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Abstract In this paper we specify Turing machines to serve as clocks, rulers,
and randomizers of the most basic complexity classes in such a way that
it can be seen as a contribution to the understanding of computational
complexity. The article is educational and first ideas about Turing machines,
computation and classes are introduced from scratch. However, the expected
examples of Turing machine computations are focused in the fundamental,
nevertheless “semi-obscure” subject of the alarm clock and space bound
ruler.
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1 Introduction

Generally, an introduction to a paper introduces the subject in an easier
way than its body. However, our intention is to attract also the readers
acquainted with the concept of a Turing machine and, therefore, we write
the introduction to them and ask the reader who does not know anything
about Turing machines to skip 2 or 3 paragraphs with the promise that the
progression of concepts is slow and suitable for a first reading on the theory
of computability and complexity.

Clocked Turing machines (or other clocked abstract devices) are a funda-
mental tool in complexity theory. For most of the applications of the theory
it is enough to prove that in the worst case scenario a given algorithm runs
in a number of basic steps bounded by some (suitable) function on the size
of the data. But, once we start proving general results for a complexity
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122 Turing Machines as Clocks, Rulers and Randomizers

class, the concepts of a clock and a ruler (to delimit space resources) are
fundamental. It becomes obvious that the so-called hierarchy theorems of
basic complexity theory are true only for the so-called time and space con-
structible bounds — provided by alarm clocks and rulers. To preserve space
complexity in some theorems of replacement of Turing machines by Turing
machines that halt for all inputs, the concept of a space constructible bound
turns again to be crucial. Finally, clocked Turing machines become funda-
mental when one starts to enumerate the elements of a complexity class and
to apply diagonalisation methods over the classes.

A clocked Turing machine is a Turing machine that “counts” its own
steps of computation. It can be seen as a simultaneously simulation, in
parallel, of a given machine M together with a given clock. The (alarm)
clock itself is a Turing machine with some remarkable properties and the
parallel of the two Turing machines is also a Turing machine.

Alarm clocks and rulers were introduced by Hartmanis, Lewis an Stearns
in 1965 in a series of three papers (see [8, 10, 16]). Alarm clocks are not
well developed in complexity theory literature, either in books or in research
papers, but their existence is taken for granted in the very beginning. Suffi-
cient conditions for Turing machines to serve as clocks or rulers, proved by
Kobayashi in [9],1 are used to provide the grounds for complexity theory.
Most of the students never saw a clock or a ruler, although in some courses
they might have proven that they exist. The proof of Kobayashi’s theorem
does not guaranty that the clocks display exact English time up to a tick (!),
but more or less precise time (as a few detailed constructions of the proof
show).

Although to prove the theorems it is not needed to make clocks or rulers
precise (!), it is obvious that the reader may wonder if such devices can be
built to be exact. Students do! In fact such devices can be built as we prove
along the paper and they are based on a technique that is recurrently used
based on specific marks on the tapes of a Turing machine.

To sum up, the motivations to read this article are the following: (a) to
get acquainted with the concept of a Turing machine, (b) to learn how to
specify a multitape Turing machine through its transition diagram, (c) to
learn how to specify non-trivial machines, namely the special machines —
the clocks —, (d) to understand how to enumerate complexity classes and,
finally, (e) to know some very basic results about Turing machines.

In what follows, we introduce Turing machines in Section 2 and we define
1Such a proof can be found, e.g., in the famous book by Balcázar, Diaz and Gabarró

(see [2]).
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in Section 3 time and space constructible functions in a similar (asymptotic
equivalent but different) way to that found in standard books. In Section
4, we discuss the most well known models of computation: deterministic,
non-deterministic and probabilistic. Examples of basic and composite clocks
are given in Section 5. In Section 6, we prove that the class of constructible
functions is closed under basic and useful operations. Then, finally, in Sec-
tion 7, some theorems about the relation between clocks and rulers. We end
up in Section 8 with some concluding remarks.

2 The Turing machine

2.1 The idea of an abstract computing machine

The Turing machine was introduced by Alan Turing in 1936 in a paper
entitled “On Computable Numbers, with an Application to the Entschei-
dungsproblem,2 publish by the Proceedings of the London Mathematical So-
ciety (see [17]). Some corrections were done to this paper by Turing him-
self and published in 1937 in the same journal (see [18]). (An interesting,
fully commented translation into French of the two most well known pa-
pers authored by Turing appeared in the book “La Machine de Turing” by
Jean-Yves Girard (see [19]).)

Most of the readers to whom the concept of a Turing machine is familiar
have certainly asked themselves: How did the idea of the Turing machine
occurred to Turing? Turing was searching for a “proof” that mathematics is
not reducible to algorithmic procedure. To do such a “proof”, Turing needed
to find (a) a reasonable concept of algorithm and (b) to prove that, once
accepting such a concept as reasonable, some decision problems in mathe-
matics are not algorithmic. And that would be a “proof” of undecidability of
Hilbert’s Entscheidungsproblem, a mathematical open problem that David
Hilbert and Wilhelm Ackermann identified in 1928, and David Hilbert (in
1928) added to his “1900 research program” for mathematicians.3

How did Turing solved the problem of finding a suitable notion of algo-
rithm? Well... He did it while abstracting from women computers of the
thirties. Women computers4 needed paper (unlimited amounts), pencil and

2It means decision problem in German.
3Although the origin of such a problem goes back to the philosopher and scientist

Gottfried Leibniz in the late XVII century, also inventor of some computing devices.
4In the thirties, in Engand, the word computer meant a person (typically female) whose

job was doing computations. A person could apply to a job of computer (see the article
of W. Barkley Fritz[5]).
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q

q0, qhalt

Finite Control

input tape

working tape

n = |x|

input size

1 0 1 1 0 t t t t t . . .

1 X 1 Y 0 1 t t t t . . .

Figure 1: Illustration of the tapes and the reading/writing heads of a Turing
machine. Some features: (a) the machine depicted has two tapes, (b) the
input alphabet, denoted by Σ, is binary {0, 1}, and (c) the working alphabet,
denoted by Γ, is larger {0, 1, X, Y,t}, namely it always contains the blanc
symbol t. The input tape is read-only.

rubber. They used to write notes on paper, to erase some of the notes, to
continue writing, erasing and rewriting until the computation is finished.
Writing on paper can be reduced to writing along a horizontal line in math
paper, a unidimensional tape filled with cells. In each moment of a com-
putation, the computer has access to a finite amount of information; based
on her state of mind, the computer looks at the information available and
makes a transition to a possible new state of mind, possibly erasing the in-
formation read and replacing it by new information, and moving to the next
or the previous page. A more complete description of how the idea germi-
nated can be found in the book by Martin Davis (see [3]). This process of
human computing was abstracted by Turing in the way that follows. We
will work out a definition of the Turing machine close to the one provided
by Sipser in [15] (but there are dozens of different but equivalent definitions
of a Turing machine).

