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Prefácio

Desde o seu primeiro volume, em 1978, o Boletim da SPM tem sido uma
publicação dedicada à comunidade matemática portuguesa, constituindo um
espaço diversificado de informação e promovendo a circulação de ideias e a
troca de experiências sobre investigação e sobre o ensino superior.

Tanto o Boletim, como a comunidade matemática ligada ao nosso país,
têm evoluído ao longo dos tempos, e têm-se adaptado a diferentes realidades.

Enquanto que, até aos anos 90, a esmagadora maioria desta comunidade
formava parte dos quadros das nossas instituições de ensino superior, desde
então, e ainda com mais relevância neste novo século, há cada vez mais
doutorados portugueses em universidades estrangeiras, sendo a internacio-
nalização da nossa investigação matemática uma realidade incontornável.

A conferência “Matemáticos Portugueses pelo Mundo”, organizada por
pela primeira vez em 2017, no Instituto Superior Técnico, da Universidade de
Lisboa, tendo como oradores 10 matemáticos portugueses na diáspora, veio
demonstrar a pertinência de preservar os elos de ligação desta comunidade.

Tanto na conferência de 2017, como na segunda edição em 2019, na
Faculdade de Ciências da Universidade do Porto, foi notória a grande qua-
lidade dos temas abordados pelos oradores convidados, tendo havido, em
geral, o cuidado de apresentar os temas de forma acessível a uma audiência
não especializada.

Desta forma, é com grande naturalidade e sentido de oportunidade que o
Boletim da SPM se associa a esta iniciativa, registando materialmente uma
parte significativa dos trabalhos apresentados nestas duas edições.

Esperamos, desta forma, contribuir para a visibilidade interna e externa
da investigação matemática feita fora de Portugal, e para a criação de novas
oportunidades de interacção científica no contexto académico português.

Carlos Florentino
Ana Jacinta Soares

Dezembro de 2019
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Introdução

“Matemáticos Portugueses pelo Mundo” (MPM) é uma conferência bie-
nal que visa reunir matemáticos portugueses dos quatro cantos do planeta.
Entre os seus objetivos, contam-se a disseminação de investigação de ponta e
o estímulo para novas colaborações científicas, resultando num maior sentido
de unidade e de interligação na comunidade matemática lusófona.

A última edição da conferência MPM teve lugar de 24 a 26 de junho de
2019 no Departamento de Matemática da Universidade do Porto, e contou
com quinze oradores oriundos de um vasto leque de áreas, incluindo a álge-
bra, a análise, a estatística, a geometria, os sistemas dinâmicos, e a teoria
dos números. As palestras geraram inúmeras perguntas e uma animada dis-
cussão, que se estendeu para além dos coffee breaks. Houve ainda uma sessão
de encerramento com representantes das universidades do Porto, Lisboa e
Coimbra, onde se discutiu a relevância de atividades como a conferência
MPM, e a situação dos matemáticos profissionais em Portugal.

O programa científico foi complementado por uma agenda social que
capitalizou a data estratégica do início da conferência (São João), e incluiu
uma visita à exposição “Suite Vollard” de Pablo Picasso no Palácio das Artes
e um jantar na Cooperativa Árvore. O São Pedro apoiou incondicionalmente
todo o evento.

Está prevista uma próxima edição dos MPM, a decorrer na Universidade
de Coimbra algures durante o Verão de 2021. Até lá!

Jorge Freitas
Samuel Lopes

Diogo Oliveira e Silva

Editores convidados

Novembro de 2019
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A Price Model with Finitely Many Agents

AbdulRahman Alharbi, Tigran Bakaryan, Rafael Cabral, Sara Campi,
Nicholas Christoffersen, Paolo Colusso, Odylo Costa, Serikbolsyn

Duisembay, Rita Ferreira, Diogo Gomes, Shibei Guo,
Julian Gutierrezpineda, Phebe Havor, Michele Mascherpa, Simone Portaro,
Ricardo Ribeiro, Fernando Rodriguez, Johan Ruiz, Fatimah Saleh, Calum

Strange, Teruo Tada, Xianjin Yang, Zofia Wróblewska
Applied Mathematics Summer School
King Abdullah University of Science and Technology
Thuwal, Saudi Arabia

Resumo: Neste trabalho, estudamos um modelo de formação de preços
numa população com um número finito de agentes que compram e vendem
uma mercadoria. A oferta desta mercadoria é exógena e os agentes são
racionais uma vez que pretendem minimizar os custos de transacção. O
problema em estudo é formulado como um jogo dinâmico entre N jogadores
com uma condição de equilíbrio de mercado. O limite deste problema de
N jogadores é um “mean field game”. Posteriormente, mostramos como
reformular o nosso jogo como um problema de optimização do custo total.
Mostramos a existência de uma solução usando o método direto do cálculo
das variações. Por fim, mostramos que o preço é o multiplicador de Lagrange
para a condição de equilíbrio entre a oferta e a procura.

Abstract Here, we propose a price-formation model, with a population
consisting of a finite number of agents storing and trading a commodity.
The supply of this commodity is determined exogenously, and the agents
are rational as they seek to minimize their trading costs. We formulate our
problem as an N -player dynamic game with a market-clearing condition.
The limit of this N -player problem is a mean-field game (MFG). Subse-
quently, we show how to recast our game as an optimization problem for the
overall trading cost. We show the existence of a solution using the direct
method in the calculus of variations. Finally, we show that the price is the
Lagrange multiplier for the balance condition between supply and demand.

palavras-chave: Formação de preço, jogos dinâmicos, equilíbrio de mer-
cado.

keywords: Price formation model, dynamic games, market equilibrium.
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2 A Price Model with Finitely Many Agents

1 Prologue
This document is the result of the second KAUST Summer Camp in Applied
Partial Differential Equations that took place from August 25 to September
8 of 2019. The purpose of this summer camp is to give an intense hands-
on research experience in cutting edge topics to BS/BSc and MS students.
Participants attended mini-courses that provide them with the tools to reach
the results we present here. For the research project, the participants worked
in small groups. These were coordinated by Professor Diogo Gomes, together
with his Ph.D. Students and Postdocs and Research Scientist Rita Ferreira.
Participants also had the opportunity to get acquainted with a variety of
research topics pursued by KAUST scholars as a means of broadening their
mathematical perspectives and future opportunities at KAUST. On the
weekends, there were cultural activities, such as sightseeing in the UNESCO
Cultural Heritage neighborhood of Al Balad, a snorkeling trip, and a Hejazi
Fish Dinner.

2 Introduction
Mean-field game (MFG) theory studies the behavior of large populations of
identical rational agents in competition, where the behavior of each agent
is determined by their state and by statistical information of the remaining
players. In [9], Gomes and Saúde studied a price formation problem using
an MFG approach. In this paper, we address a similar price formation prob-
lem (Problem 1) in a market with N identical rational agents who trade
continuously a commodity whose supply, Q, is a given exogenous variable
and whose price, $, is determined by the balance between supply and de-
mand. The agents are rational, in the sense that they seek to minimize their
trading cost. The collective behavior of the agents, coupled with the market
clearing condition, determines the evolution of the price, $. More precisely,
we consider the following problem:
Problem 1. Let Q ∈ C1([0, T ]) be the supply rate per agent. Let L ∈
C2(R×R), the Lagrangian, be a non-negative function, convex in the second
component. Let Ψ ∈ C1(R) be a non-negative terminal cost. Let N ∈ N
be the number of agents. At time 0, each agent i owns xi0 units of the
commodity.

Find a price, $ : [0, T ] → R, and trajectories, xi : [0, T ] → R, with initial
conditions xi(0) = xi0, such that for each 1 6 i 6 N , xi minimizes the
functional

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 1-14



Gomes et al 3

∫ T

0

(
L(xi(s), ẋi(s)) +$(s)ẋi(s)

)
ds+ Ψ(xi(T )) (2.1)

subjected to the balance condition

1
N

N∑
i=1

ẋi(t) = Q(t), ∀t ∈ [0, T ]. (2.2)

In the preceding problem, xi(t) is the amount of commodity held by the
agent i at time t; hence, ẋi(t) denotes the rate at which the agent i trades.
The functional in (2.1) represents the cost for each agent. The running cost
is composed of the trading cost that comprises the instantaneous cost of the
commodity $ẋi and indirect costs such as storage or market impact encoded
in the term L(x, ẋ). The preference of the agents at the final time, T , is
encoded in the term Ψ(xi(T )), the terminal cost. The equation in (2.2) is
the requirement that the market clears; that is, supply equals demand at all
times.

Formally, MFGs model the mean-field limit of N -player games as N →∞.
However, the rigorous justification of this limit is unknown in the general
case, despite recent substantial progress [1]. In our price formation problem,
the N -player game is relatively tractable. The main goal of this work is to
study this N -player problem, which is the first step towards the rigorous jus-
tification of the mean-field limit as N goes to infinity. We expect our price to
approximate the one presented [9] as the number of players increases. Also,
each trajectory xi should converge to the trajectory of the representative
player of the continuum of agents model solved as an MFG. Notice that in
this limiting process, the function Q remains the same for both the finite
and the continuous player models.

In their seminal paper, Lasry and Lions [15] presented three examples of
mean-field modeling in economics. They were concerned with situations
involving a large number of rational players with little individual effect on
the game. Inspired by [15], Markowich et al. [18] discussed the existence and
uniqueness of the solution for a one-dimensional parabolic evolution equation
with a free boundary that models price formation. Caffarelli et al. [2]
established the global existence and asymptotic behavior of a price formation
model with free boundaries. Their results rely on a transformation, which
takes the equation in their problem into the heat equation. Burger et al.
[1] extended this problem to a Boltzman-type price formation model. Their
solutions converge to the Lasry–Lions model as the transaction rate tends
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4 A Price Model with Finitely Many Agents

to infinity. The study of the behavior of rational agents in energy markets
appeared in [16, 17] in the context of load-control problems. Switching space
heaters on and off controls the load, for an MFG approach see [12, 13, 14].
Previous authors addressed the price issue by assuming that the demand is
a given function of the price [11] or that the price is a given function of the
demand, see [3, 4, 5, 6, 10].

An N -player version of an economic growth model was presented in [8].
In a more recent paper [9], Gomes and Saúde introduced a price-formation
model where a large number of small players seek to store and trade elec-
tricity. This model was a constrained MFG where the price is a Lagrange
multiplier for the supply vs. demand balance condition.
Here, we prove the following main theorem:

Theorem 2.1. Assume that Ψ, the terminal cost, is non-negative and uni-
formly convex, and L ∈ C2(R × R), the Langrangian, is non-negative, uni-
formly convex in the second component, and satisfies the following inequality
uniformly in (z, v) ∈ R× R:

L(z, v) > α|v|q − β, q ∈ (1,∞), α > 0, β > 0. (2.3)

Then, Problem 1 has a unique solution.

The existence is established in Proposition 4.1 and the uniqueness in
Proposition 4.3.

The condition (2.3) means that high trading rates are expensive. The utility
function in Economics is the negative of our value function. Convexity prop-
erties of the value function translate into concavity for the utility function.
Therefore, our convexity assumptions are natural from the Economics point
of view.

This work starts with the description of the single-agent control problem
and derives the Euler–Lagrange equation. It then deals with the N -agent
problem. For this, we first show the existence of the minimizers by applying
the direct method in the calculus of variations. Then, we provide an inter-
pretation of the price of the commodity as the Lagrange multiplier of the
corresponding multi-agent problem. Subsequently, we find necessary con-
ditions for the trajectories to be minimizers, via a slight variation on the
Euler–Lagrange equation.We conclude the work by proving the existence of
a unique solution for Problem 1 under convexity assumptions on L and Ψ.

Finally, we point out that Problem 1 can be coupled with a control problem
for Q on the production side, where the producer seeks to maximize profits.
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Gomes et al 5

3 Single-agent control problem
To build an N -player model, we first analyze a single-agent control problem.
Using optimal control theory and calculus of variations, we derive the Euler–
Lagrange equation and the boundary conditions.
Let Bqt = W 1,q (t, T ) be the set of admissible functions with q ∈ (1,∞) as
in (2.3). Each agent seeks to find an optimal trajectory, x ∈ Bq0, minimizing
the functional

I[x] =
∫ T

0

(
L(x(t), ẋ(t)) +$(t)ẋ(t)

)
dt+ Ψ(x(T ))

with an initial position, x(0) = x0.

If x is a minimizer, then for any y ∈ C∞c ((0, T ]), and every ε ∈ R, we have

I[x] 6 I[x + εy] .

Thus, the function i : R → R defined by i(ε) = I[x + εy] attains a local
minimum at ε = 0. Then, i′(ε)|ε=0 = 0. Accordingly, computing i′(0) and
using the fact that y is arbitrary, we obtain the Euler–Lagrange equation

DxL(x, ẋ)− d

dt
(DvL(x, ẋ) +$) = 0

and the natural boundary condition

DvL(x(T ), ẋ(T )) +$(T ) + Ψ′(x(T )) = 0.

Example 3.1. Consider a Lagrangian of the form

L(x, v) = L(v).

Then, the Euler–Lagrange equation becomes

d

dt
(DvL(ẋ) +$) = 0⇔ DvL(ẋ) +$ = K,

where K is some constant. Since L is uniformly convex, DvL is strictly
monotone and, thus, invertible. Therefore,

ẋ = (DvL)−1(K −$) .

So, if the price $(t) increases, the agents buy less or sell. In particular, if
L(v) = v2

2 , then
DvL(ẋ) = ẋ.
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6 A Price Model with Finitely Many Agents

Hence, the Euler–Lagrange equation becomes

ẋ = K −$. (3.1)

Equation (3.1) shows that as the price increases, ẋ decreases.

Let Ψ(x) = x2

2 , which means that agents seek to minimize |x(T )|2. This
choice of Ψ corresponds to the portfolio liquidation problem. The Euler–
Lagrangian equation and corresponding natural boundary condition give

d

dt
(ẋ(t) +$(t)) = 0

ẋ(T ) + x(T ) = −$(T )
x(0) = x0 .

(3.2)

Thus, from (3.1) and (3.2), we get

K = 1
1 + T

[∫ T

0
$(t)dt− x0

]
.

Define the average price

$̂ = 1
T

∫ T

0
$(t)dt.

The agent buys when

ẋ(t) > 0.

According to (3.1), the above inequality holds if

$(t) < T$̂ − x0
T + 1 .

Thus, an agent buys when the price is below the threshold price on the
right-hand side of the preceding inequality.

4 A constrained minimization problem for N
agents

We use the single-agent control problem to formulate an N -agent mini-
mization problem that includes the balance condition. We prove existence,
uniqueness, and then we provide a characterization of such minimizer by
showing that the price is the Lagrange multiplier of an equivalent minimiza-
tion problem.
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4.1 A variational problem

Notice that, for each agent, (2.1) is a functional that is independent of
the dynamics of the other agents. Hence, Problem 1 is equivalent to the
following minimization problem

x min
x,x(0)=x0

1
N

N∑
i=1

(∫ T

0

(
L(xi(s), ẋi(s)) +$(s)ẋi(s)

)
ds+ Ψ(xi(T ))

)
(4.1)

subject to 1
N

N∑
i=1

ẋi(t) = Q(t) ∀t ∈ [0, T ] . (4.2)

Substituting (4.2) into (4.1) we get

1
N

N∑
i=1

(∫ T

0

(
L(xi(s), ẋi(s)) +$(s)ẋi(s)

)
ds+ Ψ(xi(T ))

)

= 1
N

N∑
i=1

(∫ T

0
L(xi(s), ẋi(s))ds+ Ψ(xi(T ))

)
+
∫ T

0
$(s)Q(s)ds ,

and since$(s)Q(s) is independent of x at every s, the minimization problem
is equivalent to

min
x,x(0)=x0

1
N

N∑
i=1

∫ T

0
L(xi(s), ẋi(s))ds+ Ψ(xi(T )) (4.3)

subject to 1
N

N∑
i=1

ẋi(t) = Q(t) ∀t ∈ [0, T ] . (4.4)

We now prove the existence of optimal trajectories.

4.2 Existence of a solution

We use the direct method in the calculus of variations to obtain the existence
of a minimizer of (4.3) and (4.4). For that, let

L(x, ẋ) = 1
N

N∑
i=1

(
L(xi, ẋi) + 1

T
Ψ(xi(T ))

)
,

and

IN [x] =
∫ T

0
L(x, ẋ)ds.
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8 A Price Model with Finitely Many Agents

Then (4.3) and (4.4) becomes

min
x,x(0)=x0

IN [x]

s.t. 〈x(t)〉 = Q(t).
(4.5)

Proposition 4.1. Let L satisfy (2.3). Then Problem 1 has a solution.

Proof. We show that L is coercive and lower semicountinuous in W 1,q. It is
enough to show that there exist ᾱ > 0, β̄ > 0, and q > 1 such that

L(x,p) > α|p|q − β

to obtain coercivity. The condition on the Lagrangian for each agent implies
the coercivity on L, since, by the non-negativity of Ψ, we have:

L(x,p) = 1
N

N∑
i=1

(
L(xi,pi) + 1

T
Ψ(xi(T ))

)
>

1
N

N∑
i=1

(α|pi|q − β)

> α
N∑
i=1
|pi|q − β = α||p||qLq − β

>
αC

N
|p|q − β.

The last inequality follows from the fact that in RN all the p-norms are
equivalent. The above establishes the coercivity of L.

To show lower semicontinuity, we need to ensure the convexity of L on the
second variable, and that L is bounded from below. Convexity follows from
the convexity of L in ẋ. Boundedness from below follows from the coercivity
condition.

We use the direct method in the calculus of variations to determine the
existence of a minimizer for our problem. Define the admissible set

At =
{

x ∈W 1,q(t, T ) |
∑N

i=1 ẋi(s)
N

= Q(s),xi(0) = xi
0, 1 6 i 6 N, t 6 s 6 T

}
,

and set A = A0. We notice that A is nonempty by taking ẋi = Q(t),xi(0) =
xi0. Since L is bounded from below, there exists a minimizing sequence,
(xn)n∈N ⊂ A such that

lim
n→+∞

IN [xn] = inf
x
IN [x].
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Gomes et al 9

By the coercivity of L, we have

IN [xn] > α‖ẋn‖qLq − βT.

Thus, by Poincaré’s inequality, (xn)n∈N is bounded in W 1,q(0, T ). Then,
there exists x∗ ∈ W 1,q(0, T ) such that, up to a subsequence, xn converges
weakly to x∗. We notice that A is convex. Since q > 1, Morrey’s theorem
(see [7]) gives that A is closed. Thus, by Mazur’s theorem, see ([7] Appendix
D.4), A is weakly closed in W 1,q(0, T ), which implies that x∗ ∈ A. Then,
since L is bounded from below and convex in p, I is sequentially weakly
lower semicontinuous in W 1,q(0, T ). Thus, x∗ is the minimizer of I since

inf
x
IN [x] = lim

n→+∞
IN [xn] > IN [x∗] > inf

x
IN [x].

4.3 Uniqueness of solutions

Assume that

Assumption 4.2.

1. the map (x, v) 7→ L(x, v) is convex and for each x ∈ R, the map
v 7→ L(x, v) is uniformly convex; that is, there exists θ > 0 such that
for all x, y, v, w ∈ R, we have

L(λx+(1−λ)y, λv+(1−λ)w) 6 λL(x, v)+(1−λ)L(y, w)−θλ(1−λ)|v−w|2.

2. Ψ is uniformly convex.

We notice that the term $ẋ is linear in the velocity, thus convex.

Proposition 4.3. Let x ∈ RN . Under Assumptions 1. and 2., the solution
of the problem

min
x∈At,x(t)=x

IN [x]

is unique.

Proof. We prove the statement via contradiction. Assume that there exist
two different minimizers, x, y ∈ At with x(t) = x. Then, taking the middle
point, x + y

2 , we obtain
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IN

[x + y
2

]
= 1
N

N∑
i=1

[∫ T

0
L

(xi + yi
2 ,

ẋi + ẏi
2

)
dt+ Ψ

(xi(T ) + yi(T )
2

)]

6
1

2N

N∑
i=1

[ ∫ T

0
L(xi, ẋi)dt+

∫ T

0
L(yi, ẏi)dt−

θ

2

∫ T

0
|ẋi − ẏi|2dt

+ Ψ(xi(T )) + Ψ(yi(T ))
]

= 1
2IN [x] + 1

2IN [y]−
N∑
i=1

θ

4N ||ẋi − ẏi||2L2(0,T )

= min
z∈At,z(t)=x

IN [z]−
N∑
i=1

θ

4N ||ẋi − ẏi||2L2(0,T ).

Because θ > 0, the preceding inequality can hold only if ||ẋi− ẏi||2L2(0,T ) = 0
for all i = 1, . . . , N . Consequently, there exists a constant, c ∈ RN , such that
x(s)−y(s) = c for all s ∈ [t, T ]. Using the initial condition x(t) = y(t) = x,
we get c = 0, which contradicts the fact that x and y are distinct. Thus,
x = y and this concludes the proof.

4.4 Price as a Lagrange Multiplier

For F = (f1, . . . , fN ) ∈ RN , we denote its entry-wise average by

〈F 〉 := 1
N

N∑
k=1

fk.

Before deriving the necessary optimality conditions, we introduce the fol-
lowing auxiliary result.

Lemma 4.4. Let F = (f1, . . . , fN ) ∈ C((0, T );RN ) be such that for all
P ∈ C∞c ([0, T ];RN ) with 〈P (s)〉 = 0, for all s ∈ [0, T ], F satisfies∫ T

0
F (s) · P (s) ds = 0.

Then, there exists c ∈ C(0, T ) such that, for all k = 1, . . . , N , we have

fk(t) = c(t).
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Proof. Fix R ∈ C∞c ([0, T ];RN ). Set P by

P = R− 〈R〉1.

Because 〈P (s)〉 = 0, we have

0 =
∫ T

0
F · P ds =

∫ T

0
(F ·R−N〈R〉〈F 〉) ds =

∫ T

0
(F − 〈F 〉1) ·Rds.

Since R is arbitrary, by the fundamental theorem of the calculus of varia-
tions, for all k = 1, . . . , N and t ∈ (0, T ), we have

fk(s)− 〈F (s)〉 = 0.

Hence, we obtain c(·) = 〈F (·)〉 ∈ C(0, T ).

In the next proposition, we derive the necessary conditions (Euler–Lagrange
equations) for solutions of (4.5). Let X be

X :=
{

x ∈ C2([0, T ],RN ) | 〈ẋ(s)〉 = Q(s) for all s ∈ [0, T ]
}
.

