 −

1
27 + 3

√
1
2 −

√
1
4 −

1
27 ≈ 1, 32

x2 =
(
−1

2 +
√

3
2 i
)

3

√
1
2 + 1

6

√
23
3 +

(
−1

2 −
√

3
2 i
)

3

√
1
2 −

1
6

√
23
3 ≈ −0, 66 + 0, 56i

x3 =
(
−1

2 −
√

3
2 i
)

3

√
1
2 + 1

6

√
23
3 +

(
−1

2 +
√

3
2 i
)

3

√
1
2 −

1
6

√
23
3 ≈ −0, 66− 0, 56i.

With that, we will use the notations x1, x2, x3 to facilitate the calculations,
since this sequence has complex roots and with higher algebraic values. The
relationship between the value of 1.32, which is presented as the real solution
of the characteristic polynomial, and the convergence relationship between
the neighboring terms of the sequence is also emphasized, thus creating a
similarity.
Thus, we have Padovan’s Binet’s formula, as being:

Pan = (x2−1)(x3−1)
(x1−x2)(x1−x3)x

n
1 + (x1−1)(x3−1)

(x2−x1)(x2−x3)x
n
2 + (x1−1)(x2−1)

(x3−x1)(x3−x2)x
n
3 (9)

Using the BenTaher-Rachidi method, we have that from the polynomial

p(λ) = λ3 − λ− 1,

the derivative is then calculated, resulting in p′(λ) = 2λ2 − 1. Therefore,
according to the formula of the method and the sequence coefficients, we
have that
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14 Application of the BenTaher-Rachidi method

A0 = a2Pa0 + a1Pa1 + a0Pa2 = 2
A1 = a2Pa1 + a1Pa2 = 2
A2 = a2Pa2 = 1.

Therefore, by considering Formula 3, we get:

Pan = 1
p′(λ1)

(
A0

λ0+1
1

+ A1

λ1+1
1

+ A2

λ2+1
1

)
λn

1

+ 1
p′(λ2)

(
A0

λ0+1
2

+ A1

λ1+1
2

+ A2

λ2+1
2

)
λn

2 + 1
p′(λ3)

(
A0

λ0+1
3

+ A1

λ1+1
3

+ A2

λ2+1
3

)
λn

3

Performing the replacement of previously calculated values and using Girard
relations x1x2x3 = 1,x1 + x2 + x3 = 0 and x1x2 + x1x3 + x2x3 = −1, we
have that

Pan = 1
3x2

1 − 1

(
2
x1

+ 2
x2

1
+ 1
x3

1

)
(x1)n + 1

3x2
2 − 1

(
2
x2

+ 2
x2

2
+ 1
x3

2

)
(x2)n

+ 1
3x2

3 − 1

(
2
x3

+ 2
x2

3
+ 1
x3

3

)
(x3)n

=
(

2x2
1 + 2x1 + 1
3x5

1 − x3
1

)
(x1)n +

(
2x2

2 + 2x2 + 1
3x5

2 − x3
2

)
(x2)n

+
(

2x2
3 + 2x3 + 1
3x5

3 − x3
3

)
(x3)n

=
[

2x2
1 + 2x1 + x1x2x3

x1(3x4
1 − x2

1)

]
(x1)n +

[
2x2

2 + 2x2 + x1x2x3

x2(3x4
2 − x2

2)

]
(x2)n

+
[

2x2
3 + 2x3 + x1x2x3

x3(3x4
3 − x2

3)

]
(x3)n

=
[

2x1 + x1x2x3 − x1x2 − x1x3

x1(3x3
1 − x1)

]
(x1)n +

[
2x2 + x1x2x3 − x1x2 − x2x3

x2(3x3
2 − x2)

]
(x2)n

+
[

2x3 + x1x2x3 − x1x3 − x2x3

x3(3x3
3 − x3)

]
(x3)n

=
[

2 + x2x3 + x1

x1(3x2
1 − 1)

]
(x1)n +

[
2 + x2x3 + x2

x2(3x2
2 − 1)

]
(x2)n +

[
2 + x1x2 + x3

x3(3x2
3 − 1)

]
(x3)n

=
(
x2x3 − x2 − x3 + 1

3x2
1 − 1

)
(x1)n +

(
x1x3 − x1 − x3 + 1

3x2
2 − 1

)
(x2)n

+
(
x1x2 − x1 − x2 + 1

3x2
3 − 1

)
(x3)n

that is
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Pan =
[

(x2 − 1)(x3 − 1)
2x2

1 + x2
1 − 1

]
(x1)n+

[
(x1 − 1)(x3 − 1)

2x2
2 + x2

2 − 1

]
(x2)n+

[
(x1 − 1)(x2 − 1)

2x2
3 + x2

3 − 1

]
(x3)n

=
[

(x2 − 1)(x3 − 1)
x2

1 − x1x2 − x1x3 + x2x3

]
(x1)n +

[
(x1 − 1)(x3 − 1)

x2
2 − x2x3 − x1x2 + x1x3

]
(x2)n

+
[

(x1 − 1)(x2 − 1)
x2

3 − x1x3 − x3x3 + x1x2

]
(x3)n

= (x2 − 1)(x3 − 1)
(x1 − x2)(x1 − x3)(x1)n+ (x1 − 1)(x3 − 1)

(x2 − x1)(x2 − x3)(x2)n+ (x1 − 1)(x2 − 1)
(x3 − x1)(x3 − x2)(x3)n

obtaining the formula presented in the Equation (9).