In Figure 1 we see the pictorial representation of a Turing machine with
two tapes, the input tape and one working tape, together with the finite
control. The finite control is then developed in transition diagrams depicted
in the figures that follow along this paper. In the input tape we see a
binary word written in the first n cells of the tape: we say that the input
has size n (= 5 in the case), no matter the alphabet used to write the
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input. The complexity of a Turing machine is a function of this n. In
the working tape we see a word over a larger alphabet occupying 6 cells.
This larger alphabet is known as the working alphabet: the machine works
with the input alphabet possibly enriched with further symbols considered
necessary to better develop the algorithm. The heads can read one letter
at a time. In fact we could define Turing machines in a way such that each
head could read several symbols at the same time. But if it can improve
algorithm specification language, it does not change the picture, it does
not even change the complexity of the machine. The finite control is a
finite state/transition device — called finite automaton — describing the
algorithm. The memory of the machine is divided into two parts: one is
external memory, the information that the machine has available in the
tapes, and the other is the memory the machine has in the finite control
that can not be changed during machine computations.5 Three particular
states are depicted: the current state q of the machine, the initial state q0
and the halting states qhalt. Thus, we expect to find in the finite control —
the transition diagram — what is required the machine to do, e.g., when in
state q, the input head is reading 0 and the working tape head is reading
1. The Turing machine is completely specified if, for all states and for all
possible symbols under the heads, it is specified what to do next. When
the machine reaches an halting state, either the accepting or the rejecting
states, qa and qr, respectively, it switches itself off. Thus, it is not that much
relevant to specify what the machine has to do in a halting state.

2.2 Tapes and configuration

A tape is an infinite unidirectional unidimensional array holding sym-
bols from an alphabet Γ (finite) containing the special blanc symbol t. In
this way the tape abstracts blanc paper in an unbounded quantity to be
used by a human computer to perform computations. The notes that the
computer need to make are aligned in the tape followed by an unbounded
number of blanc cells. We can even imagine that the cells are arranged in
k tapes to which we add an input tape with the data to be processed and
an output tape to print the result of the computation. A configuration of
the machine corresponds to k sequences of symbols from Γ divided by a
state from Q into two subsequences, the subsequence of symbols to the left
and the subsequence of symbols to the right of the corresponding head; the
second subsequence includes the symbol under the head.

5E.g., words can be hard-wired in the finite control in such a way that the Turing
machine can write them on the tape whenever needed — this is the hard-wired memory.
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Therefore, the configuration of the Turing machine represented in Figure
1, is the pair of sequences 1011q0 and 1Xq1Y 0. These two sequences contain
all the information we need to know about the machine at this step of
computation.

2.3 Formal definition of a Turing machine

Formally, in mathematical terms, a Turing machine is an octuple:

M = (k,Σ,Γ, Q, q0, qa, qr, δ)

where:

• k is the number of working tapes ofM (in addition to the read-only
input tape and the write-only output tape);

• Σ is the finite input alphabet not containing the special blank symbol
t;

• Γ is the working alphabet, such that t ∈ Γ and Σ ⊂ Γ;

• Q is the (finite) set of states;

• q0 ∈ Q is the initial state;

• qa ∈ Q is the accepting state;

• qr ∈ Q is the rejecting state (q0, qa and qr are pairwise disjoint);

• δ : Q× Γk+1 → Q× {L,R,N}k+2 × Γk+1 is the transition function.

We may refer to any of qa or qr as qhalt.
To depict the finite table δ we use directed graphs. In this graphs the

vertexes are the states and each edge is labeled with the transitions. Let
us analise the complex transitions of the transition diagram of Figure 9
(page 19): e.g., we have one transition between states p0 and p1, labeled by
0, 1;t;t → R; 0̆, R; 0̆, R.

Once in state p0, if the input head is reading 0 or 1, the second
and the third heads are reading blanc (notice the punctuation in
both sides of the arrow), then the machine makes the transition
to state p1, moving the input head one cell to the right, writing
0̆ in the blanc cell in the tape 2 and moving the head one cell to
the right, and doing the same in the tape 3.
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Consider now the transition between states pk and q1, labeled by ; 0;→
; 0̀, L;L.

Once in state pk, no matter what is written in the tapes 1
and 3, if the head is reading 0 on the tape 2, then the machine
makes a transition to the state q1, moving the heads of tapes 2
and 3 one cell to the left and leaving the head of the input tape
where it was (since, at this point of the computation, the input
was already totally swiped, we conclude that the input tape is
no more relevant).

To finish this section we mention that computer scientists essentially
discuss machines in terms of the transition function δ. Different functions δ
identify and characterize different machines. Thus, to be remembered, the
dynamic map of k + 2-tape Turing machine with one read-only input tape
and one write-only output tape is:6

δ : Q× Γk+1 → Q× {L,R,N}k+2 × Γk+1

But, if more than one transition is allowed in some configuration of a
state/transition device, then we say that the device is non-deterministic.
Turing machines can be also non-deterministic. In this case the dynamic
map becomes:

δ : Q× Γk+1 → ℘(Q× {L,R,N}k+2 × Γk+1)

where ℘ denotes the powerset. In a particular state, while reading k + 1
cells on the k + 2 tapes (output tape excluded from the reading), the non-
deterministic Turing machine can perform one within a finite number of
possible different transitions; each of the possible transitions is like those
of a deterministic Turing machine: a possible change of state, a possible
change of content of the k+ 1 tapes (input tape excluded from the writing),
a possible movement of the k+2 heads. It is known that two possible transi-
tions in each state are enough to capture the full power of non-deterministic
machines. (In Section 2.5 we will elucidate the reader about the structure

6Notice the exponents.
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of a non-deterministic Turing machine specification.) In this way, a change
of perspective over the concept of computation corresponds to a change in
the δ dynamics.

Sometimes, we make Turing machines simpler and we just specify one-
tape Turing machines, where the input is provided in the leftmost cells of
the tape, and the head can both read and write (and, consequently, rewrite
over the input). Multitape Turing machines with an input and an output
tape constitute a useful formal model when building Turing machines in a
lego of simpler Turing machines.

2.4 The step of a computation

One step of a Turing machineM on a configuration ci generates a con-
figuration cf . Starting from the initial configuration c0, the machine M
generates a (possibly infinite) sequence of configurations. Once providing an
input to a Turing machine either (a) it never halts, running forever, jumping
from configuration to configuration, not necessarily in a loop of repeating
configurations, or (b) it halts in finite number of steps in a configuration
containing the accepting state qa or the rejecting state qr.

The computation of the Turing machine is obviously the finite or infinite
sequence of its configurations.

We will be concerned with Turing machines that halt for all inputs.
Other papers in this volume discuss the non-halting cases.

Let Σ be the input alphabet (i.e., the alphabet used to write the input)
as in Section 2.3. By Σ? we denote the set of words written with the letters
of Σ — i.e., the set of all possible inputs. We introduce now the concept of
a set decided by a Turing machine:

Definition 1 A set A ⊆ Σ? is decided by a deterministic Turing machine
M if the computation ofM ends in an accepting state whenever x ∈ A and
the computation ofM ends in an rejecting state whenever x /∈ A.

Definition 1 introduces the so-called decision problem, that is, the prob-
lem of finding an algorithm to decide the question

x
?
∈ A

While playing with the concept of a Turing machine, it became standard
to measure the time complexity of a computation by the number of steps
executed until the machine halts and the space complexity by the number
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of cells swiped by the heads of the machine during the computation. The
time complexity of an algorithm became the maximum number of steps
executed by the machine on inputs of a given size n. The space complexity
of an algorithm became the maximum number of cells swiped for inputs of
a given size n.

Thus, we read in books that the time complexity of a given problem
is the function t(n) = n2, meaning that, asymptotically, for all n ∈ N, for
inputs of size n, no more than c × n2 transitions are needed to reach an
halting state, for some constant c ∈ N. Complexity in this sense refers to
the worse case scenario for each input size.