Proposition 4.5. Assume that L ∈ C2(R2). Then, there exist c ∈ C(0, T )
and c̃ ∈ R such that, if x̄ ∈ X ∩C2([0, T ];RN ) is a minimizer of (4.5), then
it solves

∂

∂x
L(x̄k(t), ˙̄xk(t))−

d

dt

(
∂

∂v
L(x̄k(t), ˙̄xk(t))

)
= c(t)

and
∂

∂v
L(x̄k(T ), ˙̄xk(T )) + Ψ′(x̄k(T )) = c̃

for all t ∈ (0, T ) and for all k = 1, . . . , N .

Proof. Let y ∈ C∞([0, T ],RN ) be such that y(0) = 0 and 〈y(s)〉 = 0 for
every s ∈ [0, T ]. For ε ∈ R, we define i : R→ R as

i(ε) = 1
N

N∑
k=1

∫ T

0

(
L(x̄k+εyk, ˙̄xk+εẏk)+$·( ˙̄xk+εẏk)

)
ds+Ψ(x̄k(T )+εyk(T )).

Since 〈y〉 = 0 and x̄ ∈ X, we have

〈 ˙̄x + εẏ〉 = Q(s).
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12 A Price Model with Finitely Many Agents

Thus, we obtain

i(ε) = 1
N

N∑
k=1

[∫ T

0
L(x̄k + εyk, ˙̄xk + εẏk) ds+ Ψ(x̄k(T ) + εyk(T ))

]
+
∫ T

0
$·Qds.

We have that i ∈ C1(R) because L ∈ C2(R2). Thus, because x̄k is a mini-
mizer for all k = 1, . . . , N , we have i′(0) = 0; that is

1
N

N∑
k=1

[∫ T

0

(
∂

∂x
L(x̄k, ˙̄xk)yk + ∂

∂v
L(x̄k, ˙̄xk)ẏk

)
ds+ Ψ′(x̄k(T ))yk(T )

]
= 0.

Integrating by parts, we obtain

1
N

N∑
k=1

[ ∫ T

0

( ∂
∂x
L(x̄k, ˙̄xk)−

d

dt

( ∂
∂v
L(x̄k, ˙̄xk)

))
yk ds

+
( ∂
∂v
L(x̄k(T ), ˙̄xk(T )) + Ψ′(x̄k(T ))

)
yk(T )

]
= 0.

If we select y such that y(T ) = 0, by Lemma 4.4, we conclude that there
exists c ∈ C(0, T ) such that, for all k = 1, . . . , N , we have

∂

∂x
L(x̄k, ˙̄xk) + d

dt

( ∂
∂v
L(x̄k, ˙̄xk)

)
= c(t). (4.6)

Define f̃k(T ) by

f̃k(T ) = ∂

∂v
L(x̄k(T ), ˙̄xk(T )) + Ψ′(x̄k(T )).

For all t ∈ [0, T ], set F̃ (t) := (f̃1(T ), ..., f̃n(T )). Since f̃k is constant, apply-
ing Lemma 4.4 for F̃ , there exists c̃ ∈ R such that we have f̃k(t) = f̃k(T ) = c̃,
from which we conclude that

∂

∂v
L(x̄k(T ), ˙̄xk(T )) + Ψ′(x̄k(T )) = c̃.

Let c and c̃ be as in the statement of the preceding proposition, and let
$ ∈ C1(0, T ) solve

$̇(t) = −c(t), $(T ) = −c̃.

Then, the necessary optimality conditions for xk become

∂

∂x
L(x̄k, ˙̄xk) + d

dt

( ∂
∂v
L(x̄k, ˙̄xk) +$

)
= 0
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and
∂

∂v
L(x̄k(T ), ˙̄xk(T )) +$(T ) + Ψ′(x̄k(T )) = 0

for all k = 1, ..., N .

The preceding equations are the optimality conditions for the functional

1
N

N∑
i=1

∫ T

0
L(xi(s), ẋi(s))ds+ Ψ(xi(T )) +

∫ T

0
$(s)

(
1
N

N∑
i=1

ẋi(s)−Q(s)
)
ds,

and the solution constructed in Proposition 4.5 satisfy the constraint (4.2).
Thus, we can regard $ as a Lagrange multiplier for (4.2).
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Resumo: A simetria de espelho conjectura uma correspondência profunda
entre a geometria simpléctica de um espaço e a geometria algébrica do seu
“espelho”. Existem várias versões desta correspondência, desde a igualdade
de alguns invariantes numéricos, inicialmente conjecturada por físicos, a
versões categóricas propostas por Kontsevich.

Este artigo revê algumas destas versões e ilustra-las num exemplo rela-
tivamente simples: uma esfera com três orbi-pontos (no lado simpléctico).
Explicamos como construir o espaço “espelho”, enunciamos as conjecturas
de espelho e descrevemos uma abordagem à sua prova.

Abstract Mirror symmetry predicts a deep correspondence between the
symplectic geometry of a space and the algebraic geometry of its “mirror”.
There are different versions of this correspondence, from the equality of some
numerical invariants, first predicted by physicists, to categorical versions
proposed by Kontsevich.

This paper reviews some of these versions and illustrates them on a
relatively simple example: a sphere with three orbifold points (on the sym-
plectic side). We explain how to construct the “mirror” space, state the
mirror predictions and describe an approach to prove them.

palavras-chave: Simetria de espelho; categoria de Fukaya; orbi-variedade.

keywords: Mirror symmetry; Fukaya category; orbifold.

1 Introduction

1.1 A brief history

Mirror symmetry is a set of predictions from string theory relating the
symplectic and complex geometry of certain pairs of Calabi-Yau manifolds.
Superstring theory proposes that the space-time is (locally) of the form
R1,3 × X, where R1,3 is the usual Minkowski space (that we see around
us) and X is a very (very) small Calabi-Yau three-fold. Meaning X is a
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16 Open and Closed Mirror Symmetry

Kähler manifold (therefore both complex and symplectic) of complex di-
mension three with a Ricci-flat metric. While looking for the X that would
help describe our universe, string theorists produced large lists of Calabi-
Yau manifolds and found a surprising symmetry. There are many pairs of
Calabi-Yau manifolds X and X̌ which exchange Hodge numbers, that is
h1,1(X) = h1,2(X̌) and h1,2(X) = h1,1(X̌).

The most famous example of this is the quintic threefold and its mirror.
Let Xa be the solution set in CP4 of the equation

Xa = {z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − az0z1z2z3z4 = 0} ⊂ CP4,

for some a ∈ C. For most values of a this is a smooth Calabi-Yau manifold.
The group (Z/5)3 acts on Xa and the quotient Xa/G is singular but there
is a resolution X̌a → Xa/G, which is smooth and the mirror partner of Xa.

Mirror symmetry predictions are much deeper than the equality of Hodge
numbers. Candelas, de la Ossa, Green and Parkes [6] predicted the number
of rational curves of degree d in Xa could be obtained from certain period
integrals of the family X̌a. This was remarkable since only the cases with
d ≤ 3 were known. This led to the development of Gromov-Witten in-
variants, a way to define precisely the counting of rational curves. Using
Gromov-Witten invariants Givental [15] proved the predictions for the quin-
tic. Both the (genus zero) Gromov-Witten invariants and the period in-
tegrals can be organized into Frobenius manifolds. Mirror symmetry then
predicts an isomorphism between these two Frobenius manifolds. This is
known as closed-string mirror symmetry.

In [18], Kontsevich proposed a new version of mirror symmetry at a
categorical level. To a Calabi-Yau manifold X one can associate two cate-
gories: the Fukaya category Fuk(X) and the category of coherent sheaves
Coh(X). The Fukaya category is an A∞-category, which depends only on
the symplectic structure of X, and whose objects are, roughly speaking, the
Lagrangians submanifolds of X. The category of coherent sheaves Coh(X)
is an abelian category (which can be promoted to an A∞-category) which
depends only on the complex structure of X. Kontsevich proposed that mir-
ror symmetry exchanges these categories, that is, the derived categories of
Fuk(X) and Coh(X̌) are equivalent. This is usually called the homological
mirror symmetry conjecture, or using physics terminology open-string mir-
ror symmetry. This has been verified in several cases, see [23] for example.

Starting with the works of Givental and Batyrev it was suggested that
mirror symmetry is not restricted to Calabi-Yau manifolds. It was conjec-
tured that when X is Fano [16] or when X is of general type [17], there is
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also a mirror partner. In this case, the mirror is not simply a space, it’s a
non-compact manifold X̌ together with a holomorphic functionW : X̌ → C,
which is called a Landau-Ginzburg model. For Landau-Ginzburg models one
has to modify the mirror symmetry conjectures accordingly, for example re-
placing Coh(X̌) with the category of matrix factorizations MF (X̌,W ).

In 1996, Strominger-Yau-Zaslow [24] proposed a geometric explanation
for mirror symmetry. Mirror (Calabi-Yau) pairs X and X̌ should admit
dual, special Lagrangian torus fibrations over the same base B. This is
known as the SYZ conjecture. A proof of the SYZ conjecture seems to be
out of reach and in fact these fibrations might only exist after deforming
X. Nevertheless this conjecture has been very influential and inspired many
important insights into mirror symmetry.

1.2 Family Floer theory

Mirror symmetry and the SYZ conjecture become more manageable if one
takes a less symmetric approach. That is, if we consider the Calabi-Yau
manifold X just as a symplectic manifold and construct a variety (or rigid
analytic space) X̌ over the (non-archimedian) Novikov field:

Λ :=
{ ∞∑
k=0

akT
λk |ak ∈ C, λk ∈ R, λk →∞

}
.

Then one can try to prove half of mirror symmetry, that is, to relate the
symplectic geometry of X (Gromov-Witten invariants or Fukaya category)
to the algebraic/analytic geometry of X̌.

In this approach, proposed by Fukaya [11] (see also [19]), one starts with
a (possibly singular) SYZ fibration or, more generally, some “interesting”
family of Lagrangians in X and constructs X̌ as the moduli space of objects
in the Fukaya category supported on this family of Lagrangians. The fact
that Fuk(X) is a linear category over Λ is then the reason why X̌ is not a
complex manifold. This approach comes with an additional benefit: using
family Floer cohomology (introduced by Fukaya), one has a canonically
defined functor from Fuk(X) to the category of coherent sheaves (or matrix
factorizations) on X̌. This construction has been carried out for the case of
smooth fibrations by Abouzaid [2].

In this note, we will illustrate these ideas in an example, first studied by
Cho-Hong-Lau [9], which is as simple as possible: the family of Lagrangians
consists of a single Lagrangian. The mirror will then be a Landau-Ginzburg
model (X̌,W ) where X̌ is an affine space.
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18 Open and Closed Mirror Symmetry

2 Orbifold spheres

2.1 Our example

LetX := P1
a,b,c be an orbifold sphere with three orbifolds points with isotropy

groups Z/a, Z/b, Z/c, where a, b, c ≥ 2. The orbifold Euler characteristic is
given by χ

(
P1
a,b,c

)
= 1

a + 1
b + 1

c −1. The orbifold P1
a,b,c can be constructed as

a global quotient of a Riemann surface Σ by a finite group. If χ
(
P1
a,b,c

)
> 0

then Σ is a sphere, if χ
(
P1
a,b,c

)
= 0 then Σ is an elliptic curve and in the

other cases Σ is a surface of genus ≥ 2. For example, P1
3,3,3 = E/(Z/3),

where E is an elliptic curve with a Z/3 symmetry.
We now introduce our Lagrangian: L which we call the Seidel Lagran-

gian, since it first appeared in [22]. This is an immersed circle S1 # P1
a,b,c

with three transversal (double) self-intersections (see Figure 1). The three
immersed points lie in the equator, determined by the three orbifold points.
Moreover we assume that the image of L is invariant under reflection on
the equator. The image of L and the equator divide the sphere into eight
regions: two triangles and six bigons. We take L and scale the symplectic
form so that each of these regions has area 1.

Figura 1: The orbifold sphere

2.2 The Fukaya algebra

We will start with a sketch of the construction of the Fukaya algebra of
a Lagrangian submanifold. In fact, there is a family of Fukaya algebras
parametrized by H∗orb(X) the orbifold cohomology of X. The orbifold coho-
mology is the singular cohomology of IX the inertia orbifold of X. In our
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example, we have

IX = S2
a−1⋃
i=1

pt
b−1⋃
j=1

pt
c−1⋃
k=1

pt,

that is a copy of X (which as a topological space is a sphere) and one point
for each non-trivial element in the isotropy groups of the three orbifold points
in X. We define H∗orb(X) := H∗(IX,Λ). The Novikov field Λ has a real
valuation ν : Λ → R, given by the lowest power of T . Therefore H∗orb(X)
inherits a valuation ν. We fix τ ∈ H∗orb(X) with ν(τ) > 0 and define the
Fukaya algebra Fτ (L).

Consider the fiber product L×X L, which in our example is

L×X L = S1 ⋃
p=X,Y,Z

(p ∪ p−),

where X,Y, Z are the self-intersections of L. We define Fτ (L) := Ω∗(L ×X
L)⊗̂Λ, where ⊗̂ is the completed tensor product, with respect to the va-
luation induced by ν. More concretely, Fτ (L) consists of the de Rham
complex of a circle plus two generators (one even, one odd) for each of the
self-intersection points. We will now equip this space with a sequence of
operations mk of arity k ≥ 0.

Let Σ be a orbifold which is topologically the closed unit disk in C and
whose orbifold points lie in the interior. We take k + 1 cyclically orde-
red marked points z0, . . . , zk on the boundary of Σ and m marked points
w1, . . . , wm in the interior of Σ. We assume that each orbifold point is one
of the wj . Then we consider holomorphic maps u : (Σ, ∂Σ) → (X,L), with
boundary on L, in a fixed relative homology class β ∈ H2(X,L). We put
a few more technical conditions on these maps, which in particular imply:
1) the restriction of u to the boundary can only switch branches at self-
intersections of L at one of the zi’s; 2) orbifold points in Σ are mapped to
orbifold points in X, (see [8] for details). Then we consider the space of
tuples (Σ, z0, . . . , zk, w1, . . . , wm, u) modulo complex automorphisms of the
domain. This space can be compactified by, roughly speaking, allowing the
domain of the map Σ to be a nodal disk, meaning a configuration of seve-
ral disks and spheres attached at nodal points. For details see [13] for the
manifold case and [7, 8] for the orbifold case. This is called the stable map
compactification and we denote the resulting space by Mk+1,m(β). It fol-
lows from the work of Fukaya-Oh-Ohta-Ono [13] that the spaceMk+1,m(β)
is a compact Kuranishi space with boundary and corners. The definition of
Kuranishi space is rather involved, we will use it as a black box to mean a
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space where we can pull-back and push-forward differential forms and the
Stokes theorem works, in the same way as for manifolds.

It follows from the definition that these spaces have evaluation maps

IX
evwj←−−−Mk+1,m(β)

evzi−−→ L×X L.

For example, evzi(Σ, z0, . . . , zk, w1, . . . , wm, u) = u(zi). We are now ready
to define the A∞ maps mτ

k : Fτ (L)⊗k → Fτ (L) by the formula

mτ
k(h1, . . . , hk) =

∑
β,m≥0

Tω(β)

m! (evz0)∗(ev∗w1τ ∧ . . . ∧ev
∗
wm
τ ∧ ev∗z1h1

∧ . . . ∧ ev∗zk
hk).

The following theorem follows from the work of Fukaya–Oh–Ohta–Ono [12,
13] and further generalizations by Akaho–Joyce [3] and Cho–Poddar [8].

Theorem 2.1 F(L) with the operations {mτ
k}k≥0 is a filtered A∞-algebra.

What is a filtered A∞-algebra? Let’s define this.

Definition 2.2 A filtered A∞-algebra is a Z/2-graded Λ-vector space A of
the form A = A0⊗̂Λ, where A0 is a complex vector space. There are maps
mk : A⊗k → A of degree k (mod 2), for each k ≥ 0, satisfying∑

0≤j≤n
0≤i≤n−j

(−1)|a1|+...+|ai|+imn−j+1(a1, . . . ,mj(ai+1, . . . , ai+j), . . . , an) = 0.

Moreover ν(mk(a1, . . . , ak)) ≥
∑
i ν(ai) and ν(m0) > 0. We will also require

that the A∞-algebra is unital: there is an even element 1 satisfying:

m2(1, a) = (−1)|a|m2(a,1) = a, ,mk(. . . ,1, . . .) = 0, k 6= 2.

If we stare at the A∞ equation above for n = 1, 2, 3, we can easily see
that when m0 is a multiple of the unit 1, then m1 is a differential and so we
can consider the cohomology of the A∞-algebra. Moreover m2 then defines
an associative product on the cohomology. In general, filtered A∞-algebras
are rather complicated objects, so when we have to work with one we try to
deform it (when possible) to another where this condition holds. In order
to do that we need to solve the Maurer-Cartan equation.

Definition 2.3 A Maurer-Cartan element in A is an odd element b satis-
fying

∑
k≥0 mk(b, . . . , b) = λ1, for some λ ∈ Λ, called the potential of b.
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Note that the sum on the left hand side of the equation is in general an
infinite sum, so we need to ensure convergence. The safest way to do this
is to require that ν(b) > 0, but as we will see in our example, this can
sometimes be relaxed. Given a Maurer-Cartan element we can define a new
A∞ structure on A by setting

mb
k(a1, . . . , ak) :=

∑
i0,...,ik

mk+i0+...+ik(b, . . . , b, a1, b, . . . , b, ak, b, . . . , b).

By construction mb
0 = λ1. Maurer-Cartan elements for the Fukaya algebra

Fτ (L) of a Lagrangian L are called bounding cochains. Objects in the
Fukaya category Fuk(X, τ) := ⊕λFukλ(X, τ) are pairs (L, b) where L is a
Lagrangian and b is a Maurer-Cartan element in Fτ (L) with potential λ.
The endomorphism space of the object (L, b) is then H∗(Fτ (L),mτ,b

1 ).

3 The mirror

3.1 Potential

Like we promised in the introduction, we will construct the mirror to X =
P1
a,b,c as the moduli space of objects in the Fukaya category of X supported

on the Seidel Lagrangian L. More precisely we will construct a mirror for the
pair (P1

a,b,c, τ), where τ ∈ H∗orb(X). As explained in the previous section, the
moduli space of these objects is exactly the space of Maurer-Cartan elements
in Fτ (L). In [4] we prove the following proposition.

Proposition 3.1 Let X,Y, Z be the odd generators of Fτ (L) corresponding
to the three self-intersections. All elements of the form b = T−3(xX + yY +
zZ), for elements x, y, z ∈ Λ of non-negative valuation, are Maurer-Cartan
elements with potential Wτ (x, y, z).

At this point Wτ (x, y, z) is just a formal series on x, y, z, but in fact it
is convergent in the following (non-archimedian) sense.

Definition 3.2 A convergent power series is an expression of the form∑
i,j,k∈Z≥0

ci,j,kx
iyjzk, with ci,j,k ∈ Λ and limi+j+k→∞ ν(ci,j,k) = +∞. The

set of all convergent power series naturally forms a ring which we denote by
Λ〈〈x, y, z〉〉.

Let us explain the terminology here. We can define a non-archimedian
norm on Λ by setting |v| := e−ν(v). Then one can see that Λ〈〈x, y, z〉〉 is
exactly the ring of regular functions on the unit polydisk, see [5].
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Proposition 3.3 ([4]) Wτ is a convergent power series. Moreover

Wτ = T−8xyz + xa + yb + zc + positive valuation in T.

It turns out that when χ(P1
a,b,c) ≥ 0,Wτ is actually a polynomial. An explicit

description of Wτ for arbitrary τ seems out of reach, but for our purposes
knowing the leading order term in the above proposition is enough.

We are finally ready to define the mirror partner to P1
a,b,c.

Definition 3.4 The mirror to (P1
a,b,c, τ) is the Landau-Ginzburg model

X̌ = B = {(x, y, z), |x|, |y|, |z| ≤ 1} ⊆ Λ3, Wτ : B → Λ.

One might ask why this is the correct mirror. Even assuming our phi-
losophy that the mirror should be given as the moduli of objects in the
Fukaya category supported in a certain family of Lagrangians in X, why
is the Seidel Lagrangian the correct family? And even assuming that, how
do we know we have “enough” bounding cochains? I don’t believe there is
a completely satisfactory answer to these questions. The short answer is
that it works, meaning the closed-string mirror symmetry conjecture, that
we will state in the next subsection, holds for this pair. Once we have es-
tablished closed mirror symmetry, Abouzaid’s generation criterion [1] tells
us that, loosely speaking, our family of objects of the Fukaya category is
“large” enough and therefore we have constructed the correct mirror and
should expect open mirror symmetry to also hold for this pair.

3.2 Closed mirror symmetry

The closed mirror symmetry conjecture is an isomorphism of Frobenius ma-
nifolds. We will not define Frobenius manifold (see [20] for the complete
definition), instead we will work at a more elementary level and consider it
as a family of commutative algebras with a compatible inner product. In
our situation, the families (on both sides of the mirror) are parameterized
by τ ∈ H∗orb(X).

On the symplectic side, the Frobenius manifold is the orbifold quantum
cohomology, defined by Chen-Ruan [7]. The construction is similar to the
construction of the Fukaya algebra. For each homology class α ∈ H2(X),
one constructsMsph

`+3(α) the moduli space of stable holomorphic orbi-spheres
in X with ` + 3 marked points w1, . . . , w`+3. Then we fix τ as before and
define a product •τ on H∗(IX,Λ) as follows
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A •τ B :=
∑
α,`≥0

Tω(α)

`! (evw1)∗(ev∗w2A ∧ ev
∗
w3B ∧ ev

∗
w4τ ∧ . . . ∧ ev

∗
w`+3τ).

Theorem 3.5 ([7]) The map •τ defines a commutative, associative pro-
duct on H∗orb(X,Λ), compatible with the Poincaré pairing. We denote it by
QH∗orb(X, •τ ).

On the mirror, things are somewhat easier to define.

Definition 3.6 The Jacobian of Wτ is the ring obtained by taking the quo-
tient of Λ〈〈x, y, z〉〉 by the ideal generated by the partial derivatives of Wτ .

Jac(Wτ ) = Λ〈〈x, y, z〉〉
< ∂xWτ , ∂yWτ , ∂zWτ >

.

In order to define an inner product in Jac(Wτ ), one has to fix a volume
form and then take the residue pairing. This is related to the choice of a
primitive form as defined by Saito [21].

There is a natural map KSτ : QH∗(X, •τ ) → Jac(Wτ ), called the
Kodaira-Spencer map. We fix a basis {ei}i of H∗(IX,Λ) and write τ =∑
i τiei. We define the map by the formula KSτ (ei) = ∂

∂τi
Wτ .

This map was originally constructed by Fukaya–Oh–Ohta–Ono [14] for
toric manifolds. They show that this is a well-defined, unital ring map.
In fact, this is expected to be the case for a very wide class of symplectic
manifolds/orbifolds. In [4], we extend their construction to our example and
prove the following.