3.8 Perrin Sequence

The Perrin sequence was developed by French engineer Olivier Raoul Perrin
(1841-1910), who, in his spare time liked to produce scientific works, specif-
ically for the area of mathematics. It is believed that in 1876 this sequence
was mentioned implicitly by Édouard Lucas, known for creating the Lucas
sequence and Lucas numbers. One can find applicability of this sequence in
graph theory, and it has recently been used to discover the coordinates of
taxis in urban networks in a confidential way [10].

This sequence has a great similarity with the Padovan sequence, pre-
senting the same recurrence relation, differing only the initial terms, and
even a characteristic polynomial. Thus, its recurrence is defined as Pen =
Pen−2 + Pen−3, for n ≥ 3, being Pe0 = 3, Pe1 = 0 and Pe2 = 2 its initial
terms, as this sequence has the same recurrence as the Padovan sequence,
the same characteristic polynomial can be presented x3 − x− 1 = 0, having
the same roots seen previously. Therefore, Perrin’s Binet’s formula is given
by

Pen = (3x2x3 + 2)
(x1−x2)(x1−x3)x

n
1 + (3x1x3 + 2)

(x2−x1)(x2−x3)x
n
2

+ (3x1x2 + 2)
(x3−x1)(x3−x2)x

n
3

Thus, this sequence changes only its initial values to Pe0 = 3, P e1 = 0 and
Pe2 = 2, resulting in A0 = a2Pe0 + a1Pe1 + a0Pe2 = 3, A1 = a2Pe1 +
a1Pe2 = 2 and A2 = a2Pe2 = 2.

Using the BenTaher-Rachidi method, we have that from the polynomial
p(λ) = λ3 − λ − 1, the derivative is then calculated, resulting in p′(λ) =
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16 Application of the BenTaher-Rachidi method

2λ2−1. Therefore, according to the formula of the method and the sequence
coefficients, we have that

A0 = a2Pa0 + a1Pa1 + a0Pa2 = 2
A1 = a2Pa1 + a1Pa2 = 2 and
A2 = a2Pa2 = 1.

That done, we have that, from the Formula (3), we get

Pen = 1
p′(λ1)

(
A0

λ0+1
1

+ A1

λ1+1
1

+ A2

λ2+1
1

)
λn

1 + 1
p′(λ2)

(
A0

λ0+1
2

+ A1

λ1+1
2

+ A2

λ2+1
2

)
λn

2

+ 1
p′(λ3)

(
A0

λ0+1
3

+ A1

λ1+1
3

+ A2

λ2+1
3

)
λn

3

Using Girard relations,

x1x2x3 = 1, x1 + x2 + x3 = 0, and x1x2 + x1x3 + x2x3 = −1

and the operations previously presented, we have that

Pen = 1
3x2

1 − 1

(
3
x1

+ 2
x2

1
+ 2
x3

1

)
(x1)n + 1

3x2
2 − 1

(
3
x2

+ 2
x2

2
+ 2
x3

2

)
(x2)n

+ 1
3x2

3 − 1

(
3
x3

+ 2
x2

3
+ 2
x3

3

)
(x3)n

=
(

3x2
1 + 2x1 + 2
3x5

1 − x3
1

)
(x1)n +

(
3x2

2 + 2x2 + 2
3x5

2 − x3
2

)
(x2)n +

(
3x2

3 + 2x3 + 2
3x5

3 − x3
3

)
(x3)n

=
[

3x2
1 + 2x1 + 2

x1(3x4
1 − x2

1)

]
(x1)n +

[
3x2

2 + 2x2 + 2
x2(3x4

2 − x2
2)

]
(x2)n +

[
3x2

3 + 2x3 + 2
x3(3x4

3 − x2
3)

]
(x3)n

=
[

3x1 − 2x1x3 − 2x1x2

x1(3x3
1 − x1)

]
(x1)n +

[
3x2 − 2x1x2 − 2x2x3

x2(3x3
2 − x2)

]
(x2)n+[

3x3 − 2x1x3 − 2x2x3

x3(3x3
3 − x3)

]
(x3)n

=
[

3− 2x3 − 2x2

x1(3x2
1 − 1)

]
(x1)n +

[
3 + x1 − 2x3

x2(3x2
2 − 1)

]
(x2)n +

[
3− 2x1 − 2x2

x3(3x2
3 − 1)