It does not mean that this is the best way to measure the difficulty of
solving a problem: it is one model of such a measure. Models are what
Mathematics provide. E.g., we could say that super-polynomial time com-
plexity can be better than polynomial time complexity (see [12]), since the
super-polynomial function nlog(log(n)) grows slower than the polynomial n2

on any input of size n that can be physical written down. It is enough to
notice that nlog(log(n)) > n2 only at n = 10100 (the number of particles in
the observable universe). In any case, for any k, there exists an order p such
that, for n ≥ p, nk < nlog(log(n)).

2.5 Examples

Now follows an example of a deterministic Turing machine and an ex-
ample of a non-deterministic Turing machine.

In the specification of complex Turing machines it is sometimes necessary
to make a copy of a sequence of symbols. In Figure 2, we depict the transition
diagram of a machine for that purpose.

The Turing machine M starts its computation in the first cell of its
unique tape, where, in the first |x| cells we can find the input x made of As
and Bs; M completes the copy in the leftmost symbol of the sequence xx,
i.e., M halts with two copies of x, with no space between them, and the
head in its original place, the first symbol of xx.

The Turing machine proceeds as follows: it reads an A, replaces it by
an X and writes a Ȧ in the first blanc to the right; the machine reads B,
replaces it by an Y and writes a Ḃ in the first blanc to the right; once the
As and the Bs are gone, the machine rewrites each X and each Ȧ into an A
and each Y and Ḃ into a B.

These examples gives the reader the flavour of a Turing machine com-
putation. The reader may well exercise herself specifying Turing machines
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that compute the trivial operations of arithmetics, having their arguments in
unary 7 and any two arguments separated by the symbol of the operation.8

q0

q1 q2

q3

q4

qa

A→ X, R B → Y, R

Ȧ, Ḃ → R

t → L

t → Ȧ, L

A, Ȧ, B, Ḃ → R

t → Ḃ, L

A, Ȧ, B, Ḃ → R

A, Ȧ, B, Ḃ → L

X, Y → R

Ȧ, X → A, L
Ḃ, Y → B, L

A, B,t → N

Figure 2: Example of Turing machine — the copier. The initial state is
identified by an arrow with target but no source and the accepting state is
identified by the double circle. Notice also that the transitions not allowed
correspond to transitions to the rejecting state. The rejecting state is not
depicted since, in this case, it is not relevant.

The second example is based on the concept of a guess. Suppose that a
given problem has one solution in a finite space of potential solutions, but we
do not know an algorithm to construct the actual solution. We only know
how to verify if a potential solution is the actual solution of the problem. In
this case all potential solutions are guesses. By trial and error we are sure
to find the actual solution: we guess the solution and we verify if it is the
actual one. The verification procedure is in itself a deterministic procedure,
but the guess part is a non-deterministic procedure. Note that NOT all

7That is, the number n is denoted by a sequence of n 1s. Another way of doing it, to
avoid the empty sequence denoting the number 0, is to represent n by a sequence of n + 1
1s.

8Such like 111 + 11 = 11111 or 111× 11 = 1111111.
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non-deterministic Turing machines clocked in some class of bounds can be
seen has a sequence of guess and verification! But the machines that have
computations of size bounded by a polynomial can! (It is a theorem.)

Let us see the mechanism of generating guesses.
Given a binary input x of size n, the Turing machineM specified by the

transition diagram in Figure 3 uses the time constructibility of polynomial p
in order to deterministically delimit p(n) + 2 cells with the symbol X, let us
say tXp(n)+2 in a working tape, leaving the leftmost cell blanc and the head
in the rightmost X. After this delimitation of space, the machine generates
one guess of size at most p(n).

qa

qj qk

qb qc

;t;t →;t, N ;t, N

;t; X →; 0, R;t, L
;t; X →; 1, R;t, L

;t;t →;t, N ;t, N

;t; X →;t, N ;t, L

;t; X →;t, N ;t, L

;t;t →;t, N ;t, N

;t;t →;t, N ;t, N

Figure 3: Transition diagram of a non-deterministic Turing machine that
generates a guess of size at most p(n), where p is polynomial and n the size
of the input. The machine has 3 tapes: initially, using the constructibility of
the polynomial p, the machine delimitates the space of p(n) + 1 symbols X
in tape 3, making one transition to the state qk; in the state qk, the machine
can initiate the production of the guess in tape 2, making one transition to
the state qj , or consuming several X’s in this decision, with the production
of smaller guesses; in the limit, the machine makes a transition to the state
qb, corresponding to the the empty guess (ε), or to the state qc that does
not correspond to any guess (∅). In this guessing procedure the input tape
is not in use.

For the guessing part, the Turing machine displays a tree of possible
2p(n)+2 computations of size p(n) + 2; after generating the guess the Turing
machine starts the verification part of the overall computation. For the pure
non-deterministic reasoning it is not needed to generate the guesses in this
way, in computations of fixed size. But for general applications, such like
the use of probabilistic Turing machines in complexity analysis (see Section
4), it is, indeed, necessary to have all guesses generated by computations of
the same size, even if the guess has size 1 within guesses of size n2, where
n is again the size of the input. The reason for this is that all guesses
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are equiprobable outcomes of the randomizer, i.e., the process of randomly
generate the guesses, so that they should have the same weight implying the
same computation depth.

•
• •

• •

•

• • • •
· · · · · ·
• •

• • • •

• •

• •
· · ·
•

• •

•

• •

· · ·
•

• •

· · ·

•
• •

• • • •

—

p(|w|) + 2

—

guesses of size p(|w|)︸ ︷︷ ︸ of size p(|w|)− k1︸ ︷︷ ︸ of size p(|w|)− k2︸ ︷︷ ︸ of size 1︸ ︷︷ ︸ irrelevant︸ ︷︷ ︸
Figure 4: Tree of computations relative to the non-deterministic Turing
machine of Figure 3. All the transitions, except those of rightmost branch,
correspond to guesses of size p(|w|), p(|w|) − 1, p(|w|) − 2, ..., 1. In each
level in the rightmost branch, the transition to the left corresponds to a
productive decision; the transition to the right corresponds to a delay in the
production of a smaller guesses. The last two transitions in the bottom level
are irrelevant in the non-deterministic computation, they just should lead to
the rejecting state; however, in the case of probabilistic computation, they
should lead to equal number of computations ending in the rejecting and
the accepting states, in such a way that these branches do not count for the
probabilistic decision; this is trivially done by extending the computations
to the limit of time (see Section 4), accepting those to the right and rejecting
those to the left.

For each transition of the Turing machine M, the finite control erases
one of the Xs and moves the corresponding writing head to the left. The
procedure terminates when all of the Xs have been erased. Erasing an X in
each transition, the Turing machine can delay the production of the guess
in such a way that all the words of size less than p(n) may be written.

Note that in Figure 3, there are 3 “accepting states”9 that only denote
the termination of the guess generating procedure in 3 different situations.

9It can only be just one accepting state and just one rejecting state according with our
definition of a Turing machine.
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The transition diagram of Figure 3 illustrates this procedure: it presup-
poses two working tapes; in one tape, M counts the number of transitions
made; in the other tape, it writes the guess. The first tape in Figure 3 is
any reference tape, such as the input tape, where the symbol being read is
irrelevant.