Theorem 3.7 The Kodaira-Spencer KSτ : QH∗(X, •τ ) → Jac(Wτ ) is an
unital, ring isomorphism.

This theorem is not the complete closed mirror symmetry statement.
The full-fledged statement requires an identification of the Euler vector fi-
elds, which we prove in [4]:

KSτ
(
c1(X) +

∑
i

(1− deg ei
2 )τiei

)
= [Wτ ].

Moreover the Kodaira-Spencer should intertwine the Poincaré pairing with
the residue pairing on Jac(Wτ ) determined by some volume form ωτ . A
complete description of ωτ is still work in progress by Cho, Hong, Lau and
myself.
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3.3 Open mirror symmetry

The open (or homological) mirror symmetry conjecture in this example as-
serts that the derived categories of Fuk(X, τ) and MF (Wτ ) the category
of matrix factorizations of Wτ are equivalent. The matrix factorizations
category is a dg-category, which captures some information about the sin-
gularities of Wτ . We refer the reader to [10] for the definition.

One of the main advantages of this formalism, is that L determines, for
each τ , an A∞-functorML : Fuk(X, τ)→MF (Wτ ). This is a version of the
Yoneda embedding, see [9] for a full description. We expect the following to
hold.
Conjecture 3.8 The functorML induces an equivalence

DπFukλ(X, τ)→ DπMF (Wτ ),

where Dπ stands for the split-closed derived category.
This conjecture was proved in some cases in [9] when τ = 0 and is work in
progress by Cho, Hong, Lau and myself. But we are not that far off from
proving this. First note that the closed mirror symmetry statement that we
saw in the previous subsection implies that Jac(Wτ ) is finite dimensional,
which implies that the critical points ofWτ are isolated. It then follows from
Dyckerhoff [10] that MF (Wτ ) has finitely many generators P η, one for each
critical point η ∈ Crit(Wτ ). We prove in [4] that each η also determines a
bounding cochain bη for L. Therefore it is not unreasonable to expect that
ML sends the object (L, bη) to P η and it is fully faithful (on cohomology)
when restricted to these objects.

Assuming we can prove this, the only thing left to show is that the
objects (L, bη) split-generate the Fukaya category. This should follow from
a suitable generalization of Abouzaid’s generation criterion [1]. Let’s explain
how this criterion works. Let A be the subcategory of Fuk(X, τ) generated
by the (L, bη). There is a ring map

CO : HH∗(A)→ QH∗(X, •τ ),

whose domain is the Hochschild cohomology of A. The generation crite-
rion asserts that if the map CO is injective then A is derived equivalent to
Fuk(X, τ). The reason this should hold in our example is the following.
We expect the Hochschild cohomology HH∗(A) to be isomorphic to the
Jacobian Jac(Wτ ), and under this isomorphism, the map CO should agree
with the Kodaira-Spencer map. Therefore the condition needed for the ge-
neration criterion follows from the fact that KS is an isomorphism, in other
words, it follows from closed mirror symmetry.
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Resumo: O sistema de Navier–Stokes–Maxwell incompressível é um modelo
clássico que descreve a evolução de um plasma. Embora se saiba que existem
pequenas soluções suaves para esse sistema (no espírito de Fujita–Kato), a
existência de grandes soluções fracas (no espírito de Leray) no espaço de en-
ergia permanece desconhecida. Esse defeito pode ser atribuído à dificuldade
de acoplar as equações de Navier–Stokes a um sistema hiperbólico. Nós de-
screvemos aqui resultados recentes, com o objetivo de criar soluções fracas
para os sistemas de Navier–Stokes–Maxwell em grandes espaços funcionais.
Em particular, explicamos como, para quaisquer dados iniciais com ener-
gia finita, uma condição de pequenez apenas no campo electromagnético é
suficiente para garantir a existência de soluções globais.

Abstract: The incompressible Navier–Stokes–Maxwell system is a classical
model describing the evolution of a plasma. Although small smooth solu-
tions to this system (in the spirit of Fujita–Kato) are known to exist, the
existence of large weak solutions (in the spirit of Leray) in the energy space
remains unknown. This defect can be attributed to the difficulty of coupling
the Navier–Stokes equations with a hyperbolic system. We describe here re-
cent results aiming at building weak solutions to Navier–Stokes–Maxwell
systems in large functional spaces. In particular, we explain how, for any
initial data with finite energy, a smallness condition on the electromagnetic
field alone is sufficient to grant the existence of global solutions.

palavras-chave: Equações de Navier–Stokes; equações de Maxwell; ex-
istência de soluções fracas; estimativas parabólicas; espaços de Besov.

keywords: Navier–Stokes equations; Maxwell’s equations; existence of
weak solutions; parabolic estimates; Besov spaces.

1 Introduction
Consider a gas made up of charged particles interacting microscopically
through elastic collisions. At the macroscopic level, this gas behaves as
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a conducting fluid that will interact with any existing electromagnetic field.
Moreover, the motion of the charged particles will also produce an electro-
magnetic field, in accordance with the laws of classical electrodynamics.

The magnetohydrodynamic evolution of the gas will therefore be condi-
tioned by the complex interaction of an electrically conducting moving fluid
with a self-induced electromagnetic force.

Such fluids are typically found in the core of nuclear fusion reactors in
the form of plasmas, which are ionized gases. Another typical example of
an electrically conducting fluid consists in liquid metals, such as the liquid
iron found in the core of the earth, which is responsible for the geodynamo
effect.

We give now an account of some recent mathematical developments,
mainly from [1], concerning the study of plasmas (or conducting fluids).
We make here the somewhat arbitrary choice of focusing exclusively on
viscous incompressible regimes, because such physical characteristics lead
to interesting mathematical properties. Of course, there are numerous other
relevant regimes, but we will not discuss them.

We refer to [4] or [5] for a introduction to magnetohydrodynamics from
a physical viewpoint.

2 The Navier–Stokes–Maxwell systems
The behavior of a viscous incompressible fluid is described by the Navier–
Stokes equations

∂tu+ u · ∇u− µ∆u = −∇p+ F, div u = 0, (1)

where µ > 0 is the viscosity, t ∈ R+ and x ∈ R3 are the time and space
variables, u(t, x) stands for the velocity field of the (incompressible) fluid,
F (t, x) is a given force field, and the scalar function p(t, x) is the pressure
and is also an unknown. Note that, for convenience, we ignore the effect of
boundaries on the fluid by assuming the domain to be the whole space.

The validity of this model is well established at both physical and math-
ematical levels. We refer to [8] for a recent mathematical treatise on the
incompressible Navier–Stokes equations.

In a conducting fluid, it is also important to take into account the influ-
ence of the Lorentz force produced by the charged particles. The relevant
macroscopic field F is therefore the Lorentz force

F = nE + j ×B, (2)

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 27-38



Diogo Arsénio 29

where E(t, x) and B(t, x) are the electric and magnetic fields respectively,
n(t, x) is the electric charge density and j(t, x) is the electric current.

The electromagnetic field is determined classically through Maxwell’s
equations {

∂tE −∇×B = −j, divE = n,

∂tB +∇× E = 0, divB = 0,
(3)

or its quasi-static approximation{
∇×B = j, divE = n,

∂tB +∇× E = 0, divB = 0.
(4)

Generally speaking, the coupling given by combining (1), (2) and (3) (or
(4)) provides now an incompressible Navier–Stokes–Maxwell system. Note,
however, that such a system is not closed yet, as it contains more unknowns
than equations. In fact, there remains to specify how the density n and the
current j are generated by the fluid. This is performed by incorporating the
so-called Ohm’s law into the system.

It turns out that there is more than one way of closing the Navier–
Stokes–Maxwell system, as there are several different Ohm’s laws that are
appropriate. We discuss now some of the available options.

2.1 Coupling I

The quasi-static system (4) is an approximation of (3) that is relevant in
many physical regimes. Indeed, in many practical situations, it is physi-
cally reasonable to neglect the so-called displacement current density ∂tE in
Maxwell’s equations (see [5]).

Furthermore, observe that the continuity equation

∂tn+ div j = 0 (5)

is expected to hold universally, for n and j respectively represent the density
and the flux of the same particles. Since j is necessarily solenoidal (i.e.
div j = 0) in the quasi-static approximation due to Ampère’s law j = ∇×B,
one deduces that n should be constant in time. The density n is therefore
fixed by the initial data and we might as well assume n = 0, for simplicity.

Now, recall that, in classical electrostatics, Ohm’s law simply states that
E and j are colinear. Here, accounting for the motion of the fluid and the
effect of Galilean transformations in Faraday’s equation ∂tB +∇× E = 0,
Ohm’s law becomes (see [5])

j = σ(E + u×B), (6)
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where the electrical conductivity σ > 0 is assumed to be constant throughout
the fluid.

All in all, combining (1), (2), (4) with (6), setting n = 0, and eliminating
j and E, leads to the magnetohydrodynamic system

∂tu+ u · ∇u− µ∆u = −∇p+ (∇×B)×B, div u = 0,

∂tB −
1
σ

∆B = ∇× (u×B), divB = 0.

This system couples the Navier–Stokes system with a parabolic equation
on the magnetic field B and has been studied extensively. As far as the
existence of global weak solutions is concerned, it does not present with any
additional difficulty when compared to the classical incompressible Navier–
Stokes system.

Indeed, one readily computes the formal energy inequality, for any t ≥ 0
and any initial data (u0, B0),

1
2
(
‖u‖2L2 + ‖B‖2L2

)
(t) +

∫ t

0

(
µ ‖∇u‖2L2 + 1

σ
‖∇B‖2L2

)
(s)ds

≤ 1
2
(
‖u0‖2L2 + ‖B0‖2L2

)
.

(7)

This energy inequality yields strong dissipative properties on both u and B.
In particular, the ensuing a priori bounds are suitable for the application
of Leray’s method of construction of global weak solutions (see [8]). More
precisely, it is possible to show that, for any suitable initial data (u0, B0) ∈
L2(R3), there exists a global weak solution

(u,B) ∈ L∞(R+, L2(R3)) ∩ L2(R+, Ḣ1(R3)).

The uniqueness of such solutions remains unknown, though.

2.2 Coupling II

The reduced form of Maxwell’s equations (4) may not be appropriate for
every physical setting, and there may be situations where one is led to
consider the evolution of the electromagnetic field (E,B) governed by the
full set of Maxwell’s equations (3). In this case, one may combine (1), (2)
and (6), with (3), which yields the Navier–Stokes–Maxwell system

∂tu+ u · ∇u− µ∆u = −∇p+ j ×B, div u = 0,
∂tE −∇×B = −j, j = σ (E + u×B) ,
∂tB +∇× E = 0, divB = 0,

(8)
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where we have neglected the contribution of the Coulombian force nE in
the Lorentz force for physical reasons (see [5]). This system couples now the
Navier–Stokes equations with a hyperbolic wave system, which significantly
changes the nature of solutions.

More precisely, formally computing the corresponding energy inequality,
one finds that, for any initial data (u0, E0, B0),

1
2
(
‖u‖2L2 + ‖E‖2L2 + ‖B‖2L2

)
(t) +

∫ t

0

(
µ ‖∇u‖2L2 + 1

σ
‖j‖2L2

)
(s)ds

≤ 1
2
(
‖u0‖2L2 + ‖E0‖2L2 + ‖B0‖2L2

)
.

(9)

When compared to (7), this energy inequality only provides a rather weak
control on the solutions, for there is no control on the regularity of the
magnetic field.

This lack of compactness prevents us from applying Leray’s method of
construction of weak solutions, because it is impossible to show the weak
stability of the non-linear term j × B solely based on the a priori bounds
given by the energy inequality. As a matter of fact, it is not yet known
whether, for any suitable initial data (u0, E0, B0) ∈ L2(R3), there exists a
global weak solution to the Navier–Stokes–Maxwell system (8).

It should be emphasized now that, even though the above system (8)
elegantly combines the Navier–Stokes equations with the full Maxwell sys-
tem, it contains a disturbing physical inconsistency. Indeed, as previously
mentioned, we have neglected the term nE in (2), which suggests that n
should be zero. However, in this model, the electric current j is in general
not solenoidal, which violates the continuity equation (5).

This inconsistency will be resolved in the coming couplings (10) and (11)
below, which achieve to combine the Navier–Stokes equations with Maxwell’s
equations without breaking the continuity equation (5).

2.3 Coupling III

A systematic and rigorous study of hydrodynamic limits of Vlasov–Maxwell–
Boltzmann systems, in a viscous incompressible regime, has been conducted
in [2], where the following incompressible Navier–Stokes–Maxwell system
was derived:
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
∂tu+ u · ∇u− µ∆u = −∇p+ j ×B, div u = 0,
∂tE −∇×B = −j, divB = 0,
∂tB +∇× E = 0, divE = 0,
j = σ (−∇p̄+ E + u×B) , div j = 0,

(10)

where the electromagnetic pressure p̄(t, x) is a new unknown. Observe that
the introduction of the pressure p̄ allows us to add a solenoidal condition on
both E and j to the system. As a result, the fluid is neutral n = 0 and the
continuity equation (5) holds.

As before, this system combines the incompressible Navier–Stokes equa-
tions with a hyperbolic system. One easily finds that solutions of (10)
formally verify the same energy inequality (9), which fails to provide the
necessary compactness to apply Leray’s method of proof of existence of weak
solutions. Again, it is unfortunately not yet known whether, for any suitable
initial data (u0, E0, B0) ∈ L2(R3), there exists a global weak solution to the
Navier–Stokes–Maxwell system (10).

2.4 Coupling IV

Yet another incompressible Navier–Stokes–Maxwell system was derived in
[2]. This new model turns out to be the most complete of them all, since it
involves all electromagnetic variables (including a non-trivial charge density
n). It takes the following form:

∂tu+ u · ∇u− µ∆u = −∇p+ nE + j ×B, div u = 0,
∂tE −∇×B = −j, divB = 0,
∂tB +∇× E = 0, divE = n,

j − nu = σ (−∇n+ E + u×B) .

(11)

Here, again, it is to be noted that the continuity equation (5) holds true.
It is possible to show, at least formally, that solutions of the above system

satisfy the energy inequality, for any initial data (u0, E0, B0, n0),

1
2
(
‖u‖2L2 + ‖E‖2L2 + ‖B‖2L2 + ‖n‖2L2

)
(t)

+
∫ t

0

(
µ ‖∇u‖2L2 + 1

σ
‖j − nu‖2L2

)
(s)ds

≤ 1
2
(
‖u0‖2L2 + ‖E0‖2L2 + ‖B0‖2L2 + ‖n0‖2L2

)
.
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As previously, the ensuing a priori bounds fail to provide enough control to
apply Leray’s method of proof of existence of weak solutions. It is there-
fore not yet known whether, for any suitable initial data (u0, E0, B0, n0) ∈
L2(R3), there exists a global weak solution to the Navier–Stokes–Maxwell
system (11).

3 A global existence result
We believe that the system (8) captures the essential mathematical difficul-
ties related to the coupling of the Navier–Stokes equations with Maxwell’s
system. We therefore present below the main result from [1] on the existence
of weak solutions to the Navier–Stokes–Maxwell system (8).

It should be mentioned here, though, that the two-dimensional case has
been previously succesfully handled in [10] (some subtle questions remain
open; see also [1] and [6] for some two-dimensional results). We will therefore
focus now exclusively on the three-dimensional setting of (8).

The existence of three-dimensional global mild solutions to (8), for small
initial data, has also been previously addressed in [6] (and some previous
works), where it was shown that, for any sufficiently small initial data
(u0, B0, E0) ∈ Ḣ

1
2 (R3), there exists a global mild solution (u,E,B) ∈

C(R+, Ḣ
1
2 ) to (8) (uniqueness of solutions is also available in this setting).

As for weak solutions, the following theorem from [1] provides the exis-
tence of global solutions to (8), for any initial data (u0, B0, E0) ∈ L2(R3),
provided the high frequencies of the electromagnetic field are controlled in
some suitable norm.

Theorem 1 ([1]). There is a constant C∗ > 0 such that, if the initial data
(u0, E0, B0) ∈ L2 × (H

1
2 )2, with div u0 = divB0 = 0, satisfies

‖(E0, B0)‖
Ḣ

1
2
C∗e

C∗‖(u0,E0,B0)‖2
L2 ≤ 1 ,

then there is a global weak solution to (8) satisfying the energy inequality
(9).

The strategy of proof of this result follows the usual procedure of ap-
proximating (8) with a regularized system, in order to justify all formal a
priori bounds, and then passing to the limit by showing the weak stability
of the system.

As previously explained, the a priori bounds provided by the energy
inequality (9) are not enough to deduce the weak stability of the non-linear
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term j ×B. However, in Theorem 1, the hyperbolic structure of Maxwell’s
equations is used to propagate the bound on the initial electromagnetic
field in Ḣ

1
2 . In fact, it is shown therein that the electromagnetic field is

uniformly bounded in L∞(R+, Ḣ
1
2 ), which is then sufficient to establish the

weak stability of j ×B.
All relevant a priori bounds on (8) are obtained through non-linear en-

ergy estimates performed in Besov spaces. Even though the general strategy
remains rather standard, these estimates are complex and sometimes tech-
nical. They rely heavily on a precise use of paraproduct estimates, a careful
analysis of the damped wave flow produced by Maxwell’s system (3) and,
most importantly, on crucial endpoint parabolic estimates to control the
Stokes flow.

These endpoint parabolic estimates provide a new fundamental tool for
the analysis of partial differential equations, particularly for models from
fluid dynamics. We are therefore going to give a self-contained account of
the main ideas behind such estimates in the next section.

We refer to [1] for the full justification of the above theorem.

4 Endpoint parabolic estimates
We show now how to derive the crucial parabolic estimates that are used in
the proof of Theorem 1. Such estimates hold in any dimension d ≥ 1 and
show that solutions to the heat equation can gain up to two derivatives with
respect to the source terms in Besov spaces, without resorting to the usual
Chemin–Lerner spaces (see [1] for a definition of such spaces). In fact, we
believe that this is an important principle that could be useful beyond its
application to the proof of Theorem 1.

We introduce now a standard dyadic decomposition

Id =
∑
k∈Z

∆k,

where the Fourier multiplier operators ∆k act on a function by localizing its
frequencies ξ to a domain {2k−1 ≤ |ξ| ≤ 2k+1}.

Recall that the homogeneous Besov space Ḃs
p,q(Rd), for any s ∈ R and

1 ≤ p, q ≤ ∞, is then defined by the norm

‖f‖Ḃsp,q(Rd) =

 ∞∑
k=−∞

2ksq ‖∆kf‖qLp(Rd)

 1
q

,

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 27-38



Diogo Arsénio 35

if q <∞, and with the obvious modifications in case q =∞. We refer to [1]
for a precise definition of these spaces using the same notation.

We consider solutions of the forced heat equation

∂tw −∆w = f, w|t=0 = 0. (12)

Such solutions can be expressed by the Duhamel representation formula

w(t) =
∫ t

0
e(t−τ)∆f(τ)dτ. (13)

Our first result provides a sharp estimate showing how the heat flow
provides a gain of regularity of at most (but not equal to) two derivatives.

Lemma 2. Let σ ∈ R, 1 < r < m < ∞ and p ∈ [1,∞]. If f belongs to
Lr([0, T ], Ḃσ+ 2

r
p,∞ ), then the solution of the heat equation (12) satisfies

‖w‖
Lm([0,T ],Ḃσ+2+ 2

m
p,1 )

. ‖f‖
Lr([0,T ],Ḃσ+ 2

r
p,∞ )

.

Proof. First, observe that, employing the representation formula (13), there
is an independent constant C > 0 such that

‖∆kw(t)‖Lp .
∫ t

0
e−C(t−τ)22k‖∆kf(τ)‖Lpdτ. (14)

In particular, we obtain that

‖w(t)‖
Ḃ
σ+2+ 2

m
p,1

.
∫ t

0

∑
k∈Z

e−C(t−τ)22k2k(σ+2+ 2
m

)‖∆kf(τ)‖Lpdτ

.
∫ T

0
h(t− τ)‖f(τ)‖

Ḃ
σ+ 2

r
p,∞

dτ,

where we denoted

h(λ) =
∑
k∈Z

1{λ>0}e
−Cλ22k22k(1+ 1

m
− 1
r

),

which is a well-defined convergent series whenever 1 + 1
m −

1
r > 0.

Next, for any λ > 0, choosing j ∈ Z so that 22j ≤ λ < 22(j+1), observe
that

h(λ) ≤
∑
k∈Z

e−C22(j+k)22k(1+ 1
m
− 1
r

)

= 2−2j(1+ 1
m
− 1
r

) ∑
k∈Z

e−C22k22k(1+ 1
m
− 1
r

) . λ−(1+ 1
m
− 1
r

).
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It therefore follows that, since 0 < 1 + 1
m −

1
r < 1 and 1 < m, r < ∞, by

virtue of the Hardy–Littlewood–Sobolev inequality,

‖w(t)‖
LmḂ

σ+2+ 2
m

p,1

.

∥∥∥∥∥
∫ T

0
|t− τ |−(1+ 1

m
− 1
r

)‖f(τ)‖
Ḃ
σ+ 2

r
p,∞

dτ

∥∥∥∥∥
Lm

. ‖f‖
LrḂ

σ+ 2
r

p,∞

which concludes the proof of the lemma.

Note that the gain of regularity in the preceding result corresponds to
2 − 2(1

r −
1
m). In particular, the loss of 2(1

r −
1
m) is reminiscent of Bern-

stein inequalities in connection with the Littlewood–Paley theory (see [3,
Section 2.1.1]) and Sobolev embeddings.

Further observe that, according to the preceding proof, the constant in
the main estimate of Lemma 2 blows up as r tends to m with the same
behavior as the sharp constant of the Hardy–Littlewood–Sobolev inequality
(see [9] for a characterization of this sharp constant). However, we do not
know whether this behavior is sharp for Lemma 2.

We are now particularly interested in the endpoint case r = m of the
preceding lemma, which would correspond formally to a gain of exactly two
derivatives and is central to the proof of Theorem 1.

Unfortunately, the preceding proof fails miserably in this case, since it
would require an endpoint application of the Hardy–Littlewood–Sobolev in-
equality, which is impossible. Instead, we are able to establish the following
crucial endpoint lemma.

Lemma 3 ([1]). Let σ ∈ R, 1 ≤ q ≤ r <∞ and p ∈ [1,∞]. If f belongs to
Lr([0, T ], Ḃσ

p,q), then the solution of the heat equation (12) satisfies

‖w‖Lr([0,T ],Ḃσ+2
p,q ) . ‖f‖Lr([0,T ],Ḃσp,q) .