]
(x3)n

=
(

3x2x3 + 2
3x2

1 − 1

)
(x1)n +

(
3x1x2 + 2
3x2

2 − 1

)
(x2)n +

(
3x1x2 + 2
3x2

3 − 1

)
(x3)n

=
(

3x2x3 + 2
2x1x1 + x2

1 − 1

)
(x1)n +

(
3x1x2 + 2

2x2x2 + x2
2 − 1

)
(x2)n +

(
3x1x2 + 2

2x3x3
3 + x2

3 − 1

)
(x3)n
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that is

Pen =
(

3x2x3 + 2
x2

1 − x1x2 − x1x3 + x2x3

)
(x1)n +

(
3x1x2 + 2

x2
2 − x1x2 − x2x3 + x1x3

)
(x2)n

+
(

3x1x2 + 2
x2

3 − x1x3 − x2x3 + x1x2

)
(x3)n

=
(

3x2x3 + 2
(x1 − x2)(x1 − x3)

)
(x1)n +

(
3x1x2 + 2

(x2 − x1)(x2 − x3)

)
(x2)n

+
(

3x1x2 + 2
(x3 − x1)(x3 − x2)

)
(x3)n

However, there is the formula presented in Equation (10).

3.9 Narayana Sequence

The Narayana sequence was introduced by the Indian mathematician
Narayana Pandita (1340 - 1400) and, similarly to the Fibonacci sequence,
it is derived from a problem that presents the numbers of Narayana is that
of the herd of cows and calves that was proposed by Narayana in the 14th
century, in which: “A cow gives birth to a calf every year. In turn, the calf
gives birth to another calf when it is three years old. What is the number of
progenies produced for twenty years by a cow?” [12]. When answering this
problem, one finds the terms that make up the Narayana sequence, which
are 1, 1, 1, 2, 3, 4, 6, 9, 13 · · · .

The Narayana sequence is a third order numerical sequence, presenting
its recurrence formula Nn = Nn−1 + Nn−3, for n ≥ 3 and with the initial
values N0 = N1 = N2 = 1. Its respective characteristic polynomial is
given by the equation x3 − x2 − 1 = 0, with three roots α ≈ 1, 465, β =
0, 108(0, 866i − 0, 5) + 1, 02(−0, 866i − 0, 5) + 0, 3 and γ = 1, 023(0, 866i −
0, 5) + 0, 108(−0, 866i− 0, 5) + 0, 3. Next, Narayana’s Binet’s formula given
by

Nn =
(

α

3α− 2

)
(α)n +

(
β

3β − 2

)
(β)n +

(
γ

3γ − 2

)
(γ)n (10)

Applying the BenTaher-Rachidi method, we have that from the polynomial
p(λ) = λ3−λ2−1, the derivative is calculated, resulting in p′(λ) = 3λ2−2λ.
Thus, from the formula of the method and the sequence coefficients, we have
that: A0 = a2N0 + a1N1 + a0N2 = 2, A1 = a2N1 + a1N2 = 1 and A2 =
a2N2 = 1. From the Formula 3, Girard’s relations αβγ = 1,α + β + γ = 1
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18 Application of the BenTaher-Rachidi method

and αβ + αγ + βγ = 0 and the operations previously presented, we have
that

Nn = 1
3α2 − 2α

( 2
α

+ 1
α2 + 1

α3

)
(α)n + 1

3β2 − 2β

(
2
β

+ 1
β2 + 1

β3

)
(β)n

+ 1
3γ2 − 2γ

(
2
γ

+ 1
γ2 + 1

γ3

)
(γ)n

=
(

2α2 + α+ 1
3α5 − 2α4

)
(α)n +

(
2β2 + β + 1
3β5 − 2β4

)
(β)n +

(
2γ2 + γ + 1
3γ5 − 2γ4

)
(γ)n

=
[

2α+ αβγ − αβ − αγ
α(3α3 − 2α2)

]
(α)n +

[
2β + αβγ − αβ − βγ

β(3β3 − β2)

]
(β)n

+
[

2γ + αβγ − αγ − βγ
γ(3γ3 − γ2)

]
(γ)n

=
[

2 + βγ − β − γ
α(3α2 − 2α)

]
(α)n +

[
2 + αγ − α− γ
β(3β2 − 2β)

]
(β)n +

[
2 + αβ − α− β
γ(3γ2 − 2γ)

]
(γ)n

=
[
−αβ − αγ + α

α(3α− 2)

]
(α)n +

[
−αβ − βγ + β

β(3β − 2)

]
(β)n +

[
−αγ − βγ + γ

γ(3γ − 2)

]
(γ)n

=
(

α

3α− 2

)
(α)n +

(
β

3β − 2

)
(β)n +

(
γ

3γ − 2

)
(γ)n

Finally, there is the formula presented in Equation (10).

4 Conclusion
Arising from the junction of the resolution of the Binet’s formula with the
Vandermonde system, this worked presented the application of the resolution
through the BenTaher-Rachidi method. Thus, based on the work of [8, 15],
it was possible to discuss this new way of obtaining the Binet’s formula of
the Lucas, Pell, Leonardo, Mersenne, Oreseme, Jacobsthal, Padovan, Perrin
and Narayana sequences.

Thus, this method makes the resolution simpler, despite presenting the
calculation of the derivative of a function, presenting itself as an alternative
way of solving the Binet’s formula. For future work, research is projected
from different perspectives, such as its application in the area of computing,
applied science and others.
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