The tree of computations of M relative to the input x is depicted in
Figure 4. Note that the tree has 2p(n)+2 branches of depth p(n) + 2, cor-
responding to different guesses; the two last branches are special. There
is a convention about these branches: (a) in the case of non-deterministic
machine, both branches produce rejecting computations; (b) in the case of
the probabilistic machine, the penultimate branch produces accepting com-
putations and the last branch produces rejecting computations. The reason
for this convention is the necessity of counting the accepting branches and
the rejecting branches: in this case, the number of accepting children of the
penultimate branch is equal to the number of rejecting children of the last
branch.

3 Proper functions of time and space

In this section we introduce the concepts of proper functions of time and
space, used to define complexity classes of Turing machine computations.
These concepts (a slight variation of them) were introduced by Hartmanis
and Stearns, Stearns, Hartmanis and Lewis and Lewis, Stearns and Hartma-
nis in 1965 (see [8, 10, 16]). Since then, different authors, such like Hopcroft
and Ullman (see [1]) have been referring to the concepts without illustration.
We herein present these concepts for the purpose of education, although, in
Section 7, we state the two main theorems about such functions.

Definition 2 A (total) function t : N → N is said to be a proper function
of time if there is a deterministic Turing machine M and a number p ∈ N
such that, for all inputs of size n ≥ p, M halts (accepting) in exactly t(n)
steps.

Proper functions of time are also called time constructible. A similar
definition to Definition 2 can be given for space:

Definition 3 A (total) function s : N→ N is said to be a proper function of
space if there exists a deterministic Turing machineM and a number p ∈ N
such that, for all inputs of size n ≥ p,M halts (accepting) in a configuration
in which exactly s(n) cells are non blank and, moreover, no more cells were
used during the computation.
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Proper functions of space are also called space constructible. Figure 5
illustrates a Turing machine with bounded space resources 2s(n) for inputs
of size n. We will pay more attention to clocks than to rulers.

Polynomials and exponentials are time constructible functions and re-
lated to very well known complexity classes. Some well known time bounds
are:

|x|k, 2k|x| and 2|x|k (1)

where x is the input and |x| is the size of the input (the number of symbols
in the input word).

Originally the concept of time constructible function was introduced in
two varieties. A function t(n) was considered to be time constructible if
there exists a t(n) bounded multitape Turing machineM such that for each
n there exists some input on whichM actually makes t(n) transitions. We
say that t(n) is fully time constructible if there is a Turing machine that
uses t(n) time on all inputs of length n.

q

q0, qhalt

Finite Control

input tape

working tape

working tape

1 0 1 1 0 t t t t t . . .

n = |x|

input size

1 X 1 Y 0 t t t t t . . .

. . . . . . . . . t · · ·

s(n)

Figure 5: A deterministic Turing machine with limited resources in space:
for every n, the working space is limited by 2s(n) cells in each working tape.

The use of clocks result from the fact that simply externally counting the
steps of a Turing machine computation is inadequate. The Turing machine
itself should count the number of steps and switch itself off in the last step.
To make step counting and time explicit inside the machine we need to
introduce a system alarm clock that must be defined as part of the Turing
machine.
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We can install alarm clocks in all our (let us say deterministic) Turing
machines as follows. LetM be an arbitrary Turing machine. LetMclock be
a Turing machine that witnesses the time constructibility of some total func-
tion. We can construct a new Turing machine that is a parallel composition
of machinesM andMclock. We just have to add toM the tapes ofMclock

and change the finite control of M, enlarging it with the finite control of
Mclock. Now, ifM reaches an halting state before the clockMclock alarms,
then we consider it a halting state, and the composite machine accepts or
rejects according to the decision of the machineM. Otherwise, if the clock
Mclock of the composite machine reaches a halting (accepting) state first,
before M halts, then the composite machine rejects; the computation is
timed out.

We note that this method allows us to make effective enumerations of
clocked Turing machines, a mathematical tool to proceed with explorations
in computational complexity.

Turing machines are finite mathematical objects, described via finite sets
and finite functions. Turing machines can then be encoded into, lets say,
finite binary sequences, and these sequences encoded into natural numbers
and, consequently, ordered. This method provides an enumeration of all
Turing machines

M0||Mn2 M1||Mn2 M2||Mn2 M3||Mn2 M4||Mn2 M5||Mn2 M6||Mn2 · · ·

M0||Mn3 M1||Mn3 M2||Mn3 M3||Mn3 M4||Mn3 M5||Mn3 M6||Mn3 · · ·

M0||Mn4 M1||Mn4 M2||Mn4 M3||Mn4 M4||Mn4 M5||Mn4 M6||Mn4 · · ·

M0||Mn5 M1||Mn5 M2||Mn5 M3||Mn5 M4||Mn5 M5||Mn5 M6||Mn5 · · ·

...
...

...
...

...
...

...
. . .

Figure 6: Enumeration of clocked Turing machines from an enumeration of
Turing machines and an enumeration of clocks or rulers. Note that we can
start with any polynomial to obtain P, NP, or PSPACE ; thus we could well
have started with the linear clock n+ 1.

IfM0, ...,Mn, ... is an enumeration of all Turing machines, then the new
machines resulting from the (algorithmically constructible) parallel combina-
tion of the previous machines withMclock, i.e.,M0||Mclock, ...,Mn||Mclock,
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..., is an enumeration of all sets decided in the time provided by the given
clock. If we want the class of sets decidable in polynomial time, then we just
have to proceed to a careful enumeration. LetMni denote the polynomial
clock with exponent i > 2 we are about to specify in this paper. Such an
enumeration can be done as follows (according with Figure 6):

M0||Mn2 ,M1||Mn2 ,M0||Mn3 ,M0||Mn4 ,M1||Mn3 ,M2||Mn2 ,

M3||Mn2 ,M2||Mn3 ,M1||Mn4 ,M0||Mn5 ,M0||Mn6 ,M1||Mn5 ,

...

Although this construction produces many (infinite to be precise) equiva-
lent machines along the sequence (why?), and thus repeating the sets decided
by the machines in the sequence, it is a major intellectual step in the theory
of complexity, complexity, as it allows to perform a theoretical task known
as diagonalisation over a complexity class (e.g. NP or PSPACE , see Section
4). And it can be done just because Turing machines can be specified to
act as alarm clocks and rulers, so much for such a little thing as a Turing
machine.

4 Models of computation

The deterministic and non-deterministic Turing machines are just ver-
sions of the same concept as we will elucidate in this section.

We first define the concept of a canonical Turing machine:
We impose the following conditions on a Turing machine: (a) every step

of a computation can be made in exactly two possible ways that are consid-
ered different even if there is no difference in the corresponding transitions
(this distinction corresponds to two different bit guesses of an irrelevant
variable); (b) the machine is clocked by some time constructible function
and the number of steps in each computation is exactly the number of steps
allowed by the clock; (c) every computation ends in the accepting or the
rejecting states.

Every specification of a clocked Turing machine, as discussed in Section 3,
can be rewritten in order to satisfy the conditions of the previous paragraph.