The proof presented here is self-contained and is somewhat simpler than
the one from [1] because it avoids abstract interpolation altogether.

Proof. By duality, it is enough to prove that, if g is a function in La′([0, T ])
with a = r

q ≥ 1 and 1
a + 1

a′ = 1, then∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt . ‖f‖q
Lr([0,T ],Ḃσp,q)

‖g‖La′ ([0,T ]).

To this end, we first write∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt =
∑
k∈Z

∫ T

0
g(t)‖∆kw(t)‖qLp2

k(σ+2)qdt.
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Furthermore, we deduce from (14) that

‖∆kw(t)‖qLp . 2−k(2q−2)
∫ t

0
e−C(t−τ)22k‖∆kf(τ)‖qLpdτ,

which implies that∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt

.
∑
k∈Z

∫ T

0

∫ t

0
|g(t)|e−C(t−τ)22k‖∆kf(τ)‖qLp2

k(σq+2)dτdt.

Next, we introduce a maximal operator defined by

Mg(τ) = sup
ρ>0

∫ T

0
ρ1{t−τ≥0}e

−(t−τ)ρ|g(t)|dt.

Classical results from harmonic analysis (see [7, Theorems 2.1.6 and 2.1.10])
establish that M is bounded over Lb ([0, T ]), for any 1 < b ≤ ∞. One can
now write that∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt .
∑
k∈Z

∫ T

0
Mg(τ)‖∆kf(τ)‖qLp2

kσqdτ,

whence, by definition of Ḃσ
p,q,∫ T

0
g(t)‖w(t)‖q

Ḃσ+2
p,q

dt .
∫ T

0
Mg(τ)‖f(τ)‖q

Ḃσp,q
dτ.

We finally conclude, by Hölder’s inequality, that∫ T

0
Mg(τ)‖f(τ)‖q

Ḃσp,q
dτ . ‖Mg‖La′ ([0,T ])‖f‖

q

Lr([0,T ],Ḃσp,q)

. ‖g‖La′ ([0,T ])‖f‖
q

Lr([0,T ],Ḃσp,q)
,

which completes the proof of the lemma.
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Resumo: Neste trabalho obtemos um novo critério para garantir que a
resolução duma superfície de tipo geral com singularidades canónicas tem
o fibrado cotangente grande, e um novo limite inferior para os valores de d
para os quais existem superfícies lisas com o fibrado cotangente grande que
são equivalentes por deformação a uma hipersuperfície lisa em P3 de grau d.

Abstract We give a new criterion for when a resolution of a surface of
general type with canonical singularities has big cotangent bundle and a
new lower bound for the values of d for which there is a surface with big
cotangent bundle that is deformation equivalent to a smooth hypersurface
in P3 of degree d.

palavras-chave: fibrado cotangente grande; superfícies algébricas de tipo
geral; singularidades canónicas

keywords: big cotangent bundle; surfaces of general type; canonical singu-
larities.

1 Introduction and general theory
Symmetric differentials, i.e. sections of the symmetric powers of the cotan-
gent bundle SmΩ1

X , of a projective manifold X play a role in obtaining
hyperbolicity properties of X. Symmetric differentials give constraints on
the existence of rational, elliptic and even entire curves in X (nonconstant
holomorphic maps from C to X), see for example [Dem15] and [Deb04].

The cotangent bundle of a projective manifold is said to be big if the
order of growth of h0(X,SmΩ1

X) with m is maximal (i.e., = 2 dimX − 1).
The work of Bogomolov [Bog77] and McQuillan [McQ98] gives that if a
surface of general type has big Ω1

X , then X satisfies the Green-Griffiths-
Lang conjecture, i.e., there exists a proper subvariety Z of X such that any
entire curve is contained in Z.
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Smooth hypersurfaces X ⊂ P3 with degree d ≥ 5 have Ω1
X with strong

positivity properties, such as KX being ample, but they have trivial cotan-
gent algebra [Brj71],

S(X) :=
∞⊕
m=0

H0(X,SmΩ1
X) = H0(X,S0Ω1

X) = C

see also [BDO08]. The absence of symmetric differentials on smooth hy-
persurfaces of P3 a priori prevents them from playing a role in obtaining
hyperbolicity properties on smooth hypersurfaces of P3.

Previous work of the 1st author and Bogomolov [BDO06] showed that
there are smooth surfaces X with big Ω1

X that are deformation equivalent
to smooth hypersurfaces in P3. Hence symmetric differentials can still play
a role in obtaining hyperbolicity properties for hypersurfaces of P3. In
[BDO06] it was shown that there are nodal hypersurfaces X ⊂ P3 whose
resolutions X̃ have big cotangent bundle. The simultaneous resolution re-
sult of Brieskorn [Bri70] implies that minimal resolutions X̃ of hypersurfaces
X ⊂ P3 with only rational double points, i.e. canonical singularities, are de-
formation equivalent to smooth hypersurfaces of the same degree.

The results in this presentation are:

Theorem 1. Let X be a surface of general type with canonical singularities.
Then the minimal resolution X̃ of X has big cotangent bundle if

∑
x∈SingX

h1(x) ≥ −s2(X̃)
3!

See (2.1) for the definition of h1(x), it is an invariant of the singularity.
Note that the left side encodes only information about the germs of the
singularities of X, so it is local in nature. This result is stronger than the
result in [RR14] stating that Ω1

X̃
is big if s2(X̃)+s2(X ) > 0, s2(X̃) and s2(X )

respectively the 2nd Segre number of X̃ and of the orbifold X associated to
X, see section 2 for more details.

In section 2.2 we give a method to find h1(x) where (X,x) is the germ
of an A2-singularity. In a later work [DOW20] we show how to extend this
method to calculate h1(x) for other An singularities. Then using theorem
1 and information on the possible number of canonical singularities of pre-
scribed types allowed in a hypersurface X ⊂ P3 of degree d, we obtain
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Theorem 2. For d = 9 and d ≥ 11, there are minimal resolutions of
hypersurfaces X ⊂ P3 with canonical singularities and degree d which have
big cotangent bundle.

The condition s2(X̃) + s2(X ) > 0 of [RR14] gives only d ≥ 13 and there
nodes are the best singularities. The above theorem uses A2 singularities
which due to theorem 1 are unexpectedly better than nodes, see 2.2 for more
details.

1.1 Big Cotangent Bundle

The cotangent bundle Ω1
X on a complex manifold of dimension n is said to

be big if

lim
m→∞

h0(X,SmΩ1
X)

m2n−1 6= 0

(i.e., h0(X,SmΩ1
X) has the maximal growth order possible with respect to

m for dimX = n). The property of Ω1
X being big is birational.

In the case of surfaces of general type there is a topologically sufficient
condition for bigness of Ω1

X , s2(X) > 0, where s2(X) = c2
1(X)−c2(X) is the

2nd Segre number of X. This follows from the asymptotic Riemann-Roch
theorem for symmetric powers of Ω1

X :

h0(X,SmΩ1
X)− h1(X,SmΩ1

X) + h2(X,SmΩ1
X) = s2(X)

3! m3 +O(m2) (1.1)

and Bogomolov’s vanishing for surfaces of general type, h2(X,SmΩ1
X) = 0

for m > 2 [Bog79].
Very few examples of minimal surfaces with s2(X) ≤ 0 are known to have

Ω1
X big, they appear in [BDO06] and [RR14]. In these examples, bigness of

Ω1
X follows from complex analytic and not topological properties of X. The

complex analytic conditions are the presence of enough configurations of
(−2)-curves associated with canonical singularities. In fact, these surfaces
with big Ω1

X are diffeomorphic to surfaces with trivial cotangent algebra,
S(X) ' C.

If X is a smooth surface of general type, it follows from 1.1 and
h2(X,SmΩ1

X) = 0 that Ω1
X is big if and only if:

lim
m→∞

h1(X,SmΩ1
X)

m3 > −s2(X)
3! (1.2)
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1.2 Quotient singularities and local asymptotic Riemann-
Roch for orbifold ŜmΩ1

X

In this section we present the local asymptotic Riemann-Roch for the orb-
ifold symmetric powers of the cotangent bundle of a normal surface with
only quotient singularities. For references on this topic, see [Wah93], [Bla96],
[Kaw92], [Miy08].

The germ of a normal surface singularity (X,x) is a quotient singularity
germ if it is biholomorphic to (C2, 0)/Gx, with Gx ⊂ GL2(C) finite and
small, where Gx is the local fundamental group. Canonical surface singu-
larities are quotient singularities with Gx ⊂ SL2(C). Consider

(C2, 0)

(X̃, E) (X,x)

ϕ
π

σ

with π : (C2, 0)→ (X,x), the quotient map by the local fundamental group,
called the local smoothing of (X,x) and σ : (X̃, E)→ (X,x) a good resolu-
tion of (X,x) where (X̃, E) is the germ of a neighborhood of the exceptional
locus E with E consisting of smooth curves intersecting transversally.

A reflexive coherent sheaf F , i.e. F∨∨ = F , on (X,x) is a locally free
sheaf away from the singularity and satisfies F = i∗(F|X\{x}), i : X\{x} ↪−→
X. Associated to a reflexive sheaf F on the quotient surface germ (X,x)
there are locally free sheaves F̃ on (X̃, E) (not uniquely determined) and F̂
on (C2, 0) (uniquely determined) satisfying F ∼= (σ∗F̃)∨∨ ∼= (πGx

∗ )F̂ , where
(πGx
∗ )F̂ is a maximal subsheaf of π∗F̂ on which Gx acts trivially, ([Bla96]

section 2).
The previous paragraph implies that reflexive coherent sheaves on normal

surfaces with only quotient singularities X are orbifold vector bundles on X
(also called Q-vector bundles or locally V -free bundles over X). The orbifold
m-symmetric power of the cotangent bundle on a normal surface X with
only quotient singularities is ŜmΩ1

X := (SmΩ1
X)∨∨ with Ω1

X = i∗(Ω1
Xreg

). If
X̃

σ−→ X is a good resolution ŜmΩ1
X = (σ∗SmΩ1

X̃
)∨∨.

In the proof of theorem 1 a lower bound for h1(X̃, SmΩ1
X̃

) is given us-
ing only information on the singularities of X. Each xi contributes with
h1(Ũxi , S

mΩ1
X̃

) where Ũxi is the minimal resolution of an affine neighbor-
hood Uxi of xi with Uxi∩Sing(X) = {xi}. The bigness of Ω1

X̃
depends on the

asymptotics of h1(X̃, SmΩ1
X̃

), see section (1.2), and hence on the combined
asymptotics of the h1(Ũxi , S

mΩ1
X̃

).
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Let (X̃, E) σ−→ (X,x) be a good resolution of the germ of a quotient
surface singularity and F̃ , F be sheaves such that F̃ is locally free of rank
r on X̃ and F = (σ∗F̃)∨∨ a reflexive sheaf on X. In comparing the Euler
characteristics χ(X,F) and χ(X̃, F̃) one has χ(X,F) = χ(X̃, F̃) + χ(x, F̃)
with

χ(x, F̃) = dim(H0(X̃ \ E, F̃)/H0(X̃, F̃)) + h1(X̃, F̃) (1.3)

called the modified Euler characteristic of F̃ ([Wah93], [Bla96] 3.9). The
asymptotics of 1.3 are described via a local asymptotic Riemann-Roch the-
orem ([Bla96] 4.1)

lim
m→∞

χ(x, SkF̃)
m2+r−1 = − 1

(2 + r − 1)!s2(x, F̃) (1.4)

with s2(x, F̃) := c2
1(x, F̃) − c2(x, F̃), the local 2nd Segre number of F̃ and

ci(x, F̃) ∈ H2i
dRc(X̃,C) the i-th local Chern class of F̃ . The local Chern

classes appear when comparing the pullback of orbifold Chern classes of an
orbifold vector bundle F on an orbifoldX and the Chern classes of the vector
bundle F̃ on X̃, a good resolution σ : X̃ → X of X, satisfying F = (σ∗F̃)∨∨.

We are only concerned with good resolutions σ : (X̃, E) → (X,x) of
canonical surface singularities and F̃ = Ω1

X̃
, one has c2

1(x,Ω1
X̃

) = 0 and:

s2(x,Ω1
X̃

) = −c2(x,Ω1
X̃

) = −(e(E)− 1
|Gx|

) (1.5)

with e(E) the topological Euler characteristic of the exceptional locus and
|Gx| the order of the local fundamental group ([Bla96] 3.18). We will use
the invariant of the singularity:

s2(x,X) := s2(x,Ω1
X̃min

) (1.6)

where σ : (X̃min, E)→ (X,x) is the minimal good resolution.

2 Theorems
2.1 Resolutions with big cotangent bundle

We consider minimal resolutions σ : X̃ → X of normal surfaces X with only
canonical singularities. The minimality condition has several advantages: i)
the local 2nd Segre numbers s2(x, Ω̃1

X̃
) being considered are s2(x,X) which

depend only on the singularity (since the resolution is fixed); ii) in section
2.2 the simultaneous resolution results used involve minimal resolutions of
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44 Resolutions of surfaces with big cotangent bundle

canonical singularities. Also, blowing up b : X̂ → X a smooth surface X at
a point does not affect inequality (1.2) determining bigness of the cotangent
bundle, since

lim
m→∞

h1(X̂, SmΩ1
X̂

)
m3 + s2(X̂)

3! = lim
m→∞

h1(X,SmΩ1
X)

m3 + s2(X)
3!

Let σ : Ũx → Ux be the minimal resolution of an affine normal surface Ux
with a single canonical singularity at the point x ∈ Ux. Set:

h1(x) := lim
m→∞

h1
(
Ũx, S

mΩ1
X̃

)
m3 (2.1)

h0(x) := lim
m→∞

[
H0

(
Ũx \ E,SmΩ1

Ũx

)
/H0

(
Ũx, S

mΩ1
Ũx

)]
m3 (2.2)

The local asymptotic Riemann-Roch equation (1.4) for the local modified
Euler characteristic (1.3) for Ũx and SmΩ1

Ũx
gives:

h1(x) = − 1
3!s2(x,X)− h0(x). (2.3)

with s2(x,Ω1
Ũx

) an invariant of the canonical singularity (Ux, x), since Ũx is
its minimal resolution (and hence unique). In [DOW20] using local duality
and local cohomology for the pair (X̃, E), it is shown that h0(x) ≤ h1(X)
holds, hence:

h1(x) ≥ −s2(x,X)
2 · 3! (2.4)

Theorem 1. Let X be a normal projective surface of general type with only
canonical singularities and σ : X̃ → X a minimal resolution. Then Ω1

X̃
is

big if and only if: ∑
x∈SingX

h1(x) ≥ −s2(X̃)
3! (2.5)

Proof. We saw in section 1.1 that Ω1
X̃

is big if and only if

limm→∞
h1(X̃,SmΩ1

X̃
)

m3 > − s2(X̃)
3! .

From the Leray spectral sequence for σ∗ and Bogomolov’s vanishing
H2(X̃, SmΩ1

X̃
) = 0 for m > 2, we obtain for m > 2:

0 H1(X,σ∗SmΩ1
X̃

) H1(X̃, SmΩ1
X̃

) H0(X,R1σ∗S
mΩ1

X̃
)

H2(X,σ∗SmΩ1
X̃

) 0
(2.6)
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The 1st direct image sheaf R1σ∗S
mΩ1

X̃
has support on the zero-

dimensional singularity locus Sing(X) = {x1, . . . , xk} of X. Each xi has
an affine neighborhood Uxi such that Uxi ∩ Sing(X) = {xi}. Using the
Leray spectral sequence again for each Ũx = σ−1(Ux), σ : Ũx → Uxi we
obtain:

H0
(
X,R1σ∗S

mΩ1
X̃

)
=

k⊕
i=1

H1
(
Ũx, S

mΩ1
Ũx

)
Hence using the notation of section 2.1:

∑
x∈Sing(X)

h1(x) = lim
m→∞

h0
(
X,R1σ∗S

mΩ1
X̃

)
m3 (2.7)

Claim: H2(X,σ∗SmΩ1
X̃

) = 0

Proof. Recalling that ŜmΩ1
X̃

:= (σ∗SmΩ1
X̃

)∨∨, consider the short exact se-
quence:

0→ σ∗S
mΩ1

X̃
→ ŜmΩ1

X̃
→ Qm → 0.

Left injectivity holds since σ∗SmΩ1
X̃

is torsion free. The support of Qm =
(σ∗SmΩ1

X̃
)∨∨

σ∗SmΩ1
X̃

is again Sing(X), hence H2(X,σ∗SmΩ1
X̃

) ∼= H2(X, ŜmΩ1
X̃

).

The surface X is an orbifold surface of general type with canonical sin-
gularities and ŜmΩ1

X̃
is the orbifold m-th symmetric power of the cotangent

bundle of X. Bogomolov’s vanishing H2(X, ŜmΩ1
X̃

) = 0 for m > 2 also
holds in this setting, due to the existence of orbifold Kähler-Einstein met-
rics [Kob85], [TY86], see also [RR14].

The vanishing of H2
(
X,σ∗S

mΩ1
X̃

)
= 0 for m > 0, (2.6) and (2.7) give:

lim
m→∞

h1(X̃, SmΩ1
X̃

)
m3 ≥

∑
x∈Sing(X)

h1(x) (2.8)

and the result follows from (1.2).

Remark: Theorem 1 is stronger than the main theorem in [RR14] which
states that Ω1

X̃
is big if s2(X̃) + s2(X) > 0. We have that ([Bla96] 3.14),

s2(X̃) = s2(X)+
∑
x∈SingX s2(x,X), hence condition s2(X̃)+s2(X) > 0 can

be reexpressed as:
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−
∑

x∈SingX

s2(x,X)
2 > −s2(X̃) (2.9)

It follows from (2.4) that the condition (2.5) in theorem 1 implies (2.9).
In fact it gives much stronger results. In the next section we will show
that if (X,x) is the germ of an A2 singularity, then h1(x) = 67

216 while
− s2(x,X)

2·3! = 48
216 . This implies that our inequality (2.5) guarantees Ω1

X̃
is big

for surfaces of general type X with only 48
67 · ` A2-singularities, where ` is

the number needed to satisfy inequality (2.9).

2.2 Deformations of smooth hypersurfaces with big Ω1
X

In this section we study for which d there are (smooth) surfaces with big
cotangent bundle that are deformation equivalent to smooth hypersurfaces
in P3 of degree d. We do this by considering minimal resolutions X̃ of
hypersurfaces X ⊂ P3 of degree d with only A2 singularities. A simultaneous
resolution result of Brieskorn [Bri70] gives that X̃ is deformation equivalent
to a smooth hypersurface of P3 of degree d. In [DOW20] other canonical
singularities are also considered.

Proposition 2.1. Let σ : (X̃, E)→ (X,x) be the minimal resolution of the
germ of an A2 surface singularity. Then:

h0(x) := lim
m→∞

dim[H0(X̃ \ Ei, SmΩ1
X̃

)/H0(X,SmΩ1
X̃

))]
m3 = 29

216 (2.10)

Proof. For the full proof see [DOW20].
We give here an extended description of what is involved in the proof.

We use the affine model of an A2-singularity X = {xz − y3 = 0} ⊂ C3

with the minimal resolution X̃ obtained as the strict preimage of X under
σ : Ĉ3 → C3, the blow up of C3 at (0, 0, 0).

C2

C2 ∼= U1 ⊂ X̃ X = {xz − y3 = 0} ⊂ C3σ

π,(z3
1 , z1z2, z

3
2)

φ1,(
z2

1
z2
,
z2

2
z1

)

φ

where π : C2 → X gives the smoothing as in section 1.2. Let U1 = X̃ ∩
p−1(U1) with p : Ĉ3 → P2 the canonical projection and U1 = {y 6= 0} ⊂ P2,
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[x : y : z] as homogeneous coordinates of P2. The exceptional locus of
σ is E = E1 + E2, Ei (−2)-curves intersecting transversally. On U1 put
coordinates (u1, u2) with φ∗1u1 = z2

1
z2

and φ∗1u2 = z2
2
z1

and E∩U1 = {u1u2 = 0}.
The isomorphism φ∗ : H0(X̃ \ E,SmΩ1

X̃
) → H0(C2, SmΩ1

C2)Z3 will be
used to move the setting for finding h0(x) from X̃ \ E to C2. We need a
good description of G(m) := φ∗(H0(X̃, SmΩ1

X̃
)). We use:

G(m) = φ∗1(H0(C2, SmΩ1
C2)) ∩H0(C2, SmΩ1

C2)

We call zi11 z
i2
2 dz

m1
1 dzm2

2 a z-monomial of full type (f-type)
(i1, i2,m1,m2)z and type (i,m)z with i = i1 + i2 the order and m = m1 +m2
the degree of the monomial. A monomial is holomorphic if i1, i2 ≥ 0 and
Z3-invariant if i1 + 2i2 +m1 + 2m2 ≡ 0 mod 3.

For each triple (k, i,m) with k ≡ −(m+ i) mod 3 there is a collection of
z-monomials:

B(k, i,m)z = {(k −m+ l, i+m− k − l,m− l, l)z}l=0,...,m (2.11)

These collections give a partition of the set of all Z3-invariant z-
monomials of type (i,m). Set V (k, i,m)z =Span(B(k, i,m)z).

Let Bh(k, i,m)z be the subcollection of holomorphic z-monomials of
B(k, i,m)z. Set Vh(k, i,m)z := Span(Bh(k, i,m)z)= H0(C2, SmΩ1

C2) ∩
V (k, i,m). Set hz(k, i,m) := dimVh(k, i,m)z=#Bh(k, i,m)z, from (2.11)
it follows that hz(k, i,m) = min(m+ 1, k+ 1, i+ 1,m−k+ i+ 1). Note that
hz(k, i,m) = 0 unless 0 ≤ k ≤ m+ i.

Set G(k, i,m):= G(m) ∩ V (k, i,m) = G(m) ∩ Vh(k, i,m). All the above
gives (we will see below that I(m) = 2m):

dim[H0(X̃ \ E,SmΩ1
X̃

)/H0(X,SmΩ1
X̃

))] = dim[H0(C2, SmΩ1
C2)Z3/G(m)]

=
I(m)∑
i=0

∑
0≤k≤m+i

k≡−(m+i) mod3

hz(k, i,m)− dimG(k, i,m) (2.12)

The reason to consider the collections B(k, i,m) will now be examined.
The rational map φ1 : (C2, z1, z2) 99K (C2, u1, u2) pulls back holomorphic
u-monomials of type (i,m) to rational Z3-invariant z-monomials of type
(i,m):

φ∗1(p,i−p, q,m−q)u=
m∑
l=0
cql(3(p+q)−(i+2m)+l,−3(p+q)+2(i+m)−l,m−l,l)z

(2.13)
with the cql given by (2x− y)q(−x+ 2y)m−q =

∑
l cqlx

m−lyl.
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From (2.13) and (2.11) it follows that the pullback of a u-monomial
of type (i,m) lies in a single V (k, i,m) and that the u-monomials whose
pullback lie in V (k, i,m) themselves form the collection B(k, i,m)u :=
{(k′−m+l, i+m−k′−l,m−l, l)u}l=0,...,m with k′ = i+m+k

3 . Let Bh(k, i,m)u
be the subcollection of holomorphic u-monomials of B(k, i,m)u and set
Vh(k, i,m)u =Span(Bh(k, i,m)u). Set hu(k, i,m) := dimVh(k, i,m)u, we
have hu(k, i,m) = min(m+ 1, k+(i+m)

3 + 1, i+ 1, 2(i+m)−k
3 + 1).