The reader may find it odd to have a deterministic Turing machine that
at each step of computation have two choices of transitions. These two
transitions are “clones”, but are they necessary? The reason of this more
sophisticated definition is that it makes a clear separation between the Tur-
ing machine and the different accepting criteria.
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Definition 4 A set A is decided by a deterministic Turing machine in con-
structible time t if all computations (of length t(|x|)) end in the accepting
state whenever x ∈ A and all computations (with length t(|x|)) end in the
rejecting state whenever x /∈ A.10

Definition 5 [Rabin and Scott introduced the concept of non-determinism
in 1959 (see [14])] A set A is decided by a non-deterministic Turing machine
in constructible time t if there exists a computation (of length t(|x|)) ending
in the accepting state whenever x ∈ A and all computations (with length
t(|x|)) end in the rejecting state whenever x /∈ A.11

If we restrict the time to the class of polynomials, then Definition 4
characterizes the class of sets P and Definition 5 the class NP. If we restrict
the bounds to the class of exponentials of expression 2kn, for k ∈ N, then
Definition 4 describes the class DEXT and Definition 5 the class NEXT .
And if we restrict the time to the class of exponentials of expression 2nk , for
k ∈ N, then Definition 4 determines the class EXPTIME , Definition 5 the
class NEXPTIME . Similar definitions hold for space, namely the polynomial
bound introduces PSPACE and NPSPACE , for the deterministic and non-
deterministic cases, respectively, and the first exponential bound introduces
EXPSPACE .12 The space complexity classes for the logarithm bound (which
can not exist for time (why?)) are designated by LOG and NLOG, for the
deterministic and non-deterministic cases, respectively. All these classes are
related through the web of inclusions of Figure 7.13

We can proceed now with further relevant models of polynomial time
Turing machines:

Definition 6 [Concept introduced by de Leeuw, Moore, Shannon, and
Shapiro in 1956 and fully developed by Gill in 1972 in his PhD disserta-
tion (see [4, 6, 7])] A set A is decided by a probabilistic Turing machine
in constructible time t if at least 2t(|x|)+1 computations (of length t(|x|))
end in an accepting state whenever x ∈ A and strictly less than 2t(|x|) + 1
computations end in an rejecting state whenever x /∈ A.14

10The number of computations is 2t(|x|).
11The number of computations is the same, i.e., 2t(|x|).
12For mathematical and historical reasons EXPSPACE refers to the class of exponentials

of expression 2kn, for k ∈ N, and not to the class of exponentials of expression 2nk

, for
k ∈ N, being incoherent with the corresponding designation of time class EXPTIME .

13If C is a class, then co − C denotes the class of its complements. Each deterministic
class C coincides with its dual or co-class: C = co − C. For the non-deterministic classes,
it is an open problem to know if C ?= co − C.

14Ibidem.
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LOG NLOG P DEXT EXPTIME

NP PSPACE EXPSPACE

co −NLOG

NPSPACE

NEXPTIME

⊂

⊂

⊂

⊆ ⊆ ⊂
⊆

⊆

⊆
⊆

=

=

Figure 7: Diagram representing the web of structural relations between the
most well known complexity classes. Edges denote equality and directed
edges denote inclusion. Information about the strict inclusions are provided
by the labels.

Definition 7 [Concept introduced by Gill in 1972 in his PhD dissertation
(see [6, 7])] A set A is decided by a bounded probabilistic Turing machine
in constructible time t if there exists a dyadic rational 0 < ε < 1

2 such
that the number of computations (of length t(|x|)) ending in an accepting
state is greater or equal to (1

2 + ε)2t(|x|) whenever x ∈ A and the number
of computations (of length t(|x|)) ending in an rejecting state is greater or
equal to (1

2 + ε)2t(|x|) whenever x /∈ A.15

Definition 8 [Concept introduced by Gill in 1972 in his PhD dissertation
(see [6, 7])] A set A is decided by a Rabin bounded probabilistic Turing
machine in constructible time t if there exists a dyadic rational 0 < ε < 1

2
such that the number of computations (of length t(|x|)) ending in an accept-
ing state is greater or equal to (1

2 + ε)2t(|x|) whenever x ∈ A and all the
computations (of length t(|x|)) end in an rejecting state whenever x /∈ A. 16

Now, if we consider three possible final states in a Turing machine, accept,
reject, and don’t know, then we can still add a further class of probabilistic
Turing machines:

15Ibidem.
16Ibidem.
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Definition 9 [Concept introduced by Gill in 1972 in his PhD dissertation
(see [6, 7])] A set A is decided by a Z bounded probabilistic Turing machine
in constructible time t if there exists a dyadic rational 0 < ε < 1

2 such
that, whenever x ∈ A, the number of computations (of length t(|x|)) ending
in an accepting state is greater or equal to (1

2 + ε)2t(|x|) and all the other
computations (at most (1

2 − ε)2t(|x|) computations of length t(|x|)) end in
the don’t know state and, whenever x /∈ A, the number of computations (of
length t(|x|)) ending in an rejecting state is greater or equal to (1

2 + ε)2t(|x|)

and all the other computations (at most (1
2 − ε)2

t(|x|) computations of length
t(|x|)) end in the don’t know state.

Thus all these classes can be defined in the same way; proofs rely on the
counting of accepting computations, rejecting computations, and computa-
tions ending in the state don’t know. Each computation is generated by a
random binary sequence of the same size. Thus, if the clock is adjusted to
time t, we will end up with a tree of 2t(n) computations for inputs of size n,
corresponding to all binary sequences of size t(n).

P ZPP NP ∩ co −NP BPP PP PSPACE

R

co − R

NP

co −NP

Figure 8: Diagram representing the web of structural relations between the
most well known polynomial time complexity classes. Directed edges denote
inclusion.

Definition 6 gives the class of sets PP, Definition 7 the class BPP, Def-
inition 8 the class R (called VPP in Gill’s PhD dissertation of 1972 17 (see

17One of the reasons why this class is denoted by R of Rabin is the fact that Rabin
was the first to develop a powerful polynomial time probabilistic algorithm, namely the
algorithm to decide if a given number is a prime number (see [13]), based on the work of
Miller (see [11]).
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[6, 7])), and Definition 9 gives the class ZPP. Moreover, either BPP or R
correspond to the so-called Monte Carlo algorithms and ZPP corresponds to
the Las Vegas algorithms. These classes and their duals are related through
the web of inclusions of Figure 8.18

5 Linear, polynomial and exponential time

Now, so far so good!, but we never saw a Turing machine specification of
a time constructible or a space constructible function, maybe for historical
reasons, but for other reasons as well that will be explained in section 7.19

In the sequent subsections we present the most common types of clocks.

5.1 Linear clock

We start with the linear clock, the Turing machine which on inputs of
size n halts exactly in k × n steps, for k ∈ N. We will consider first the
general case of the function tk(n) = k × n, for k ≥ 4, then we will refer to
the special clocks t2(n) = 2n and t3(n) = 3n. Note that the clock t1(n) = n
does not exist, since this function amounts to less than the time needed for
the machine to read its input, i.e., n+ 1 steps.20 Moreover, for the general
case tk(n) = k × n, with k ≥ 4, we will consider first the case n ≥ 4 and
then the most general case using patching techniques.

The machine specified in the transition diagram of Figure 9 satisfies the
requirements for n ≥ k. Note that the cardinality of the input alphabet
is irrelevant, only the size of the input really matters. The machine has
three tapes, one input read-only tape and two working tapes, the first one
designated the “dance” tape and the second one the counting tape. Once
given the value of k, the specification of the Turing machine of Figure 9 is
complete. It can be retrieved for an arbitrary value of k. It works as follows:

1. The machine copies the input to the “dance” tape: in this task, the
machine marks the first symbol being copied with a 0̆, the second with
a 0́, the next ones with 0’s; once found the blank symbol at the end
of the input, the machine copies it as a 0̆ and turns left revisiting the
penultimate cell. In this task, the machine takes n+ 1 steps.

18See footnote 13.
19Surely, such specifications have been done all over the world.
20And so, the time function of expression t′1(n) = n + 1 is, indeed, time-constructible.

Notice that to read an input of size n, at the end of n states of reading we need an extra
step that detects the end of the input and to reach one halting state.
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qa

q1q2

pk

pk−1

...

p1

p0

0, 1;t;t → R; 0̆, R; 0̆, R

0, 1;t;t → R; 0́, R; 0, R

0, 1;t;t → R; 0, R; 0, R

t; ;→ R; 0̆, L; N

0, 1; ;→ R; 0, R; N

; 0;→; 0̀, L; L

; 0̆; 0→; L; L

; 0, 0́, 0̀; 0→; R; N

; 0, 0́; 0̆→; R; N

; 0̀; 0̆→; ;

; 0̆; 0→; R; L

; 0, 0́, 0̀; 0→; L; N

; 0, 0̀; 0̆→; L; N

; 0́; 0̆→; ;

Figure 9: Transition diagram of a Turing machine that makes exactly k×n
transitions, for n ≥ k, k ≥ 4 fixed. For k = 1 the function is not time
constructible. For k = 2, 3, we can specify simplified machines witnessing the
time constructibility of 2n and 3n, that execute 2 and 3 dances, respectively.
Note that in the transition diagram, the second transition between states p1
and pk−1 is the transition from pk−2 to pk−1, and not the transition from p1
to p2. The initial state is p0 and the accepting state is qa.

2. Turning back, the head in the “dance” tape, marks the penultimate
symbol 0 by 0̀, and enters into the main “dancing cycle”.

3. While in the copying procedure 1, the head on the counting tape is
writing the sequence Y Xk−2 and stopping at the lastX — one “dance”
was just performed and (k − 1) “dances” are still to be made. Since
we are assuming n ≥ k, this routine can be done at the same time as
procedure 1. Note that k, a fixed value for each such Turing machines,
is a value registered in the finite control of the machine. This task
ends with the head in the last X and possibly having the other head
on the “dance” tape still performing its job (namely for n ≥ k).
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4. Every time a “dance” is completed, i.e., every time the “dance” head
reaches one of the extremes of the word written in the tape, the count-
ing head moves an X to the left. The finite control knows that, once
having reached the Y , the “dance” that is now to be made is the last
one. In fact, the machine will have visited the n + 1 written cells of
the “dance” tape performing n (in step 1) + n× (k− 1) = kn steps of
computation.

5. However, in the last step, the machine can not visit the last written cell
of the “dance” tape, or else would need a further step to halt, making
the clock tick once more. Instead, it halts in a single transition, once
reached the penultimate position in that direction, 0́ if moving from
the right to the left or 0̀ if moving from the left to the right.

For each value of k, the schematic machine of Figure 9 can be modified
in a way such that all the values of n less than k are treated separately
by patching in the finite control the finite automaton of the exceptions.
However, it is worth emphasising that only the asymptotic behaviour of the
machine is relevant, e.g., that there exists an order after which the machine
behaves like a perfect clock.

This clock was tested using a simulator of Turing machines in mathe-
matica and works perfectly!

The clocks for the cases k = 2, 3 (for all n ∈ N − {0}) are simple. We
illustrate the second in Figure 10 and leave the specification of the first to
the reader.

5.2 Polynomial clock

Without loss of generality, we can assume that the input is written in
unary since only its size really matters.21

Figure 11 displays the transition diagram of a 3-tape Turing machine
that makes exactly n2 transitions, for all n ∈ N greater than 3.22

As we saw, in computational complexity it is irrelevant what happens
for a finite number of inputs, since only the asymptotic behaviour of Turing

21Herein, we use input words of 0s. Thus either being in binary or written with a
different alphabet what is copied to the working tapes is the same sequence of 0s (plus or
minus one 0), possibly marked in some positions.

22I.e., for words of length at least 3 bits. For words of size less than 3 the problem can
be solved by incorporating an automaton in the finite control of the Turing machine. This
“delay” in the behaviour of these Turing machines that witness time constructibility is
due to the necessity of preparing the tapes for the “dances” of the reading heads.
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qa

q2q1p2p1

p0

0, 1;t → R; 0̆, R

t;t → N ; 0̆, L

0, 1;→ R; 0, R

t; 0→ N ; 0̀, L

t; 0→ N ; R

t; 0̀→ N ; N

t; 0̆→ N ; R

t; 0→ N ; L

Figure 10: Transition diagram of a Turing machine with two tapes that
makes exactly 3n transitions before halting, for n ≥ 2. The particular cases
n = 1, 2 can be included by patching these two exceptions in the finite
control. The initial state is p0 and the accepting state is qa.

machines matters.23 A finite set is always decidable by a finite automaton.
Such an automaton can be added to the finite control of a Turing machine
to solve the problem of finitely many exceptions.

Figure 13 displays the transition diagram of the exceptions of the Turing
machine specified in Figure 11. Exception of exceptions is the value n = 1,
since 12 >/ 1 and, as we said earlier, every time constructible function t
should be superlinear, i.e., redefined as t(n) := max{t(n), n + 1} and the
function of expression n+ 1 is already time constructible.

The reader may notice that the Turing machine that witnesses the time
constructibility of the function of expression n2 is very similar to the one
that witnesses the time constructibility of k×n, as the comparison between
Figures 9 and 13 show. One has only to replace k by n and follow the
transition diagram, paying attention to a few further details.

We discuss now how to implement a polynomial alarm clock in general.
The idea of one possible construction is as follows.

Notice the recurrences: nk = n× (nk−1 − nk−2) + nk−1 = nk−1(n− 1) +
nk−1, with k ≥ 2.

The input is copied to the working tape number 2 and marked (while
doing the copy) in the first cell and in the first blanc cell to the right of
the copy, in a way such that it can be reused during the computation. Also

23This is the reason why the complexity classes are closed under finite variants, i.e., if
A is in some complexity class C, and A∆B = (A−B) ∪ (B − A) is a finite set, then also
B belongs to the same class C.
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marked are the second and the penultimate positions (1 step after marking
the first blanc cell). Another copy of the input, this time reduced in one
symbol, is copied in the same way, to the tape number 3 (therefore, of size
n for inputs of size n, implying that one “dance” in this tape corresponds
to n − 1 transitions), marked as the previous in the first, second, last and
first blanc cell after it.

The input of size n is also copied to the working tape number 4 as a
sequence Y X . . .X of size n − 1: for each X, the copy of the input of size
n+ 1 in tape 2, 0̆0́0 . . . 00̀0̆, is swiped in a single “dance” (of n transitions).
In the end of all these activities, n2 transitions are counted in the tape
number 5, through a sequence Y X . . .X of size n2, that was initiated in the
beginning of the computation.

The same activity is executed involving the tapes 3 and 5, counting
the transitions in the working tape number 6 that, in this way, holds the
sequence Y X . . .X of size n3 − n2 + n2 = n3 that is being written since the
beginning of the computation. Working with tapes 3 and 6, the machine
makes (n − 1) × n3 = n4 − n3 new transitions that added to n3 precedent
transitions, sum up to n4 transitions, counted in the working tape number
7, in the sequence Y X . . .X of size n4 − n3 + n3 = n4, that was initiated in
the beginning of the computation.