We proceed to find I(m) and dimG(k, i,m) and calculate (2.12). We
have that G(k, i,m) = φ∗1(Vh(k, i,m)u) ∩ Vh(k, i,m)z. By using information
on the rank of relevant subblocks of matrix [cql], with cql as in (2.12) (see
[DOW20] for details), we obtain that:

dimG(k, i,m) = max (hz(k, i,m) + hu(k, i,m)− (m+ 1), 0)

From the formula for hu(k, i,m) above, it follows that hu(k, i,m) = m + 1
and hence G(k, i,m) = hz(k, i,m) for all 0 ≤ k ≤ m + 1 if i ≥ 2m. This
implies that all the terms in (2.12) for i ≥ 2m vanish, hence by setting
I(m) = 2m we can write the full sum and obtain:

h0(x) = lim
m→∞

1
m3

2m∑
i=0

∑
0≤k≤m+i

k≡−(m+i) mod3

min(m+1−hu(k, i,m), hz(k, i,m)) = 29
216

Remark: For A1 singularities using the set up described in the 1st au-
thor’s article [BDO08] the method to find h0(x) is substantially simpler and
h0(x) = 11

108 , see Jordan Thomas’ thesis [Tho13]. For an approach in the
lines of proposition 2.1 and valid for all An singularities see [DOW20].

Theorem 2. For d = 9 and d ≥ 11 there are minimal resolutions of hy-
persurfaces in P3 with canonical singularities and degree d which have big
cotangent bundle.

Proof. Let Xd,` ⊂ P3 denote a hypersurface of degree d with ` A2-
singularities as its only singularities and X̃d,` its minimal resolution. The
Brieskorn simultaneous resolution theorem, [Bri70] and Ehresmann’s fibra-
tion theorem give that X̃d,` is diffeomorphic to a smooth hypersurface of
degree d in P3, hence s2(X̃d,`) = −4d2 + 10d.

From sections 1.2 and 2.1 we have that h1(x) = − 1
3!s2(x,X) − h0(x) =

1
3!(e(E)− 1

|Z3|)− h
0(x), where (X̃, E) is a minimal resolution of the germ of

the A2-singularity (X,x) (e(E) = 3). Using proposition 2.1, it follows that:

h1(x) = 67
216 (2.14)
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In Labs [Lab06] it is shown how to construct hypersurfaces in P3 with only
An singularities with n fixed using Dessins d’Enfants. For A2 singularities
one has that there are hypersurfaces Xd,` if:

` =
{1

2d(d− 1) · bd3c+ 1
3d(d− 3)(bd−1

2 c)− b
d
3c) d ≡ 0 mod 3

1
2d(d− 1) · bd3c+ 1

3(d(d− 3) + 2)(bd−1
2 c)− b

d
3c) otherwise

(2.15)
Theorem 1 and 2.14 give that Ω1

X̃d,`
!is big if 67

216` >s2(X̃d,`) or equivalently
if:

` >
72
67(2d2 − 5d) (2.16)

By 2.15 there are hypersurfaces Xd,` ⊂ P3 with d and ` satisfying (2.16) if
d = 9 or d ≥ 11.

Remark: 1) In Theorem 2 we can see the strength of theorem 1 when
compared to the criterion for the cotangent bundle Ω1

X̃d,`
to be big of [RR14],

s2(X̃d,`)+s2(Xd,`) > 0. The criterion of [RR14] needs ` > 3
2(2d2−5d) instead

of (2.16). The known upper bounds by Miyaoka or Varchenko, see [Lab06],
for the number of A2 singularities possible on a hypersurface in P3 of degree
d prevent ` > 3

2(2d2 − 5d) for d ≤ 11. Moreover, one has to go to degree
d = 14 for the known constructions to give enough A2 singularities for the
criterion of [RR14].

2) Following the method of theorem 2, if instead of using hypersurfaces
in P3 with only A2 singularities, one used hypersurfaces with only A1 singu-
larities (nodes), then one would need ` > 9

4(2d2− 5d) nodes for the minimal
resolution of an hypersurface with ` nodes to have big cotangent bundle.
This would give surfaces with big cotangent bundle deformation equivalent
to smooth hypersurfaces in P3 of degree d ≥ 10. The known upper bounds
for the number of nodes possible in hypersurfaces of a given degree, see
[Lab06], give that for degree 9 you can not have more than 246 nodes, our
criterion needs 264. So A2 singularities give a better result.
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Resumo: Apresentamos uma fórmula para o polinómio de Alexander clás-
sico de um nó em termos de um invariante de nós introduzido recentemente,
chamado polinómio de aumentação e definido a partir da homologia de con-
tacto do nó. Damos uma ideia da prova, que parte de uma definição dinâmica
do polinómio de Alexander e envolve a análise de vários espaços de moduli
de curvas pseudoholomorfas.

Abstract We present a formula expressing the classical Alexander polyno-
mial of a knot in terms of a very recent knot invariant, called the augmenta-
tion polynomial and defined using knot contact homology. We give an idea
of the proof, which starts from a dynamical definition of the Alexander poly-
nomial and involves analyzing several moduli spaces of pseudoholomorphic
curves.

palavras-chave: geometria simplética, curvas pseudoholomorfas, invari-
antes de nós.

keywords: symplectic geometry, pseudoholomorphic curves, knot invari-
ants.

1 Introduction
Knot theory and symplectic geometry have both seen a great development in
recent years. In some instances, techniques from symplectic geometry have
been successful in producing powerful new invariants of knots (like the knot
Floer homology of Ozsváth–Szabó and Rasmussen [15, 16]), or in enhancing
the understanding of previously known invariants (like a symplectic version
of Khovanov homology [1]). In this note, we present a recent result ob-
tained in collaboration with Tobias Ekholm, which yields a formula for the
Alexander polynomial of a knot in terms of its augmentation polynomial.
The former is a classical cornerstone of knot theory. The latter is a recently
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52 Symplectic geometry and knot invariants

defined object, introduced in the context of knot contact homology. This
is another very powerful new invariant of knots that was constructed using
tools from symplectic geometry. Our result is saying that knot contact ho-
mology recovers the Alexander polynomial. Although this fact was already
known from the work of Ng [14], the formula in terms of the augmentation
polynomial appears to be new. It also has an unusual form for a relation
between two polynomials. Our result will be stated as Theorem 5.1 below.

We will begin with a brief introduction to knots and the Alexander poly-
nomial, including a dynamical definition of this invariant that will be useful
for our purposes. Then, we change direction and give a quick introduction to
symplectic geometry and pseudoholomorphic curves. After that, we explain
how to use pseudoholomorphic curves to define knot contact homology, and
how the latter yields the augmentation polynomial of a knot. Then, we state
our result and give a terse presentation of the proof. Our goal will not be
to convey the full logical structure of the argument (let alone its technical
details), but only to give an idea of a practical and hopefully interesting ap-
plication of pseudoholomorphic curves in symplectic geometry. We conclude
with some directions for future work.
Acknowledgements. The author wishes to thank Jorge Milhazes de Freitas,
Samuel Lopes and Diogo Oliveira e Silva, the organizers of the conference
Matemáticos Portugueses pelo Mundo in 2019 in Porto, for the invitation to
participate in that very intereresting event. Thanks are also due to Diogo
Oliveira e Silva and the anonymous referees for many useful comments about
this text.

2 Knots and the Alexander polynomial
2.1 Knots and links

A knot is a closed embedded curve in R3. This means that it is the image of a
C8-smooth injective map from the circle S1 to R3, with non-zero derivative
at every point. A link is a finite collection of knots that are all pairwise
disjoint. We are interested in knots and links from the point of view of
topology, in the sense that we don’t want to distinguish those that differ
by a smooth deformation causing no self-intersections, called an isotopy.
Formally, this is a C8-smooth map f : r0, 1sˆR3 Ñ R3, such that ft – fpt, .q
is a diffeomorphism of R3 for every t P r0, 1s, and f0 is the identity. Two
links are isotopic if there is an isotopy f such that the image under f1 of
one link is the other link.

In Figure 1 we have the two simplest examples of knots: the unknot and
the trefoil. We can think of this picture as the result of projecting our knots

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 51-68



Luís Diogo 53

Figure 1: The unknot and the trefoil (with three crossings)

in R3 to a plane, so that the projection is injective at all but finitely many
points, called crossings. A figure like this, encoding for each crossing which
of the two strands is over the other, is called a link diagram.

It is intuitively clear that the unknot and the trefoil are not isotopic, but
it is not entirely obvious how to prove this fact. The main problem in knot
theory is to find an efficient way of deciding when two knots are isotopic.

2.2 The Alexander polynomial

One of the first tools that were created to distinguish knots and links is the
Alexander polynomial. Given a link L, its Alexander polynomial AlexL is a
Laurent polynomial in one variable µ. This means that the integer powers
of µ are allowed to be negative. Define AlexL as follows: pick an orientation
for L, which is to say a direction for each of its component knots, and impose

• Alexunknot “ 1.

• The skein relation:

Alex
« ff

´Alex
« ff

` pµ1{2´ µ´1{2qAlex
« ff

“ 0

This is a relation between Alexander polynomials of three links with
link diagrams that are equal outside the depicted neighborhood of a
crossing.

• Isotopy invariance: AlexL “ AlexL1 if L and L1 are isotopic links.

These three properties determine the Alexander polynomial for every
link. Two non-obvious facts are that the Alexander polynomial is well-
defined (in particular, the skein relation holds for every link diagram) and
that it contains only integer powers of µ, even though the skein relation
involves fractional powers.

As an example, let us compute the Alexander polynomial of the trefoil.
Applying the skein relation, we get
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Alex

»

—

—

–

fi

ffi

ffi

fl

“ Alex

»

—

—

–

fi

ffi

ffi

fl

´ pµ1{2 ´ µ´1{2qAlex

»

—

—

–

fi

ffi

ffi

fl

“ 1´ pµ1{2 ´ µ´1{2qAlex

»

—

—

–

fi

ffi

ffi

fl

where we used the fact that Alexunknot “ 1. The link we obtained on the
right is called Hopf link. Let us apply the skein relation on a crossing of this
link:

Alex

»

—

—

–

fi

ffi

ffi

fl

“ Alex

»

—

—

–

fi

ffi

ffi

fl

´ pµ1{2 ´ µ´1{2qAlex

»

—

—

–

fi

ffi

ffi

fl

“ Alex

»

—

—

–

fi

ffi

ffi

fl

´ µ1{2 ` µ´1{2

where we used again that Alexunknot “ 1. To finish the computation, we need
to determine the Alexander polynomial of the link with two components on
the right. Since the two components can be moved by an isotopy to lie in
two disjoint open balls, the link is said to be trivial. We call it the unlink
with two components. Its Alexander polynomial is zero, and we leave the
proof of that to the reader as an exercise on the skein relation. We can now
conclude the calculation of the Alexander polynomial of the trefoil:

Alextrefoil “ 1´ pµ1{2 ´ µ´1{2qp0´ µ1{2 ` µ´1{2q “ µ´ 1` µ´1.

Since this is different from the Alexander polynomial of the unknot, we can
conclude that the unknot and the trefoil are not isotopic.
Exercise 1. Compute the Alexander polynomial of the figure-eight knot (the
closure of the sailor’s knot of the same name), depicted in Figure 2.

2.3 A dynamical definition of the Alexander polynomial

The definition of Alexander polynomial of a link that we gave in the previous
section is very suitable for computations (at least for link diagrams without
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Figure 2: The figure-eight knot

too many crossings). Nevertheless, it is only one of many definitions of this
invariant. We now present a different definition of the Alexander polynomial
of a link, with a very different flavour. For simplicity, we will restrict our
attention to the particular class of fibered knots, which we now define.

In this section, it will be convenient to think of the ambient space of
a knot as the sphere S3, instead of R3. This is reasonable, since we can
identify R3 with the complement of a point in S3. For this identification,
two knots are isotopic in R3 if and only if they are isotopic in S3.

We say that a knot K is fibered if there is a C8-smooth map g : S3zK Ñ

S1 with no critical points. This means that the knot complement S3zK
is a fiber bundle over S1, with fiber a surface whose boundary is K (such
a surface is called a Seifert surface). The differential of the function g is
a 1-form dg. If we choose some Riemannian metric x., .y on S3, then the
function g also specifies a vector field in S3zK, called gradient vector field
and denoted ∇g, as follows: for every vector field v on S3zK,

x∇g, vy “ dgpvq.

Since the function g has no critical points, the vector field ∇g has no
zeros. A gradient flow loop is a path γ : r0, Rs Ñ S3zK, for some R ą 0,
such that

• γpRq “ γp0q (which means that γ closes up to a loop) and

• d
dt

`

γptq
˘

“ p∇gqγptq for every t P r0, Rs (that is, the time-derivative of
γ coincides with ∇g at every point in γ).

Observe that if γ : r0, Rs Ñ S3zK is a gradient flow loop, then so is any
multiple cover γm : r0,mRs Ñ S3zK, where m is a positive integer. Here,
γmptq “ γpt1q for t1 P r0, Rs such that t1 ” t mod R. We say that a flow loop
is simple if it is not multiply covered. Given a flow loop γ, we denote by
mpγq its multiplicity with respect to its underlying simple loop. For every
knot K, the homology group H1pS

3zK;Zq is isomorphic to Z. If we pick a
generator e for this homology group, then we can associate to a flow loop
γ its degree dpγq, such that the class of γ on homology is dpγqe. Note that
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mpγq divides dpγq. To avoid flow loops too close to K, we will require the
map g to “grow near K”.

Theorem 2.1 (Milnor [13]). The Alexander polynomial of a fibered knot K
is given by

AlexKpµq “ p1´ µq exp
˜

ÿ

γ

σpγq

mpγq
µdpγq

¸

(1)

where the sum is over all gradient flow loops (not only the simple ones). In
the formula, σpγq P t˘1u is a sign (associated to the linearized return map
of γ).

This formula was generalized for all knots K by Hutchings and Lee [11].
Example 2.2. Let us see how to recover the Alexander polynomial of the
unknot from formula (1). The complement of the unknot in S3 is diffeo-
morphic to S1ˆR2 (if this is not clear, try to identify both spaces with the
complement of the vertical axis in R3). In coordinates pθ, x, yq for S1 ˆR2,
take gpθ, x, yq “ θ ` x2 ` y2. For the standard product metric on S1 ˆ R2,
the only periodic orbits are the covers of the central circle S1 ˆ t0u, and all
the signs σpγq in (1) are positive. The sum over flow loops becomes

ÿ

ką0

1
k
µk “ ´ lnp1´ µq

hence
Alexunknotpµq “ p1´ µq exp p´ lnp1´ µqq “ 1

as we already knew.

3 Some symplectic geometry
3.1 Classical mechanics and symplectic geometry

Symplectic geometry is a recent area of mathematics, with its roots in classi-
cal mechanics, but with deep connections to other areas of mathematics and
physics. In the Hamiltonian formulation of classical mechanics, a particle
moving in R3 is described by its trajectory in the phase space R6, which
keeps track of the position and momentum of the particle. If we denote
position variables in R3 by q1, q2, q3 and the corresponding momentum vari-
ables by p1, p2, p3, then the trajectory of the particle in phase space satisfies
Hamilton’s equations

#

9qi “ BpiH

9pi “ ´BqiH
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where the Hamiltonian function H : R6 Ñ R is the energy of the particle.
This trajectory is a flow line of the Hamiltonian vector field, which we denote
by XH . If we define a differential 2-form on R6 by

ω –

3
ÿ

i“1
dpi ^ dqi, (2)

then Hamilton’s equations above tell us that the vector field XH is given by
the condition

ωp., XHq “ dH. (3)

A reader unfamiliar with differential forms may find it mildly useful to think
of ω as a way of prescribing signed areas to 2-dimensional oriented surfaces
in R6 (where the signs depend on the orientations of the surfaces).

We can interpret equation (3) as saying that the 2-form ω allows us to
do Hamiltonian mechanics for any function that we choose to call energy on
R6. We can think of symplectic geometry as generalizing this point of view
on mechanics to any differentiable manifold of even dimension 2n, equipped
with a differential 2-form ω whose properties mimic those of the form (2),
namely:

• ω is closed: dω “ 0, and

• ω is non-degenerate: the n-fold wedge product ω^ . . .^ω is a volume
form (which means that it vanishes nowhere).

For the application to knot theory that we present in this text, it will
mostly suffice to think of the symplectic manifold R6. We refer to the article
by Ana Cannas da Silva in this volume [4] for more on symplectic geometry.

3.2 Pseudoholomorphic curves

In 1985, Gromov introduced the notion of pseudoholomorphic curve [10],
which was revolutionary in symplectic geometry. It gave a powerful tool
to study symplectic manifolds, and eventually led to many deep relations
to algebraic geometry and theoretical physics, in particular the so called
mirror symmetry phenomenon (see Lino Amorim’s article in this volume
[3] for some background on mirror symmetry). Before we state one of the
striking results in Gromov’s paper, let us introduce some more terminology.
First, we observe that an open subset of a symplectic manifold, equipped
with the restriction of the symplectic form ω, is also a symplectic manifold.
Let B2nprq Ă R2n denote the open ball of radius r and centered at the
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origin. Consider also the open subset B2pRq ˆ R2n´2 Ă R2n, where it is
crucial that B2pRq has coordinates pp1, q1q (instead of pp1, p2q or pq1, q2q,
for instance) and R2n´2 has the remaining coordinates p2, . . . , pn, q2, . . . , qn.
Given two symplectic manifolds pM1, ω1q and pM2, ω2q, a smooth embedding
ϕ : M1 ãÑ M2 such that ϕ˚ω2 “ ω1 is called a symplectic embedding (here,
ϕ˚ is pullback by ϕ).

Theorem 3.1 (Gromov’s non-squeezing). If we have a symplectic embedding

B2nprq ãÑ B2pRq ˆ R2n´2,

then r ď R.

Observe that a symplectic embedding is, by definition, volume-
preserving. We can interpret Gromov’s non-squeezing as saying that
not all volume-preserving embeddings are symplectic.

Now that we have given a little indication of what pseudoholomorphic
curves can achieve, let us define them. We need the auxiliary notion of
an almost complex structure on an even-dimensional manifold M2n, which
is an endomorphism of the tangent bundle J : TM Ñ TM (covering the
identity map M ÑM) such that J2 “ ´Id. Given such a J and a Riemann
surface pS, jq, a pseudoholomorphic curve is a map u : S ÑM satisfying the
Cauchy–Riemann equation

du ˝ j “ J ˝ du.

If M has a symplectic form ω, then one can ask that ωp., J.q be a Rieman-
nian metric onM , in which case J is said to be compatible with ω. Gromov’s
idea was to study pM,ωq by analyzing moduli spaces of pseudoholomorphic
curves (modulo domain reparametrizations, and possibly with additional
structures like fixing the homology class of the map, or equipping the do-
main with marked points). If J is compatible with ω, then we can control
the L2-norm of u (the energy) by its ω-area, which is crucial for obtaining
compactness of moduli spaces. Gromov also observed that the space of ω-
compatible J is contractible, which implies that the moduli spaces defined
for two different J are cobordant (that is, there is a manifold whose oriented
boundary is the difference of the two moduli spaces). This allows for the
definition of numerical invariants counting pseudoholomorphic curves (with
appropriately chosen constraints) that depend on ω but not on the choice
of ω-compatible J . Those are called Gromov–Witten invariants, and they
have many applications in symplectic and algebraic geometry.
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4 Symplectic knot invariants

4.1 From knots to Lagrangians and Legendrians

Recent decades have seen many applications of pseudoholomorphic curves.
We will focus on a particular application to knot theory, called knot contact
homology. This is part of a broader packaging of pseudoholomorphic curve
information that goes by the name of symplectic field theory [8], but we will
focus on the specific case of interest to us. Let us begin with some geometric
constructions.

Given a knot K Ă R3 , we can define its conormal Lagrangian

LK – tpq, pq P R6 | q P K and p@v P TqKq xp, vy “ 0u,

where x., .y is the Euclidean inner product in R3. This is a submanifold
of R6 that is diffeomorphic to S1 ˆ R2, and whose intersection with R3

q

(the subspace of R6 where all pi “ 0) is the knot K. See Figure 3 for a
geometric depiction that would greatly benefit from additional dimensions.
Furthermore, LK is Lagrangian, in the sense that it has half the dimension
of the ambient space R6, and the restriction of the symplectic form ω in (2)
to LK vanishes. In addition, the Lagrangian LK is exact, which means the
following. The symplectic form ω in R6 has a primitive λ “

ř3
i“1 pidqi and

the restriction λ|L admits a primitive f P C8pLq (in this case, we can take
f to be any constant function). Other exact Lagrangians are R3

q and R3
p.

We can identify R6 with the tangent bundle1 of R3
q and, with respect to

the Euclidean inner product in R3, we can identify R3 ˆ S2 Ă R6 with the
unit tangent bundle of R3

q . Recall that the geodesic flow on the unit tangent
bundle of a Riemannian manifold Q takes a point q P Q and a unit vector
v P TqQ and follows the geodesic starting at q in the direction prescribed
by v. This is an example of what is called a Reeb flow in contact geometry
(hence the name “knot contact homology”), but we will not go further in that
direction in this note. The conormal Lagrangian LK intersects R3ˆS2 in a 2-
torus ΛK , which we call conormal Legendrian (again borrowing terminology
from contact geometry).

It will be useful to observe that H2pR3ˆS2,ΛK ;Zq is isomorphic to Z3.
We will explain this point, but a reader less familiar with homology groups
might want to skip the details. Let us just mention that this is the reason
why the augmentation polynomial below will have three variables.

1From the point of view of symplectic geometry, it would be preferable to think of the
cotangent bundle, but we can ignore that point in this text.
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K R3

ΛK

LK

R3 ˆ S2

Figure 3: The Lagrangian LK in R6

In this paragraph, consider all homology groups with Z coefficients. The
long exact sequence of the pair pR3 ˆ S2,ΛKq includes the segment

H2pΛKq Ñ H2pR3 ˆ S2q Ñ H2pR3 ˆ S2,ΛKq Ñ H1pΛKq Ñ 0.

The first map turns out to vanish. Since H2pR3 ˆ S2q – H2pS
2q – Z and

H1pΛKq – Z2 (ΛK is a 2-torus), the sequence splits and we get the desired
isomorphism with Z3. We get generators for this group from the choice of
a generator t for H2pS

2q and of generators x, p for H1pΛKq (and a choice
of splitting). It is customary to let x be a longitude curve (projecting to K
under the restriction to ΛK of the projection R3 ˆ S2 Ñ R3), and to let p
be a meridian curve (mapping to a constant under that same projection).
Note that such a meridian curve p lies in a cotangent fiber (that is, a 3-
dimensional subspace of R6 with constant qi variables), hence the use of the
letter associated with momentum.

4.2 Knot contact homology

We can now use pseudoholomorphic curves to associate a chain complex to
the knot K. We will actually get a differential graded algebra (dga), which
is a chain complex with a product satisfying the (graded) Leibniz rule. Our
chain complex will be a tensor algebra generated by geodesic chords starting
and ending in ΛK . By this we mean paths c : ra, bsÑR3ˆS2 that follow the
geodesic flow and for which cpaq and cpbq P ΛK . We don’t want to get into
details, but these chords are graded by a Maslov index (which is an integer).

Let us specify the ring over which we take the tensor algebra. This
will be group ring (over C) of H2pR3 ˆ S2,ΛK ;Zq, which, in light of the
discussion at the end of the previous section, can be identified with the
Laurent polynomial ring R “ Crλ˘1, µ˘1, Q˘1s, under the identifications
λ “ ex, µ “ ep and Q “ et.
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The differential in the chain complex counts pseudoholomorphic curves
in RˆpR3ˆS2q“R4ˆS2 (which we can identify with the complement of R3

q

in R6), as follows. We define the differential for geodesic chords, and extend
by linearity and the Leibniz rule. The differential of a geodesic chord x is

Bx “
ÿ

y1,...,yk

¨

˝

ÿ

uPMpx;y1,...,ykq

rpuq

˛

‚y1 b . . .b yk

where the first sum is over finite sequences of geodesic chords and the second
sum is over elements of the moduli space of pseudoholomorphic curves u in
R4ˆS2, whose domain is a disk with k`1 punctures on the boundary. The
boundary components map to R ˆ ΛK . At the boundary punctures, u is
asymptotic to the fixed geodesic chords, with x at `8 and the yi at ´8
(both infinities in the first R summand of the target R ˆ pR3 ˆ S2q). See
Figure 4 for an illustration of one such u. Finally, the coefficient rpuq P R
keeps track of the relative homology class of u in H2pR3 ˆ S2,ΛK ;Zq. We
will not go into more details at this point, but the reader may have noticed
that more choices are necessary, including of “capping half-disks” for the
geodesic chords (to obtain a relative homology class).

u PMpx; y1, y2q

x

Rˆ ΛK

Rˆ pR3 ˆ S2q

ΛK

y1 y2

Figure 4: A contribution to Bx

Theorem 4.1 (Ekholm–Etnyre–Ng–Sullivan [6]). The differential B defined
above squares to zero. The homology of this dga is an invariant of the knot.

This homology is called knot contact homology. It is sometimes useful
to keep track of the dga, denoted by AK , instead of passing to homology.

Although the technical details of the proof of Theorem 4.1 are quite in-
volved, the idea is by now standard in symplectic geometry. To prove an
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algebraic identity like B2 “ 0, one interprets the contributions to B2 as ele-
ments in the boundary of a suitably defined moduli space of pseudoholomor-
phic curves. By showing that this moduli space is a compact 1-dimensional
oriented manifold, one concludes that the signed count of the elements in
its boundary is zero.

Knot contact homology appears to be a strong knot invariant, but it is
not yet clear just how strong. A recent result shows that a small but non-
trivial enhancement of knot contact homology is a complete knot invariant
(that is, two knots are isotopic if and only if their enhanced knot contact
homologies are isomorphic) [7].

4.3 Augmentations

Although the definition of the dga AK involves pseudoholomorphic curves,
which can be very difficult to analyze, the dga turns out to admit a combina-
torial model, which can be written down explicitly given a braid presentation
for the knot K [6]. Nevertheless, since the chain complex (a tensor algebra)
is very large, it can be difficult to extract useful information from its homol-
ogy. One way of obtining more treatable information about the dga is via
its augmentations. An augmentation is a unital dga map

ε : AK Ñ C,

where the field C is thought of as a dga supported in degree zero and with
trivial differential. In other words, ε is a graded unital ring map (so, it is
only non-trivial on the degree zero part of AK) satisfying ε ˝ B “ 0.
Example 4.2. One important source of augmentations is given by exact La-
grangians in R6 “which look like ΛK near infinity” (in some precise sense).
A key example is the conormal LK . Given such a Lagrangian, we can define
an augmentation by assigning to each geodesic chord of degree 0 the count
of pseudoholomorphic disks in R6 with boundary on the Lagrangian and
one puncture on the boundary, where the disk is asymptotic to the geodesic
chord “at infinity”. The value of the augmentation on the coefficient ring
R is constrained by the topology of the Lagrangian and its ambient space.
In the case of LK , since the meridian p-curve is contractible in LK and the
t-sphere is null-homologous in R6, it turns out that µ “ 1 “ Q, but λ is not
constrained. So, for each value λ P Czt0u we get an augmentation of AK .

It turns out to be useful to also think of the space of augmentations
geometrically. We define the augmentation variety of K, denoted by VK ,
to consist of the union of maximal dimensional components of the Zariski
closure of the set
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tpεpλq, εpµq, εpQqq P pCzt0uq3 | ε is an augmentationu.

The existence of the augmentations associated to LK in Example 4.2 im-
plies that, for every knot K, the augmentation variety VK contains the line
tpλ, 1, 1qu (where λ can be any element in Czt0u).

Theorem 4.3 (Diogo–Ekholm [5]).For every knot K, the augmentation
variety VK is an affine algebraic subvariety of pCzt0uq3 of complex dimension
at least 2.

Conjecturally, VK is always 2-dimensional (so it is not all of pCzt0uq3).
Define the augmentation polynomial of K (denoted by AugKpλ, µ,Qq) as a
polynomial with no repeated factors that generates the vanishing ideal of
this variety: VK “ V pAugKq.
Example 4.4. The augmentation polynomial of the unknot is

AugU “ 1´ λ´ µ` λµQ

and that of the trefoil is

AugT “ λ2pµ´1q`λpµ4´µ3Q`2µ2Q2´2µ2Q´µQ2`Q2q`pµ3Q4´µ4Q3q.

The augmentation polynomial has deep and surprising connections to
string theory and to other knot invariants. It is conjecturally the same as the
so-called Q-deformed A-polynomial, which is relevant for mirror symmetry
and is related in a deep way with another important knot invariant called
the colored HOMFLYPT polynomial [2, 9].

5 The Alexander polynomial from the augmenta-
tion polynomial

As we have seen, the Alexander polynomial and the augmentation polyno-
mial are knot invariants defined in very different ways. Nevertheless, they
are related in the following surprising manner.

Theorem 5.1 (Diogo–Ekholm [5]). Recall that λ “ ex, µ “ ep and Q “ et.
We have

AlexKpµq “ p1´ µq exp
˜

ż

´
BQ AugK
Bλ AugK

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
dp

¸

(4)

if the denominator Bλ AugK |pλ,Qq“p1,1q is not identically zero.
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In formula (4), the integral symbol represents an antiderivative.We will
give a brief idea of why one might expect the formula to hold, at least
for fibered knots. We will be very imprecise and will not justify most of
our claims.Our goal is to illustrate how the study of moduli spaces of pseu-
doholomorphic curves can lead to meaningful algebraic identities (we already
saw that this is also the idea of the proof that B2“0 in the dga AK). Note
that, according to Milnor’s formula (1), we only need to argue that

d

dp

¨

˝

ÿ

γ in S3zK

σpγq

mpγq
µdpγq

˛

‚“ ´
BQ AugK
Bλ AugK

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
. (5)

Exercise 2. Apply formula (4) to Example 4.4 to recover the Alexander
polynomials of the unknot and the trefoil. The Alexander polynomial is often
defined up to a power of µ, and (4) should also be allowed that ambiguity.

5.1 From flow loops to pseudoholomorphic annuli

The left side of (5) involves orbits in S3zK, whereas the right side involves
pseudoholomorphic curves in R4 ˆ S2. To get a reformulation of the left
side also in terms of pseudoholomorphic curves, we need another geometric
ingredient. Recall that the conormal Lagrangian LK Ă R6 intersects R3

q in
the knot K. There is a procedure called Lagrangian surgery, which produces
another Lagrangian submanifold by smoothing out the union of LK with R3

q

(the version we need is described in [12]). Denote the new Lagrangian in
R6 by MK . This submanifold is diffeomorphic to R3zK. Since LK and R3

q

are exact Lagrangians, one can ensure that MK is also exact. In particular,
it has an associated family of augmentations εMK

, sending both generators
λ and Q of the coefficient ring R to 1, and the generator µ to any element
of Czt0u. Hence, the line tp1, µ, 1qu is also contained in the augmentation
variety VK for every K. The key role of these augmentations is the reason
behind taking λ “ Q “ 1 in formula (4).

In R6, we can consider pseudoholomorphic annuli between R3
q and MK .

These are pseudoholomorphic maps u : S1 ˆ r0, As Ñ R6 (for some A ě 0)
such that the restriction of u to S1 ˆ t0u maps to R3

q and the restriction to
S1ˆtAu maps toMK . Denote the moduli space of such pseudoholomorphic
annuli byMpR3

q ;MKq.
The following result is stated in an overly simplified and somewhat im-

precise manner.

Proposition 5.2. For suitable choices of g : S3zK Ñ S1, metric on S3 and
J on R6, gradient flow orbits in S3zK can be identified with pseudoholomor-
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MK

y

z1

MK

z2

Rˆ ΛK

Figure 5: Definition of F pλ, µ,Qq. The curve at the top could have arbi-
trarily many negative punctures capped by disks with boundary in MK .

phic annuli in MpR3
q ;MKq. Therefore, the sum on the left side of (5) can

be rewritten as
Apµq–

ÿ

uPMpR3
q ;MKq

σpuq

mpuq
µdpuq (6)

for suitable signs σpuq and integers mpuq and dpuq.

Equation (5) is thus equivalent to

d

dp
pApµqq “ ´

BQ AugK
Bλ AugK

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
, (7)

where we recall again that µ “ ep.

5.2 Frompseudoholomorphic annuli to knot contact homology

Instead of showing equation (7) directly, we show that

d

dp
pApµqq “ ´

BQF

BλF

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
, (8)

for a suitable holomophic function F pλ, µ,Qq such that

BQF

BλF

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
“
BQ AugK
Bλ AugK

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
. (9)

The function F is defined as follows. For an appropriately chosen gen-
erator y of degree 1 of the dga AK (actually, an R-linear combination of
such generators), take its dga differential B, which is an expression in λ, µ,
Q and other generators z1, . . . , zn. Then, send the zi to their images under
the augmentation εMK

. See Figure 5.
Now, consider the moduli space of pseudoholomorphic annuli in R6, with

one boundary component in R3
q and another in MK (as in MpR3

q ;MKq
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q R3

q R3
q

MK
MK

B
“

Y

Figure 6: The boundary of a 1-dimensional moduli space

above), but with a puncture on the boundary component mapping to MK .
At this puncture, the curve is asymptotic to y. See the left side of Figure 6.

This moduli space is compact and 1-dimensional (since y has degree 1)
and (if y is chosen carefully) its boundary has components of two types,
which are depicted on the center and right in Figure 6. In the center con-
figuration, the curve develops a node and breaks into a pseudoholomorphic
plane asymptotic to y and an annulus inMpR3

q ;MKq. The boundaries of the
plane and annulus intersect. In the rightmost configuration, the boundary
loop in R3

q shrinks to a point, so the punctured annulus becomes a plane.
A further study of the pseudoholomorphic planes in the center configu-

ration reveals that the count of such broken curves (using µ to keep track
of the homology of boundaries mapping to MK) is given by

dA

dp
.
BF

Bx

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
“
dA

dp
.
BF

Bλ

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
,

recalling once more that λ “ ex. The derivatives in the formula keep track
of the intersection of the boundaries of the disk and annulus. Similarly, the
counts of curves in the configuration on the right turn out to be encoded by

BF

Bt

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
“
BF

BQ

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
,

where Q “ et. This time, the derivative keeps track of the fact that the
disk intersects R3

q . Since these two configurations are the boundaries of
a compact 1-dimensional manifold, the sum of their contributions (with
appropriate signs) vanishes. This implies that

dA

dp
.
BF

Bλ

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
`
BF

BQ

ˇ

ˇ

ˇ

ˇ

pλ,Qq“p1,1q
“ 0,

which gives equation (8), as wanted.
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For a brief justification of equation (9), let us just say that one can argue
that F vanishes on the augmentation variety VK , so it should be of the form

F “ g AugK

for some analytic function gpλ, µ,Qq. Equation (9) now follows from the
product rule for derivatives and the fact that AugK vanishes along the line
tp1, µ, 1qu Ă VK (at least if we assume that g|pλ,Qq“p1,1q is not identically
zero, which as it turns out we can).

5.3 Outlook

Theorem 5.1 should not be thought of as an efficient way of computing
the Alexander polynomial of a knot, but rather as an unexpected relation
between two very different knot invariants. It also suggests further investi-
gation in a few directions. For example, one might not set Q “ 1 in equation
(4) and get a Q-deformed version of AlexK .

Question 5.3. What is the significance of this deformation of the Alexander
polynomial? Is it related to other deformations, coming for instance from
knot Floer homology [15]?

One might also wonder about the condition of non-vanishing of the de-
nominator in the theorem. As it turns out, this condition cannot be ne-
glected, as it does not hold, for instance, for the 820 knot (as pointed out to
us by Lenny Ng).

Question 5.4. Is there an analogue of equation (4) when the denominator
in the formula vanishes?

It is likely that along some branch of the variety VK , corresponding to
the augmentation MK , one could find such an analogue.

As a final note, the reader may have wondered about interpreting the
integrand in formula (4) via implicit differentiation. Indeed, since VK is the
vanishing locus of AugK , that integrand is the partial derivative Bλ

BQ along
the line tp1, µ, 1qu Ă VK . This leads to an alternative interpretation of the
right side in the formula, related to curve counts in the resolved conifold
(the total space of the bundle OCP 1p´1q ‘ OCP 1p´1q), in the spirit of [2].
That is another interesting story, but unfortunately it is beyond the scope
of this discussion.
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Resumo: Discutimos a célebre demonstração do Último Teorema de Fermat
e as dificuldades que surgem ao tentar aplicar a mesma estratégia de prova
sobre corpos de números. Terminamos com uma amostra dos resultados
conhecidos no caso de corpos quadráticos.

Abstract We overview the celebrated proof of Fermat’s Last Theorem and
the challenges that arise when trying to carry it over to number fields. We
conclude with a sample of the known results for quadratic fields.

palavras-chave: Fermat, modularidade, curvas elípticas.
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1 Introduction
The search for a proof of Fermat’s Last Theorem (FLT) is one of the ri-
chest and more romantic stories in the history of Mathematics. Remarkable
progress in number theory as, for example, the origin of what is now alge-
braic number theory and some incredible breakthroughs in the Langlands
program, have come to light due to this pursuit.

Theorem 1 (FLT) The integer solutions to the Fermat equation

xn + yn + zn = 0 (1)

with n ≥ 3 are trivial, i.e., they satisfy xyz = 0.

The cases n = 3 and n = 4 of FLT were respectively solved by Euler
and Fermat. From this it is easy to see that we only have to prove it
for n = p ≥ 5 a prime. If (a, b, c) is a solution, then by scaling we can
suppose that gcd(a, b, c) = 1; we call such a solution primitive. The Fermat
equation, viewed as defining a curve in P2, has genus (p− 1)(p− 2)/2, and
a celebrated theorem of Faltings tells us that there are only finitely many
primitive solutions to (1), for each fixed n = p. Despite the efforts of many
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great mathematicians through 350 years, it was only in 1995 that a complete
proof was published. In this paper, we will discuss this modern approach to
FLT due to Hellegouarch, Frey, Serre and Ribet which culminated in Wiles’
proof [24] and created a new way of tackling Diophantine equations known
as the modular method.

2 The modular method
The proof of FLT is based on three main pillars: Mazur’s irreducibility
theorem, Wiles’ modularity theorem for semistable elliptic curves over Q
and Ribet’s level lowering theorem. Explaining these pillars will involve a
detour into some of the most fascinating areas of modern number theory:
elliptic curves, Galois representations, modular forms and modularity. For
a comprehensive introduction to these topics we suggest [3, 21, 22]. For an
overview and history of various methods to study the Generalized Fermat
equation xr + yq = zp we refer to [1], which we follow closely in this section.

2.1 Elliptic curves

Let K be a field. The simplest definition of an elliptic curve E over K is: a
smooth curve in P2 given by an equation of the form

E : y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3, (2)

with a1, a2, a3, a4 and a6 ∈ K. If the characteristic of K is not 2 or 3, then
we can transform to a much simpler model given by the affine equation

E : Y 2 = X3 + aX + b, (3)

where a and b ∈ K, whose disriminant is

∆E = −16(4a3 + 27b2).

We call (3) a Weierstrass model of E with discriminant ∆E . The require-
ment that E is smooth is equivalent to the assumption that ∆E 6= 0. There
is another very important quantity attached to an elliptic curve called the
j-invariant which can be computed from the model (3) by the formula

jE = (−48a)3

∆E
.

Note however that jE is an invariant of the isomorphism class of E over K,
the algebraic closure of K, and so independent of the choosen model.
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There is a distinguished K-point, the ‘point at infinity’, which we denote
by ∞. Given a field L ⊇ K, the set of L-points on E is given by

E(L) = {(x, y) ∈ L2 : y2 = x3 + ax+ b} ∪ {∞}.

It turns out that the set E(L) has the structure of an abelian group with∞ as
the identity element. The group structure is easy to describe geometrically:
three points P1, P2, P3 ∈ E(L) add up to the identity element if and only if
there is a line ` defined over L meeting E in P1, P2, P3 (with multiplicities
counted appropriately). The classic Mordell–Weil Theorem states that for a
number field K the group E(K) is finitely generated. For a model as in (3),
the 2-torsion subgroup E[2] consists of the points with y = 0 plus ∞. It
turns out that the proofs by Euler and Fermat of FLT for n = 3, 4 are simply
special cases of what are now standard Mordell–Weil group computations,
as discussed in [1, Examples 1 and 2].

2.2 Modular forms

Let H = {z ∈ C : Im(z) > 0}. Let k and N be positive integers and set

Γ0(N) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
,

which is a subgroup of SL2(Z) of finite index. The group Γ0(N) acts on H
via fractional linear transformations(

a b
c d

)
: H→ H, z 7→ az + b

cz + d
.

The quotient Y0(N) = Γ0(N)\H has the structure of a non-compact Rie-
mann surface. This has a standard compactification denoted X0(N) and
the difference X0(N) \ Y0(N) is a finite set of points called the cusps.

A modular form f of weight k and level N is a function f : H→ C that
satisfies the following conditions:

(i) f is holomorphic on H;

(ii) f satisfies the property

f

(
az + b

cz + d

)
= (cz + d)kf(z), (4)

for all z ∈ H and ( a bc d ) ∈ Γ0(N);
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(iii) f extends to a function that is holomorphic at the cusps.
It follows from these properties, and the fact that one of the cusps is the

cusp at i∞, that f must have a Fourier expansion

f(z) =
∑
n≥0

cnq
n where q(z) = exp(2πiz). (5)

It turns out that the set of modular forms of weight k and level N , denoted
by Mk(N), is a finite-dimensional vector space over C. A cusp form of
weight k and level N is an f ∈ Mk(N) that vanishes at all the cusps. As
q(i∞) = 0 we see in particular that a cusp form must satisfy c0 = 0. The
cusp forms naturally form a subspace of Mk(N) which we denote by Sk(N).

There is a natural family of commuting operators Tn : S2(N)→ S2(N)
(with n ≥ 1) called the Hecke operators. The eigenforms of level N are
the weight 2 cusp forms that are simultaneous eigenvectors for all the Hecke
operators. Such an eigenform is called normalized if c1 = 1 and thus its
Fourier expansion has the form

f = q +
∑
n≥1

cnq
n.

2.3 Modularity

Let E/Q be given by a model (2) where the ai ∈ Z, and having (non-
zero) discriminant ∆E ∈ Z. Carrying out a suitable linear substitution, we
generally work with a minimal model: that is one where the ai ∈ Z and with
discriminant having the smallest possible absolute value. Associated to E
is another, more subtle, invariant called the conductor NE , which we shall
not define precisely, but we merely point that it is a positive integer sharing
the same prime divisors as the minimal discriminant; that it measures the
‘bad behavior’ of the elliptic curve E modulo primes; and that it can be
computed easily through Tate’s algorithm [22, Chapter IV]. In particular,
the primes p not dividing NE are the primes of good reduction while those
satisfying p‖NE are the primes of multiplicative reduction.

Now let p - ∆E be a prime. Reducing modulo p a minimal equation (2)
we obtain an elliptic curve Ẽ over Fp. The set Ẽ(Fp) is an abelian group as
before, but now necessarily finite, and we denote its order by #Ẽ(Fp). Let

ap(E) = p+ 1−#Ẽ(Fp).

We are now ready to state a version of the modularity theorem due to Wiles,
Breuil, Conrad, Diamond and Taylor [2, 23, 24]. This remarkable theorem
was previously known as the Shimura–Taniyama conjecture.
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Theorem 2 (The Modularity Theorem) Let E/Q be an elliptic curve
with conductor NE. There exists a normalized eigenform f = q+

∑
cnq

n of
weight 2 and level NE with cn ∈ Z for all n, and such that for every prime
p - ∆E we have cp = ap(E).

For an elliptic curve E and an eigenform f as in this theorem we will
also say that f corresponds to E via modularity.

2.4 Galois representations

Let E be an elliptic curve over C. The structure of the abelian group E(C)
is particularly easy to describe. There is a discrete lattice Λ ⊂ C of rank 2
(that is, as an abelian group Λ ' Z2) depending on E, and an isomorphism

E(C) ' C/Λ. (6)

Let p be a prime. By the p-torsion of E(C) we mean the subgroup

E[p] = {Q ∈ E(C) : pQ = 0}.