Repeating this procedure until the last step of the cycle from n to nk,
the Turing machine makes nk transitions, not being necessary to register
this value in any tape.

Note that the initial symbols Y in the sequences are written in the first
transition of the machine from the initial state. All the transitions are being
counted in the tapes: until n3 in tape 5, until n4 in tape 6, ..., until nk−1 in
tape k+1. k+1 working tapes are needed (with k fixed) for this computation
of nk steps.

5.3 Exponential clock

We prove last that the exponential function of expression 2n is time
constructible. We will consider the 3-tape deterministic Turing machine,
with the transition diagram depicted in Figure 12, as witness of that fact.
In the horizontal line, we find a sequence of states p0, p1, p2 and q1 that solve
the particular cases for n = 0, n = 1 and n = 2: for the non-admissible case
of the empty input sequence, the machine accepts in one transition (20 = 1);
for the case of an input of size 1, the machine accepts in two steps (21 = 2);
for the case of an input word of size 2, the machine accepts in 4 transitions
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(22 = 4); for inputs of greater size, the machine undergoes a cycle of n − 2
steps.

q1

qa

q2

p3

p2

p1

p0

; 0̆; X →; R; L

; 0, 0́, 0̀; X →; L;
; 0, 0̀; Y →; L;

; 0́; Y →; ;

; 0̆; X →; L; L

; 0, 0́, 0̀; X →; R;
; 0, 0́; Y →; R;

; 0̀; Y →; ;

0, 1;t;t → R; 0̆, R; Y, R

0, 1;t;t → R; 0́, R; X, R

t;t;t →; 0̆, L; L

0, 1;t;t → R; 0, R; X, R

; 0;→; 0̀, L; L

Figure 11: Transition diagram of a Turing machine witnessing the con-
structibility of the function of expression n2, for all input size n ∈ N such
that n ≥ 4. The initial state is p0 and the accepting state is qa.

We consider the step of three transitions of the loop specified in Figure
12. Every number of the form 2n, for n ≥ 2, can be decomposed into a sum

2n = 20 + 21 + (
n−1∑
i=1

2i) + 1 , (2)

where the two first terms count the transitions from p0 to q1, the last term
1 counts the final transition to the halting (accepting) state; for n = 2, it
makes 1 + 2 + 1 transitions (22 = 4). The composite term in the summation
is computed in the cycle: in the tape 2 we have a number written in unary,
starting with 1. The machine copies the tape 2 into the tape 3, always
rewriting the tape 3, then copies the tape 3 into the right of the 1s in
tape 2, duplicating the former value in each step of the cycle. The halting
condition of this cycle is the detection of the first blanc cell in the input
tape. Two symbols of the input tape have been read before the step of the
cycle is executed for the first time. From an input of n symbols, we subtract
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qa

p0 p1 p2 q1

q2 q3

0;t;t → R; 0̆; N

t;t;t → N ; N ; N

0; 0̆;t → N ; N ; N

t; 0̆;t → N ; N ; N

0; 0̆;t → R; N ; 0̆, N
0; 0̆; 0̆→ R; R; R

t; 0̆; 0̆→ N ; N ; N

; 0; 0̆→ N ; L; N

;t; 0̆→ N ; L; N

;t; 0→ N ; 0, R; L

;t;t →; 0, R; L

; 0;→ N ; R; 0, R

Figure 12: Transition diagram of a Turing machine witnessing the con-
structibility of the function of expression 2n, for all n ∈ N. We specify a
3-tape Turing machine with 1 input tape and 2 working tapes executing
exactly 2n transitions until the halting state is reached. The initial state is
p0 and the accepting state is qa.

2 and add 1 (since the step of the cycle is advanced), what amounts to the
counting of Formula 2.

Therefore, the cycle works as follows: to count 23 = 8, we need 4 transi-
tions external to the cycle. The computation enters into the cycle with one
single symbol in each working tape with the last input symbol left unread.
When the last input is then read, one symbol of the tape 2 is copied to
the working tape 3, overwriting its content; then 1 symbol from tape 3 is
copied to the tape 2 to the right, making a total of 2 symbols in tape 2; and
the head of tape 2 moves back 2 cells, summing up a total of 4 transitions;
4+4 = 8, and we are done for this case. To compute 24 = 16, we need again
4 transitions external to the cycle; the computation runs into the cycle and,
after one step of the cycle, the machine, as we saw in the above example,
made more 4 transitions, a total of 8 transitions, 8 transitions less than the
required amount of 16 transitions; there are 2 symbols in the tape 2 and a
last unread symbol in the input tape. When the last input is then read, two
symbols are copied from tape 2 to tape 3, then 2 symbols from tape 3 to the
tape 2, making a total of 4 symbols in tape 2; in the end, the reading head
of tape 2 counts the 4 symbols, making the total of 8 transitions; 8+8 = 16,
and we are done for this case. And so forth for n > 4.
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5.4 Patching exceptions into the finite control of a Turing
machine

Once given a Turing machine M that “misbehaves” at a finite number
of inputs, lets say w1, ..., wk, the corrected machine M̃, if it exists, can be
obtained by patching the desired outputs for those particular input in the
finite control ofM. We emphasize if it exists since “misbehaving” can be a
problem of time, i.e., the exceptions can not be handle in the required time.
E.g., for the time bound t(n) = n2, the machine would have to halt in one
transition for inputs of size 1, which is not possible, since two transitions
are required to detect the ending of the input.

The Turing machine in Figure 13 witnesses such a patching for the excep-
tions of the general Turing machine of Figure 11 witnessing the constructibil-
ity of the function with expression n2. Notice again that no exception can
properly handle with inputs of size 1.

q0 q1 q2 q3

qa q4

q8 q7

q5

q6

q9

...0, 1→ R 0, 1→ R

t → R

0, 1→ R

t → R
t → R

0, 1→ R

t → R
t → R

t → R

t → Rt → R

t → R

Figure 13: Transition diagram of a Turing machine that computes n2 in n2

transitions, for n = 2, 3. For the case n > 3 the computation progresses
to the right of q3 with the transition diagram already presented in Figure
11. The labels refer only to the input tape. The initial state is q0 and the
accepting state is qa.

6 The composition of proper functions of time

The composition of time constructible functions is still time con-
structible. Since we have proved that 2n and nk are time constructible
bounds, this result implies that the class of bounds used to define the com-
plexity class EXPTIME , 2nk , for k > 1, k ∈ N, is also a class of time
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constructible functions. It is also true that the closure of the class of con-
structible functions under product implies that the class of bounds used to
define the complexity classes DEXT and EXPSPACE , 2kn, for k ≥ 1, k ∈ N,
is a class of both time and space constructible functions, respectively.

Proposition 1 The classes of proper functions of time and space are closed
under addition, multiplication and composition.

Proof: We will consider in this proof only the class of proper functions of
time (time constructible functions), since we did not pay too much attention
to space constructibility. The proof is interesting for those readers who want
to learn how to engineer Turing machines as a lego of diverse pieces — one
of the ingredients of computational complexity.

Remember that when Turing machines reach the halting (accepting)
state, they turn themselves off and no further transitions are allowed. Let
Mf be the deterministic Turing machine witnessing the time constructibility
of the function f andMg the deterministic Turing machine witnessing the
time constructibility of the function g. We have to specify a deterministic
Turing machine witnessing the time constructibility of the function f ◦ g.