It follows from (6) that
E[p] ' (Z/pZ)2, (7)

which can be viewed as 2-dimensional Fp-vector space. Now let E be an
elliptic curve over Q. Then we may view E as an elliptic curve over C, and
with the above definitions obtain an isomorphism E[p] ' (Z/pZ)2. However,
in this setting, the points of E[p] have algebraic coordinates, and are acted
on by GQ := Gal(Q/Q), the absolute Galois group of the rational numbers.
Via the isomorphism (7), the group GQ acts on (Z/pZ)2. Thus we obtain a
2-dimensional representation depending on E/Q and the prime p:

ρE,p : GQ → GL2(Fp). (8)

We say that the ρE,p is reducible if the matrices of the image ρE,p(GQ) share
some common eigenvector. Otherwise we say that ρE,p is irreducible. We
have now given enough definitions to be able to state Mazur’s theorem; this
is often considered as the first step in the proof of FLT.

Theorem 3 (Mazur [15]) Let E/Q be an elliptic and p a prime.

(i) If p > 163, then ρE,p is irreducible.

(ii) If E has full 2-torsion (that is E[2] ⊆ E(Q)), square-free conductor
and p ≥ 5, then ρE,p is irreducible.
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2.5 Ribet’s level lowering theorem

Let E/Q be an elliptic curve and associated mod p Galois representation
ρE,p : GQ → GL2(Fp) as above. Let f be an eigenform. Deligne and Serre
showed that such an f gives rise, for each prime p, to a Galois representation
ρf,p : GQ → GL2(Fpr ), where r ≥ 1 depends on f . If E corresponds to f
via the Modularity Theorem, then ρE,p ∼ ρf,p (the two representations are
isomorphic). Thus the representation ρE,p is modular in the sense that it
arises from a modular eigenform. Recall also from the Modularity Theorem
that, if f corresponds to E via modularity, then the conductor of E is equal
to the level of f . Sometimes it is possible to replace f by another eigenform
of smaller level which has the same mod p representation. This process is
called level lowering. We now state a special case of Ribet’s level lowering
theorem. For a prime `, we let υ`(x) denote the `-adic valuation of x ∈ Q.

Theorem 4 (Ribet’s level lowering theorem [18]) Let E/Q be an el-
liptic curve with minimal discriminant ∆ and conductor N . Let p ≥ 3 be
prime. Suppose that (i) the curve E is modular and (ii) the mod p repre-
sentation ρE,p is irreducible. Let

Np = N

Mp
, where Mp =

∏
`||N,

p | υ`(∆)

`. (9)

Then ρE,p ∼ ρg,p for some eigenform g of weight 2 and level Np.

We now know, by the Modularity Theorem that all elliptic curves over Q are
modular, so condition (i) in Ribet’s theorem is automatically satisfied. We
include it here both for historical interest but also because analogous level
lowering results are available over other fields and modularity of all elliptic
curves is still an open question over general fields.

2.6 The proof of Fermat’s Last Theorem

Suppose p ≥ 5 is prime, and a, b and c are non-zero pairwise coprime integers
satisfying (1) with n = p. We reorder (a, b, c) so that

b ≡ 0 (mod 2) and ap ≡ −1 (mod 4). (10)

We consider the Frey–Hellegouarch curve which depends on (a, b, c):

E : Y 2 = X(X − ap)(X + bp) (11)
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whose minimal discriminant and conductor are:

∆ = a2pb2pc2p

28 , N =
∏
`|∆

`.

Note that the conductor is square-free; conditions (10) ensure that 2 || N .
The 2-torsion subgroup of E is E[2] = {∞, (0, 0), (ap, 0), (−bp, 0)} ⊂ E(Q).
As p ≥ 5, we know by part (ii) of Mazur’s irreducibility theorem that ρE,p
is irreducible. Moreover, E is modular by the Modularity Theorem1, and so
the hypotheses of Ribet’s theorem are satisfied. We compute Np = 2 using
the recipe in (9). It follows that ρE,p ∼ ρg,p, where g has weight 2 and level
2. But there are no eigenforms of weight 2 and level 2, a contradiction.

2.6.1 Some Historical Remarks

In the early 1970s, Hellegouarch had the idea of associating to a non-trivial
solution of the Fermat equation the elliptic curve (11); he noted that the
number field generated by its p-torsion subgroup E[p] has surprisingly little
ramification. In the early 1980s, Frey observed that this elliptic curve enjoys
certain remarkable properties that should rule out its modularity. Motivated
by this, in 1985 Serre made precise his modularity conjecture and showed
that it implies Fermat’s Last Theorem. Serre’s remarkable paper [20] also
uses several variants of the Frey–Hellegouarch curve to link modularity to
other Diophantine problems. Ribet announced his level-lowering theorem
1987, showing that modularity of the Frey–Hellegouarch curve implies FLT.

3 Fermat’s Last Theorem over Number Fields

3.1 Historical background

Interest in the Fermat equation over various number fields goes back to the
19th and early 20th Century. For example, Dickson’s History of the Theory
of Numbers [4, pages 758 and 768] mentions extensions by Maillet (1897)
and Furtwängler (1910) of classical ideas of Kummer to the Fermat equation
xp + yp = zp (p > 3 prime) over the cyclotomic field Q(ζp). However, the
elementary, cyclotomic and Mordell–Weil approaches to the Fermat equa-
tion have had limited success. Indeed, even over Q, no combination of these

1In fact, we only need modularity of semistable elliptic curves over Q, i.e. those with
square-free conductor, which was the original modularity result proved by Wiles.
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approaches is known to yield a proof of FLT for infinitely many prime ex-
ponents p. It is therefore natural to attempt to carry Wiles’ proof over
to general number fields. The first work in this direction is due to Jarvis
and Meekin [12] who showed FLT holds for the field Q(

√
2). They further

analyzed the situation over other real quadratic fields to conclude that

“. . . the numerology required to generalise the work of Ribet and
Wiles directly continues to hold for Q(

√
2). . . there are no other

real quadratic fields for which this is true . . . ”

3.2 The asymptotic Fermat’s conjecture

Let K be a number field and OK its ring of integers. By the Fermat equation
with exponent p over K we mean

xp + yp + zp = 0, x, y, z ∈ OK . (12)

A solution (a, b, c) of (12) is called trivial if abc = 0, otherwise non-trivial.
Clearly, over any K there are trivial solutions, such as (1,−1, 0), but some-
times more, for example,

(18 + 17
√

2)3 + (18− 17
√

2)3 = 423,

(1 +
√
−7)4 + (1−

√
−7)4 = 24,

showing that the exact same statement as of FLT does not hold over Q(
√

2)
or Q(

√
−7). Instead it makes sense to consider the question only for large

enough exponents. More precisely, we will say that the asymptotic Fer-
mat’s Last Theorem over K holds if there is some bound BK such that
for prime p > BK , all solutions to the Fermat equation (12) are trivial.

Now let K = Q(
√
−3) and consider the element ω =

√
−3−1

2 . We have
that ω3 = 1 and it is easy to see that, for all primes p ≥ 5, the equality

ωp + (ω2)p + 1p = 0,

holds, hence the asymptotic FLT does not hold over Q(
√
−3).

Conjecture 1 (Asymptotic Fermat’s Conjecture) Let K be a number
field. If ω 6∈ K then the asymptotic FLT over K holds.
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4 The modular method over totally real fields
We restrict ourselves to totally real fields, i.e., number fields such that all
embeddings into C have image in R. This is a natural restriction, because
modularity related objects and questions are very poorly understood for
fields with at least one complex embedding, consequently all results about
FLT for such fields are conditional on two deep conjectures of the Langlands
program (see [19] for details). In contrast, for a totally real field K there
is a well established theory of Hilbert modular forms which are the natural
replacement for the modular forms over Q; it is not our objective to discuss
details of this theory here. The only thing to keep in mind is that they
satisfy the analogous properties over K to those described in §2.2 and that
modularity of elliptic curves over K can be defined by a correspondence with
Hilbert eigenforms, similar to the discussion in §2.3

In particular, since K is totally real, we have ω 6∈ K and we expect
the Asymptotic Fermat Conjecture to hold for K. To properly discuss the
challenges we face it helps to break the method into the following steps:

1. Constructing a Frey curve. Attach a Frey elliptic curve E/K to a
putative solution of (12).

2. Modularity. Prove modularity of E/K.

3. Irreducibility. Prove irreducibility of ρE,p, the mod p Galois repre-
sentation attached to E.

4. Level lowering. Conclude that ρE,p ∼ ρ̄f,p where f is a Hilbert ei-
genform over K of (parallel) weight 2 and level among finitely many
possibilities Ni. Here, ρ̄f,p denotes the mod p Galois representation
attached to f for some p | p in the field of coefficients Qf of f.

5. Contradiction. Compute all the eigenforms f predicted in Step 4 and
show that ρE,p 6∼ ρ̄f,p for all of them.

Suppose that a, b, c ∈ OK is a solution to (12) such that abc 6= 0. Since (12)
is equation (1) over K we consider in step 1 the classical Frey curve over K:

Ea,b,c : Y 2 = X(X − ap)(X + bp). (13)

4.1 The case of Q(
√

2)
Recall that steps 2–4 in the proof of FLT over Q are covered respectively by
the three remarkable theorems of Wiles, Mazur and Ribet. However, at the
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time of writing [12] only step 4 was known to hold over a general K (due
to the combined work of Jarvis, Rajae and Fijuwara [9, 10, 17]). To com-
plete the modularity step Jarvis and Meekin showed that, under some non-
restrictive assumptions on a, b, c (analogous to (10)), the curve Ea,b,c is semis-
table and its modularity followed by a result of Jarvis–Manoharmayum [11]
stating that all semistable elliptic curves over Q(

√
2) are modular. For the

irreducibility part they applied a criterion of Kraus [14] for p ≥ 17 and, fi-
nally, a contradiction follows because after completing step 4 there are again
no eigenforms.

4.2 The contradiction step

By looking at the proofs of FLT over Q and Q(
√

2), the reader may wonder
why is there a step 5, as the contradiction happens automatically. It turns
out these are the only cases where such convenient coincidence occurs. For
example, if the class number of K is > 1, we cannot assume coprimality of
a, b, c, and the Frey curve will not be semistable, consequently the levels
obtained after level lowering will have larger norms and, in general, there are
eigenforms at these levels. In fact, step 5 is nowadays the most difficult part
when applying the modular method to solve (12) or any other Diophantine
equation assuming, of course, that an associated Frey curve exists (i.e. step 1
can be done); unfortunately, there are only a few Diophantine equations
known to have attached Frey curves.

4.3 Modularity and Irreducibility

Although the modularity of the Frey curve was the hardest step in the proof
of FLT, nowadays we know it holds in full generality due to a result of
Freitas–Le Hung–Siksek [6].

Theorem 5 (F.–Le Hung–Siksek) Let K be a totally real field. Up to
isomorphism over K, there are at most finitely many non-modular elliptic
curves E over K.

Moreover, if K is quadratic, then all elliptic curves over K are modular.

Furthermore, in the recent work of Derickx–Najman–Siksek [5], modu-
larity of elliptic curves was extended to the case of totally real cubic fields.

Theorem 6 (Derickx–Najman–Siksek) All elliptic curves over totally
real cubic fields are modular.
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These modularity results have the following important consequence.

Corollary 4.1 Let K be a totally real field. There is some constant AK ,
depending only on K, such that for any non-trivial solution (a, b, c) of the
Fermat equation (12) with prime exponent p > AK , the Frey curve Ea,b,c
given by (13) is modular.

Moreover, if K is quadratic or cubic then AK = 0.

There is no irreducibility result for ρ̄E,p over K analogous to Mazur’s
theorem. Instead, we can derive the following result from the works of David
and Momose, who build on Merel’s Uniform Boundedness Theorem [16].

Theorem 7 Let K be a totally real field. There is a constant CK , depending
only on K, such that the following holds. If p > CK is prime, and E is an
elliptic curve over K with either good or multiplicative reduction at all q | p,
then ρE,p is irreducible.

4.4 A refined level lowering

The next step in the strategy is level lowering which is known to hold for
general K due to the combined work of Fujiwara, Jarvis and Rajaei. As
explained above, after applying level lowering, we will not obtain a contra-
diction due to the presence of eigenforms. Instead, the idea is to use finer
properties of the Frey curve Ea,b,c, to show that many of the eigenforms are
not a real obstruction.

Before proceeding, it is helpful here to make a comparison with the
equation xp + yp + Lαzp = 0 over Q, with L an odd prime and α a positive
integer, considered by Serre and Mazur [20, p. 204]. A non-trivial solution to
this latter equation gives rise, via modularity and level lowering, to a classical
weight 2 newform f of level 2L; for L ≥ 13 there are such eigenforms and we
face the same difficulty. Mazur however shows that if p is sufficiently large
then f corresponds to an elliptic curve E′ with full 2-torsion and conductor
2L, and by classifying such elliptic curves concludes that L is either a Fermat
or a Mersenne prime. To be able to transfer and refine Mazur’s argument to
our setting, we need the following conjecture, which is the opposite direction
to modularity and generalizes the Eichler–Shimura Theorem over Q.

Conjecture 2 (“Eichler–Shimura”) Let K be a totally real field. Let f
be a Hilbert newform of level N and parallel weight 2, and rational field of
coefficients. Then there is an elliptic curve Ef/K with conductor N having
the same L-function as f.
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We will also need some more notation. For K a totally real field, an element
x ∈ K and a prime ideal q in OK we write υq(x) to denote a q-adic valuation
of x. Moreover, let

S = {P : P is a prime ideal of OK dividing 2OK},
T = {P ∈ S : OK/P = F2}, U = {P ∈ S : 3 - υP(2)}.

(14)

We choose a set H of prime ideals m 6∈ S representing the elements in the
class group of K. We also need an assumption, which we refer to as (ES):

(ES)


either [K : Q] is odd;
or T 6= ∅;
or Conjecture 2 holds for K.

For a non-trivial solution (a, b, c) to the Fermat equation (12), let

Ga,b,c := aOK + bOK + cOK . (15)

Now Mazur’s argument adapted to our setting gives the following result.

Theorem 8 Let K be a totally real field satisfying (ES). There is a cons-
tant BK , depending only on K, such that the following holds. Let (a, b, c)
be a non-trivial solution to (12) with prime exponent p > BK , and rescale
(a, b, c) so that it remains integral and satisfies Ga,b,c = m for some m ∈ H.
Write E for the Frey curve (13). Then there is an elliptic curve E′ over K
such that

(i) the conductor of E′ is divisible only by primes in S ∪ {m};

(ii) #E′(K)[2] = 4;

(iii) ρE,p ∼ ρE′,p;

Write j′ for the j-invariant of E′. Then,

(a) for P ∈ T , we have υP(j′) < 0;

(b) for P ∈ U , we have either υP(j′) < 0 or 3 - υP(j′);

(c) for q /∈ S, we have υq(j′) ≥ 0.

In particular, E′ has potentially good reduction away from S.
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5 Results over totally real fields

5.1 S-unit equations

Assuming (ES), Theorem 8 implies that a non-trivial solution to the Fermat
equation over K with sufficiently large exponent p yields an elliptic curve
E′/K with full 2-torsion and potentially good reduction away from the set S
of primes above 2. There are such elliptic curves over every K, for example
the curve Y 2 = X3 −X, and so we still do not get a simple contradiction.
Note however that the latter elliptic curve does not satisfy conclusion (a)
of Theorem 8 when the field K is such that T 6= ∅, hence it is not an
obstruction in that case. An element x ∈ K is called an S-unit if υq(x) = 0
for all q 6∈ S. Using the fact that elliptic curves with full 2-torsion and
good reduction away from S are classified by solutions to S-unit equations,
we have the following result that describes when there are no E′/K as in
Theorem 8, and so no obstruction to the desired contradiction.

Theorem 9 (F.–Siksek) Let K be a totally real field satisfying (ES). Let
S, T and U be as in (14). Write O∗S for the group of S-units of K. Suppose
that for every solution (λ, µ) to the S-unit equation

λ+ µ = 1, λ, µ ∈ O∗S (16)

there is

(A) either some P ∈ T that satisfies max{|υP(λ)|, |υP(µ)|} ≤ 4 υP(2),

(B) or some P ∈ U that satisfies both max{|υP(λ)|, |υP(µ)|} ≤ 4 υP(2),
and υP(λµ) ≡ υP(2) (mod 3).

Then the asymptotic Fermat’s Last Theorem holds over K.

For all fields K, equation (16) has solutions in Q ∩ O∗S , namely (λ, µ) =
(2,−1), (−1, 2), (1/2, 1/2) which correspond to the elliptic curve Y 2 = X3−
X, however these solutions satisfy (A) if T 6= ∅ and (B) if U 6= ∅.

5.2 The quadratic case

In view of Theorem 9, we have to solve the S-unit equation (16) and test
the solutions in order to decide whether the asymptotic FLT holds over K.
There are algorithms that, in principle, could do that for each particular K,
but what is more interesting is to show that asymptotic FLT holds for infinite
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families of fields. For this we need to control the solutions to (16) over
varying fields. This can be very hard but, in the case of real quadratic
fields, we achieved considerable success, as illustrated by the following series
of theorems taken from the joint works with Siksek [7, 8].

Theorem 10 Let d ≥ 2 be square-free, such that d ≡ 6, 10 (mod 16) or
d ≡ 3 (mod 8). Then the asymptotic FLT holds over Q(

√
d).

Moreover, for d > 5 satisfying d ≡ 5 (mod 8), the same is true assuming
that Conjecture 2 holds over Q(

√
d).

There are other explicit congruence conditions on d for which asymptotic
FLT is known to hold over Q(

√
d) (see [7, Theorem 1]) and, moreover, there

are also real quadratic fields Q(
√
d) not given by a congruence condition on d

for which asymptotic FLT holds. We have the following density theorem.

Theorem 11 (F.–Siksek) The asymptotic FLT holds for a set of real qua-
dratic fields of density 5/6. Assuming Conjecture 2 this density becomes 1.

The following result shows that it is possible to optimize BK by ma-
king K concrete. In this case the proof does not pass through Theorem 9,
but instead one needs to optimize the exponent bound at every step of the
strategy, which raises other challenges not discussed here.

Theorem 12 (F.–Siksek) Let 3 ≤ d ≤ 23 be square-free and d 6= 5, 17 or
d = 79. Then, all solutions (a, b, c) to the equation

xp + yp + zp = 0, a, b, c ∈ Q(
√
d) p ≥ 5 prime

satisfy abc = 0. Moreover, the same is true over Q(
√

17) for half the expo-
nents, more precisely, for all primes p ≥ 5 such that p ≡ 3, 5 (mod 8).

5.2.1 FLT over Q(
√

5)

Note that the field Q(
√

5) is not covered by any of the theorems above and
indeed asymptotic FLT over Q(

√
5) seems to be a very hard open problem.

The main reason being that the modular method does not see the difference
between the Fermat equation (12) and its variant with unit coefficients

1 +
√

5
2 xp + 1−

√
5

2 yp + zp = 0

which has a solution (1, 1,−1). Nevertheless, the following result gives evi-
dence that FLT should be true over Q(

√
5), as predicted by Conjecture 1.

Theorem 13 (Kraus [13]) Let K = Q(
√

5) and p < 107 be a prime. Then
the Fermat equation with exponent p over K has only the trivial solutions.
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Abstract: These are notes for a very short introduction to some selected
topics on special Riemannian holonomy with a focus on Calabi-Yau and
G2-manifolds. No material in these notes is original and more on it can be
found in the papers/books of Bryant, Hitchin, Joyce and Salamon referenced
during the text.

keywords: Special Holonomy, Calabi-Yau, G2-manifold.

1 Introduction
Riemannian geometry is by now a well established and fundamental area of
mathematics with most undergraduate degrees worldwide having an intro-
ductory course on it, such as one on curves and surfaces. Despite this there
is still nothing like a classification of complete Riemannian manifolds and
instead one attempts to understand them from secondary invariants such as
their holonomy.

Given a n-dimensional Riemannian manifold (X,g) its Levi-Civita con-
nection yields a notion of parallel transport of tangent vectors along paths.
This has the property that it preserves the length and angles between paral-
lel transported vectors. When one fixes a point p and a loop γp based at that
point, the parallel transport along γp is an orthogonal linear transformation
γp : TpX → TpX of the tangent space TpX to X at p. The set of all such
linear transformations Holp(X) is a subgroup of the group the orthogonal
group O(TpX) called the holonomy group at p. If one fixes an orthogonal
basis of TpX, this may viewed as a subgroup of O(n) which changes by con-
jugation upon changing the base point p. Thus, from now on we shall forget
about the base point in the notation and simply refer to the holonomy group
as Hol(X) which we think of as a conjugacy class in O(n).

The classification of possible Riemannian holonomy groups was started
by Cartan’s algebraic classification of symmetric spaces [7, 8] in 1926. In
the nosymmetric case one may, by a theorem of de Rham, restrict to the
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86 Special Holonomy: Calabi–Yau and G2-Manifolds

class of Riemannian manifolds for which the holonomy representation is
irreducible, which are thus known as irreducible Riemannian manifolds. In
1953 Berger [2] compiled a set of restrictions which may be satisfied by
any possible holonomy group of a simply connected, irreducible Riemannian
manifold. The outcome is a list of these possible holonomy groups of these
Riemannian manifolds. It is headed by SO(n) which represents the generic
holonomy group, and followed by some “rarer” subgroups of SO(n) still
acting on Rn in an irreducible manner. The full list is the following:

Hol n=dim(X) Name
SO(n) n Orientable manifold
U(k) 2k Kähler manifold
SU(k) 2k Calabi–Yau manifold

Sp(k)·Sp(1) 4k Quaternion-Kähler manifold
Sp(k) 4k Hyperkähler manifold
G2 7 G2-manifold

Spin(7) 8 Spin(7) manifold

These other possible holonomy groups are known as special holonomy
groups and except for G2 and Spin(7) they all appear in infinite families.
For this reason G2 and Spin(7) are also called as the exceptional holonomy
groups.

Berger’s technique to cut the list down to only these groups is quite indi-
rect and consists in transforming what is apparently an integro-differential
problem of computing all the holonomies round loops into a local differen-
tial problem. The idea is to instead, classify the Lie algebra of the possible
Riemannian holonomy groups which by the Ambrose-Singer theorem can be
obtained from the values of the Riemann curvature tensor. Its symmetries
give restrictions on the possible Lie algebras and these are then integrated
by a unique simply connected Lie group. Clearly, this approach solely puts
restrictions on the possible holonomy groups and, at the time Berger’s list
appeared, it was not known whether all groups featuring it could actually
be realized as Riemannian holonomy groups. Nowadays, due to the efforts
of Aubin, Bryant, Calabi, Salamon and Yau together with several contribu-
tions from many others [4, 5, 20] we know that all these groups can actually
be realized as the holonomy groups of complete Riemannian metrics. How-
ever, most intricacies of their geometry and internal classification remain to
be understood at present yielding one of most active areas of research in
Riemannian geometry.
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In a somewhat perpendicular direction several of these geometries have
also appeared in the physics literature. Since the 1990’s, and also more
recently, Calabi–Yau and G2-manifolds have been attracting the interest of
physicists working in string and M-theory respectively. The main reason for
this is the possibility of using them in compactifications of these theories
which are supposed to produce realistic 4-dimensional versions of the phys-
ical world including the standard model of particle physics together with a
quantization of gravity.