We start by modifyingMg by including one more tape and enlarging the
finite control in such a way that the new machine, let us say M, writes in
the new tape a symbol per transition ofMg. It writes on the new tape the
first symbol 0̆ and then, keeping the head moving to the right, a sequence
of symbols 0, one per each new transition of Mg. When the machine Mg

makes the transition to the accepting state, the head of the new tape writes
the last 0 and sill moves to the right; in a different set of tapes, in the same
transition, initiates the computation of Mf which, instead of reading the
input tape, starts reading the tape with the word 0̆0 . . . 0 of size g(n), where
n is the size of the original input. This word will be read from the right
to the left and its end is detected with the reading of the symbol 0̆. The
machine constructed in this way, incorporating the modified finite control
of Mg and the finite control of Mf , witnesses the time constructibility of
f ◦ g. The step to right that Turing machines make to detect the end of
the input is a further step implemented in M by moving the head of the
new tape to the left after the halting ofMg. But there is still one problem:
the machineM writes its g(n) first steps simulatingMg and then f(g(n))
steps by simulatingMf , i.e., in this wayM makes more g(n) steps than it
was supposed to do. Then M has to make it differently. Since each such
machine has to start by copying the input to a working tape, the machine
M starts copying the input 0g(n), with one transition delay to a another new
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tape, at the same timeMg is performing its computation writing the g(n)
0’s. Two transition after Mg has halted, the machine Mf detects the end
of its input, the blanc space after the g(n) 0’s. This delay of two transitions
can be avoided by propagating to the sequence of g(n) 0’s the markings on
the “dancing” tape ofMg.

The closure of the class of time constructible functions under addition
and multiplication requires another construction common to both addition
and multiplication.

For the addition the finite control of the machine Mf is modified in
such a way that it writes in a new tape, in parallel with the computation
of the original machine, one copy of the input in the form 0̆0 . . . 0 of size n,
where n is the size of the input, leaving the head in the first blanc cell to
the right. This task can be done without difficulty since the detection of
the blanc symbol to the right of the original input allows to end the copy.
In the case of addition, the accepting state ofMf corresponds to the initial
state ofMg. On the other side, the machineMg is modified in a way such
that it ignores the original input and reads as input the word written in the
new tape, from right to left, until it finds the symbol 0̆ corresponding to
the blanc symbol ending the original input. The composite machine makes
in this way f(n) + g(n) transitions. Both machines,Mf andMg, with the
required modifications, have been incorporated in a single machineM.

The closure of the class of time constructible functions under product
can be shown by the technique introduced in the Section 5.2 for the function
of expression n2, noting that f(n) × g(n) = f(n) + g(n) + (f(n) − 1) ×
(g(n) − 1) − 1. The machine computes first f(n) in f(n) transitions and
then g(n) in g(n) transitions, in separated sets of tapes, counting, as for
addition, f(n) +g(n) transitions, concluding the stage with f(n) symbols in
one tape and g(n) symbols in another. Then, the machine applies the given
technique of Section 5.2 to compute, in unary, (f(n) − 1) × (g(n) − 1) in
(f(n) − 1) × (g(n) − 1) transitions. In the last “dance” the machine halts
one transition before the end, by means of suitable marking of the sequence
g(n). �

7 From time to space constructible functions

In this section we prove some easy statements that help the reader to
understand the relationship between the concepts introduced in this paper.

Definition 10 A (total) function f : N→ N is said to be computable by a
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deterministic Turing machineM ifM never rejects and writes in the output
tape the value f(x) before accepting.

Proposition 2 Proper functions are computable.

Proof: LetM be a witness of the time constructible function t. FromM we
can design the following Turing machineM′ as follows. We add an output
tape to the tapes of M; then, we modify the finite control of M in such
a way that, whenever M makes a transition, M′ writes 1 in the output
tape, moving at the same time the output write-only head one cell to the
right. The new machine M′ computes t(n) in unary, where n is the size
of the input. [A subcomputation, with one more tape, allows the Turing
machine (now another machineM′′) to compute t(n) in unary and to make
the conversion to binary in the output tape.]

Identical construction can be done for the space: whenever M visits a
new blanc cell,M′ writes 1 in the output tape. �

There are important characterization theorems of proper functions due
to Kobayashi (see [9, 2]):

Proposition 3 Let t : N → N be a (total) function for which there exist
ε > 0 and an order p ∈ N such that, for n > p, t(n) ≥ (1 + ε) n.24 Then
the function t is a proper function of time if and only if t can be computed
in time O(t).25

Proposition 4 The function s is a proper function of space if and only if
s can be computed in space O(s).

A property of time constructible functions that the reader should keep
in mind:

Proposition 5 If a function is proper of time, then it is proper of space.

Proof: Let t : N → N be a proper function of time. Then, according to
Proposition 3, t(n) can be computed in O(t(n)) transitions in which only
O(t(n)) cells can be visited. Therefore, t is a proper function of space
according to Proposition 4. �

A property of time constructible functions to keep in mind is the fact
that they have no growing limit within the class of computable functions.
Every computable function is bounded by a time constructible function.

24I.e., t grows strictly faster than the identity.
25O(t) is the class of functions t′(n) such that, there exists r > 0, there exists p ∈ N,

such that, for n ≥ p, t′(n) ≤ r × t(n).
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Proposition 6 For every (total) computable function f , there exists a time
constructible function g such that g grows faster than f , i.e., for all n ∈ N,
f(n) < g(n).

Proof: Consider a Turing machine M1 with two tapes, the input tape and
one working tape that computes f in unary. LetM2 be a Turing machine
with four tapes, the input tape, two working tapes, and an output tape, such
that, on input x, writes 1|x| in the first working tape and then simulatesM1
on input 1|x| in the second working tape writing 1f(|x|) in the output tape.
The machineM2 consumes the same time for all inputs of size n, a proper
time greater than f(n) + n+ 1, that is the time necessary to read the input
and detect its end (n+ 1), plus the time needed to write the output (f(n)).
The time ofM2 is therefore constructible and greater than f(n). �

8 Conclusions

This paper is educational and has as goal to motivate the reader to learn
more about Turing machines, computability and complexity.

The Turing machine per se is not only suitable as a definition of algo-
rithm. It can perform diverse tasks, diverse computations not necessarily
associated with the computation of a function or with a decision problem.
In this paper we showed that Turing machines can behave like clocks, rulers,
and randomizers. All clocks and rulers correspond to computable functions,
but not all computable functions, even if they only depend on the size of
the input, correspond to clocks or rulers. E.g., to be a clock, a computable
function t has to be computable in time O(t(n)).

Turing machines with bounded resources specified by clocks and rulers
are very important, since they can be used to enumerate the decision prob-
lems that have algorithmic solution in constructible times or spaces belong-
ing to some class of bounds. The Turing machines need not be observed
for their transitions and non-blanc cells to be counted. Once equipped with
clocks or rulers they halt in the precise stipulated time or space, deciding
the sets in some a priori given time or space bound.

Although most relevant topic, specification of Turing machines as alarm
clocks and rulers are not found in books, namely because they are difficult
to specify and, moreover, a general theorem guaranties their existence. In
this paper we developed specification techniques to provide those devices in
a practical sense and not only in high level abstract sense.
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