These notes are a selected part of topics that are supposed to serve
as a modern, very quick, introduction to both these classes of manifolds
from a geometric structure point of view. In this setting, calibrations and
stable forms appear naturally and we use these in our approach to both
these classes of special holonomy Riemannian manifolds. This approach
mixes the points of view of Salamon, Harvey–Lawson and Hitchin which I
find very beautiful attractive. In trying to make the material as concise as
possible I have left a lot of relevant material out. This can be found in the
references given and finish this introduction by admitting that, perhaps, the
best contribution of this note is its brevity and mixed viewpoint.

Acknowledgments

I would like to thank the very helpful comments of an anonymous referee
which highly improved the readability of this text.
The author was supported by Fundação Serrapilheira 1812-27395, by CNPq
grants 428959/2018-0 and 307475/2018-2, and FAPERJ through the pro-
gram Jovem Cientista do Nosso Estado E-26/202.793/2019.

2 Calibrated Geometry and Holonomy
In these notes Xn will denote a smooth real n-dimensional manifold and
Fr(M) its principal GL(n,R)-frame bundle. When X is equipped with a
Riemannian metric g we will denote by FO(n) its principal O(n)-bundle.

2.1 Geometric Structures

Definition 1. Let G ⊂ GL(n,R) be a Lie group, a G-structure on X, de-
noted by P , is a principal G-subbundle of Fr(X).
Proposition 1 (weak Holonomy Principle). There is a one to one corre-
spondence between sections of the bundle Fr(X)×GL(n,R)GL(n,R)/G and
G-structures on X.
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Proof. We shall only sketch the idea, for a full proof see page 11 in [18].
Let x ∈ X, then each point in the fibre Px gives an identification TxX ∼=
V := Rn. If η0 ∈ V ⊗r⊗ (V ∗)⊗s is G-invariant, we can define ηx ∈ (TxX)⊗r⊗
(T ∗xX)⊗s to equal η0 using any of the identifications TxX ∼= V given by the
points of Px. This gives a well defined tensor η over the whole X.
Conversely, if η is a section of the bundle Fr(X)×GL(n,R)GL(n,R)/G, then
one can define the G-structure P which stabilizes η.

Example 1. 1. A Riemannian metric defines the O(n)-structure, de-
noted FO(n).

2. An almost complex structure defines a GL(n/2,C)-structure.

When G ⊂ O(n) and P is a G-structure one defines the O(n)-bundle
FO(n) = P ×G O(n). A connection ∇ on P induces one on TX whose
torsion T∇ ∈ Ω2(X,TX) is by definition

T∇(V,W ) =∇VW −∇WV − [V,W ].

Given any two connections ∇,∇′ as above, ∇′ =∇+a with a ∈ Ω1(X,gP )
where gP = P ×G g⊂ so(TX). Then it is easy to compute that T∇′ = T∇+
δ(a), where δ is a section of Hom(T ∗X⊗gP ,Λ2X⊗TX).
Notice that since g ⊂ so(n) ∼= Λ2Rn, the map δ is injective and in order to
get rid of the dependence on the connection we can define the reduced map
[T∇] with values in coker(δ). This is usually called the intrinsic torsion (or
the structure function of the G-structure P ). The following result is an
immediate consequence of this construction.

Lemma 1. Let (X,g) be a Riemannian manifold and G ⊂ O(n) a G-
structure P ⊂ FO(n). Then, there is a connection ∇ on P inducing the
Levi–Civita connection of g on M if and only if the reduced map [T∇] van-
ishes. Such a G-structure is said to be integrable.

An immediate corollary of this construction is the next result, for which
more details can be found in page 14 of [18].

Corollary 1 (Holonomy Principle). Let (X,g) be a Riemannian manifold
and x ∈X. Then, any ηx ∈ Ω0(X,(TxX)⊗r⊗ (T ∗xX)⊗s) which is preserved
by the holonomy at x of the Levi–Civita connection ∇LC is the value at x of
a ∇LC-parallel tensor field η.
Moreover, in this situation the G = Hol-structure P determined by η via
the weak holonomy principle is equipped with a connection ∇ inducing ∇LC .
Equivalently, there is a ∇LC-parallel embedding of P into FO(n).
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Remark 1. In general, a similar principle holds for any vector bundle with
a connection.

Let G ⊂ SO(n) and P a G-structure on (X,g), then G acts on the dif-
ferential forms and splits these as irreducible representations as Λk =⊕iΛki .
Moreover, the Hodge-∗ is an isomorphism of G-representations Λki ∼= Λn−ki .
These are the essential observations leading to the following Theorem of
Chern, [9].

Theorem 1. Let P be a G-structure on (X,g) as above and assume it has
vanishing intrinsic torsion. Then, there is a metric g such that if Hk denotes
the harmonic k-forms, there is a splitting

Hk =⊕iHki ,

and isomorphisms Hki ∼= H
j
i if the corresponding Λki ∼= Λji are isomorphic

representations.

Proof. Since P has vanishing intrinsic torsion, there is a metric g whose Levi
Civita connection ∇ is induced by a connection on P . Thus, ∇ preserves
the embedding P ↪→ FSO(n) = P ×G SO(n) and so for β ∈ Ωk

i , we have
∇β ∈ Ω0(X,T ∗X ⊗Λki ) and ∇∗∇β ∈ Ωk

i . Having in mind that there is a
Weitzenböck type formula

∆β =∇∗∇β+R(β),

where R is an algebraic operator computed in terms of the curvature tensor
R ∈ Ω0(X,S2hol). Since hol ⊂ g and the fact that R ∈ Ω0(X,hol), it fol-
lows that R(β) ∈ Ωk

i . Hence, the Laplacian ∆ preserves the splitting into
irreducible representations which then passes on to the harmonic forms.
Moreover, one can show that ∇∗∇ and R only depend on the representation
in which they are acting and not on the specific degree of the differential
form which concludes the proof of the statement.

Lemma 2. If G⊂ SO(n) is simply connected any a G-structure canonically
lifts to a Spin-structure.

Proof. Since G is simply connected there is a unique lift of the inclusion
of G in SO(n) to an inclusion G ↪→ Spin(n). Using this one can construct
F̂ = P ×G Spin(n) and the projection Spin(n)→ SO(n) gives a canonical
map F̂ →FSO(n) =P×GSO(n). Hence F̂ is a Spin structure on (X,g).
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2.2 Stable Forms and Calibrations

In this section we shall review the notion of a stable form following Hitchin
in [12] and [14]. Then, we shall see how some calibrations yield examples of
such stable forms. Finally, we relate these to special Riemannian holonomy.

Definition 2. Let V n be a real n dimensional vector space, η ∈ ΛpV ∗ is a
stable p-form if its GL(V )-orbit in ΛpV is open.

Example 2. 1. n = 2m, m ∈ N and p = 2. Then, (V,η) is a symplectic
vector space and the stabilizer of η is Sp(2m,R).

2. n= 6 and p= 3. There is an open orbit of GL(6,R) on Λ3V such than
all η lying on it have stabilizer SL(3,C). Such an η induces a complex
structure on V with respect to which η is of type (3,0) + (0,3).

3. n = 7 and p = 3. There are two open orbits of the GL(7,R) on Λ3V ,
for η in one of those the stabilizer is compact group G2.

4. n= 8 and p= 3, there is an open orbit with stabilizer PSU(3).

In all the examples above the stabilizer preserves a volume form on the
respective vector space. In fact, as observed by Hitchin in [12, 14], one has
the following result.

Proposition 2. There is a GL(V )-equivariant homogeneous function

φ : ΛpV ∗→ ΛnV ∗,

of degree n
p . For each η ∈ΛpV ∗, there is a unique η̂, such that the derivative

dηφ : ΛpV ∗→ ΛnV ∗ is given by

dηφ(η̇) = η̂∧ η̇,

for η̇ ∈ ΛpV ∗ and moreover φ(η) = p
nη∧ η̂.

Proof. The existence of the GL(V ) equivariant function φ follows from the
fact that all isotropy subgroups of such η preserve a volume form on V . The
GL(V ) invariance for scalar matrices λ1, with λ ∈ R, shows that φ(λpη) =
λnφ(η) and so φ is homogeneous of degree n/p.
The derivative dφ is linear and an element of (ΛpV ∗)∗⊗ΛnV ∗ ∼= Λn−pV ∗.
Hence, there is a unique η̂ with the properties stated, and the last statement
that φ(η) = p

nη∧ η̂ follows from Euler’s formula

dφ= n

p
φ

for homogeneous functions.
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Example 3. 1. n= 2m and p= 2, η is a symplectic form and η̂= ηm−1

(m−1)! .

2. n= 6 and p= 3, η+iη̂ is a form of type (3,0), for the complex structure
determined by η.

3. n = 7 and p = 3, the stabilizer of η is G2, which is a compact group.
So the volume form φ(η) preserved by G2 is the volume form of an
invariant metric on V . Using this metric one obtains η̂ = ∗η.

4. n = 8 and p = 3, the stabilizer PSU(3) is also compact and the same
discussion goes on with η̂ =−∗η.

Definition 3. If g is a metric on an oriented vector space V and {ei}ni=1
an orthonormal basis, then a p-form θ ∈ ΛpV ∗ is said to be a calibration if

|θ(ei1 , ...,eik)| ≤ 1,

for all i1, ..., ik ∈ {1, ...,n}, i.e. if its comass is smaller or equal than 1.

Equivalently, θ is a calibration on (V,g), if and only if for all p-
dimensional oriented subspaces W ⊂ V

θ|W ≤ volW , (1)

where volW is the volume form of the metric g|W induced on W , by g.

Definition 4. Let (V,g) be a vector space with metric and θ ∈ ΛpV ∗ a
calibration on V . A subspace W ⊂ V is said to be calibrated by θ is θ|W =
volW , i.e. if equality is attained in the inequality 1.

This discussion can be globalized in Harvey–Lawson’s notion of a cali-
bration [13].

Definition 5. Let Xn be a real n-dimensional smooth manifold and η ∈
Ω(X,R) a p-form is said to be stable if for all p ∈X ηp ∈ ΛpTpX is a stable
form.
If (X,g) is an oriented Riemannian manifold and θ ∈ Ωp(X,R) is closed,
then θ is called a calibration on (X,g), if for all x ∈X, θx is a calibration
on (TxX,gx). A submanifold N ⊂X is said to be calibrated by θ is for all
x ∈N , TxN ⊂ TxX is calibrated by θx.

The construction from proposition 2 gives a volume form on M , whose
volume defines the Hitchin functional

Φ(η) =
∫
X
φ(η) ∈ R∪∞. (2)
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Notice that the existence of a stable p form η on Mn reduces the structure
group of the tangent bundle to the isotropy subgroup of the form η. A natu-
ral question is if there is any relation between these reductions and possible
reductions of the holonomy group of a special metric on M , determined by
η.

Proposition 3. If X is compact, and [η] ∈Hp(X,R) is a fixed cohomology
class. Then Hitchin’s functional gives a well defined function

Φ : [η]→ R,

whose critical points are the η ∈ [η] with dη̂ = 0.

Proof. Let η ∈ [η] be a critical point, since the variation is in the fixed
cohomology class [η] all tangent vectors are exact forms dα. So for all
α ∈ Ωp−1(X,R)

0 = dΦη(dα) =
∫
X
η̂∧dα=

∫
X
dη̂∧α,

which shows that if η̂ is a critical point then dη̂ = 0. Conversely, the same
computation also shows that if dη̂ = 0, then η̂ is a critical point.

Example 4. 1. n = 2m and p = 2, (X,η) is a symplectic manifold and
dη̂ = 0 always. (X,ω) with ω = η can be equipped with a metric g and
compatible almost complex structure I. Then, for all k ≤ n, ωk

k! has
comass ≤ 1 and is closed and so a calibration. Submanifolds N2k cal-
ibrated by ωk

k! are symplectic (or almost complex) submanifolds.
If ∇I = 0 the complex structure is integrable and the metric has holon-
omy contained in U(n). Then (X,I,η) is a Kähler manifold and the
ωk

k! -calibrated submanifolds are complex submanifolds.

2. n= 6 and p= 3, then η+ iη̂ equips X with an almost complex structure
for which η+ iη̂ is of type (3,0). If η is a critical point of Hitchin’s
functional, then ∂(η+ iη̂) = 0 and so the complex structure is inte-
grable. Since η+ iη̂ is a nonvanishing holomorphic volume form, X
has trivial canonical bundle.
If (X,ω,Ω = Ω1 + iΩ2) is a Calabi–Yau 3-fold, then in particular it
is Kähler and choosing η = ω the example above gives a reduction of
the holonomy to U(3). Moreover, choosing η = Ω1, gives this precise
example and ∇Ω = 0, which reduces the holonomy to SL(3,C) and so
the holonomy of the metric is contained in SU(3) = U(3)∩SL(3,C).
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In this case both Ω1 = η and Ω2 = η̂ are calibrations and submanifolds
N3 calibrated by them are called special Lagrangian submanifolds of
phase 0, π2 respectively.

3. n= 7 and p= 3, the stable form η is a critical point of Hitchin’s func-
tional if

dη = d∗η = 0,
for the metric on M determined by η. Indeed, by a result of Fernández
and Gray [11] this is equivalent to ∇η = 0, which is to say the Holon-
omy of the metric is contained in G2, by the Holonomy principle. In
this case one usually uses the notation η = φ, η̂ = ∗φ= ψ and (X,φ) is
called a G2-manifold. Both φ and ψ are calibrations and submanifolds
calibrated by them are respectively called associative and coassociative.

In the examples above only for the case n = 7, the stable form η deter-
mines a metric with reduced holonomy (in fact G2 which an exceptional Lie
group appearing in Berger’s list). This is because the holonomy group of any
oriented Riemannian manifold must be a subgroup of SO(n) by the holon-
omy principle, and both Sp(2m,R) and SL(3,C) are non-compact groups.
Proposition 4. Let (Xn,g) be a Riemannian manifold equipped with a cal-
ibration θ ∈ Ωp(X,R). If Np ⊂X is compact and calibrated by θ, then N is
volume minimizing in its homology class [N ] ∈Hp(X,R).
Proof. LetN ′ ∈ [N ] be cohomologous toN , then there is Sp+1 with ∂S=N∪
(−N ′) (with orientations) and Stokes theorem gives

∫
N θ−

∫
N ′ θ =

∫
S dθ = 0.

Now the result follows from applying this and the definition of calibration
to the following one line calculation

vol(N ′) =
∫
N ′
volN ′ ≥

∫
N ′
θ =

∫
N
θ =

∫
N
volN = vol(N). (3)

Notice that the equation for a calibrated submanifold is a first order
PDE, while being minimal is a second order one (the Euler Lagrange equa-
tions for critical points of the volume functional). This is an analogous
situation to that of many gauge theories as for example the relation be-
tween ASD connections and the Yang Mills equations for connections on
bundles over 4 manifolds. See [10, 19] for some higher dimensional gauge
theories mimicking these.

We shall now change gears and focus on the more concrete cases of
Calabi–Yau and G2-manifolds. The interested reader can find a lot more
about these for example in [6, 17, 18] and references therein.
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3 Calabi–Yau Manifolds
On a Kähler manifold (Xn,g,ω) we shall implicitly always consider complex
structure I determined by g and ω. The next proposition relates the Ricci
tensor and the holomorphic triviality of the canonical bundle KX = Λn,0C X
to the holonomy of the underlying Kähler metric.

Proposition 5. A Kähler manifold (Xn,g,ω) with n= 2m is Ricci flat with
trivial canonical bundle KX if and only if the holonomy of the Kähler metric
on X is contained in SU(m).

In any case X is a Ricci flat Kähler manifold with trivial canonical bun-
dle KX and there is a unique (up to phase) holomorphic volume form Ω
satisfying

ωm

m! = (−1)
m(m−1)

2

(
i

2

)m
Ω∧Ω, (4)

which trivializes KX .

Proof. The Ricci form ρ(·, ·) = Ric(·, I·) is the curvature of the connection
on KX induced via the Levi Civita connection on the holomorphic tangent
bundle. First suppose that X is Ricci flat and KX trivial (this a necessary
assumption if X is not simply connected). Ricci flatness gives that ρ = 0,
while the triviality of KX guarantees not only that c1(X) = 0 ∈H2(X,Z),
but that the element in the Jacobian representing KX is trivial. Hence, the
connection has no periods and there is an holomorphic trivializing section
of KX , i.e. there is a (n,0)-form Ω such that ∂Ω = 0. This implies it is
parallel and so by the holonomy principle (corollary 1) the Kähler metric
has holonomy contained in SU(m).
The converse statement also follows from the holonomy principle since if
the holonomy is contained in SU(m), then there are nonzero parallel forms
ω ∈Ω2(X,R) and Ω∈Ω3,0(X,C) (unique up to phase) satisfying the relation
4 in the statement. Since ∇Ω = 0, then also ∂Ω = 0 and so it is holomorphic
and trivializes KX . Then, c1(X) = 0 and the definition of curvature also
gives ρ(Ω) = d∇∇Ω = 0, and as Ω is nonvanishing ρ = 0, i.e. the metric is
Ricci flat, which is the same thing as saying that the connection on KX

induced by the Levi Civita one is flat.

Remark 2. If X is Ricci-flat Kähler and simply connected, then KX is au-
tomatically trivial and the holonomy contained in SU(m). This follows from
the fact that ρ= 0 and so the Levi Civita connection equips KX with a flat
connection. These are parametrized by Hom(π1(X),U(1)), which vanishes
as X is simply connected. Then KX is trivial and proposition 5 shows the
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holonomy is in SU(m).
When X is not simply connected there are counterexamples to this state-
ment. For example an Enriques surface is a Ricci flat Kähler manifold
with c1(X) a torsion class in H2(X,Z). In this case KX is not trivial
and the flat connection can be seen as an element of Hom(π1(X),U(1)) =
Hom(H1(X),U(1)) = H1(X,U(1)), uniquely determined by the Hermitian
metric on KX via Chern’s construction.

Definition 6. A Calabi–Yau manifold (X,ω,Ω) is a Ricci flat, Kähler man-
ifold (X,ω) with trivial canonical bundle and a choice of holomorphic volume
form Ω ∈ Ω3,0(X,C) satisfying equation 4.

According to this definition Calabi–Yau manifolds will have holonomy
contained in SU(m). Some authors require the holonomy to be exactly
SU(m) and here these will be called irreducible Calabi–Yau manifolds. The
question of existence of Calabi–Yau manifolds can be attacked directly by
explicitly constructing the metric as is done in several noncompact examples
or by PDE methods in both cases compact and noncompact. In line with
the second of these, we have Yau’s proof of the Calabi conjecture, [20], which
states the following.

Theorem 2. Let X be a compact complex manifold with c1(X) = 0 in
H2(X,R), then in all Kähler classes in X, there is a unique Ricci-flat Kähler
metric.

The Calabi Conjecture, so called by having been proposed by Calabi
years before Yau completed its proof in [20], asserts the existence of many
compact Calabi–Yau manifolds. For example, if X is a complex manifold
with c1(X) = 0, π1(X) = 0 and which admits Kähler classes, then combining
the Calabi conjecture 2 with proposition 5, there is a Calabi–Yau structure
on each Kähler class of X.

Remark 3. The Enriques surface from remark 2 is not a Calabi–Yau man-
ifold according to definition 6, as it has nontrivial canonical bundle. How-
ever, the Calabi conjecture stated as Theorem 2, proves the existence of a
Ricci-flat Kähler metric on the Enriques surface.

The next results explore some properties of Calabi–Yau manifolds.

Proposition 6. Let (X,ω,Ω) be a compact Calabi–Yau manifold. Then
there is a finite cover X̃ of X, which is biholomorphic to the product of
T 2k×Y , where T 2k is a real 2k dimensional torus and Y a complex mani-
fold with c1(Y ) = 0.
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If (X,ω,Ω) is further assumed to be irreducible, then it has finite fundamen-
tal group.

Proof. Calabi–Yau manifolds are Ricci flat and so the Cheeger Gromoll split-
ting theorem applies and for each 2k linearly independent parallel 1 forms,
there is a T 2k splitting off. As both the complex torus and X have vanishing
first Chern class so must be for Y .
Now suppose X is irreducible, then it cannot have any parallel 1 form as this
would make the Holonomy to be strictly contained in SU(m). Moreover, for
Ricci flat manifolds there is a Weitzenböck formula

‖∇α‖= 〈α,∆α〉,

which shows that each harmonic 1 form gives rise to a parallel 1 form. Hence
there can be no harmonic 1-forms and this forces the fundamental group of
X to be finite.

Remark 4. A version of this result also holds in the noncompact case, there
one may have to let some of the torus directions to be noncompact (i.e. R)
and Y may be noncompact as well.

Proposition 7. Let (X,ω,Ω) be a compact Calabi–Yau manifold, then for
i ∈ {1, ...,m−1}

dim(H i,0(X,C))≤ m!
i!(m− i)! .

If (X,ω,Ω) is further assumed to be irreducible, then

H0,0(X,C) = 1
Hm,m(X,C) = 1
H i,0(X,C) = 0, i ∈ 1, ...,m−1.

Proof. For i = 1, ...,m− 1, let α ∈ Ωi,0 be a representative of a class in
H i,0(X,C) and recall that Calabi–Yau manifolds are Ricci flat. Then as
in the proof of proposition 6, the Weitzenböck formula is ‖∇α‖ = 〈α,∆α〉.
Moreover, the Kähler identities imply that ∆α= 2∂∗∂α= 01 and α is then
parallel. In the general case, the maximum number of linearly independent
of these is then the dimension of Λi,0Cn, which is precisely m!

i!(m−i)! . In the
irreducible case there can be no nonzero parallel (i,0) forms as this would
reduce the holonomy to be strictly contained in SU(m).

1Notice that ∂∗
α= 0 as α is of type (i,0).
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Remark 5. There is an alternative argument using the maximum princi-
ple which can be used in noncompact Ricci flat manifolds. This proves for
example for noncompact irreducible Calabi–Yau manifolds there can be no
decaying harmonic (i,0) forms.

Proposition 8. Let (X,ω,Ω) be a compact and irreducible Calabi–Yau man-
ifold of real dimension n= 2m≥ 6. Then Xm is a projective algebraic vari-
ety.

Proof. Since m ≥ 3 and (X,ω,Ω) is irreducible, proposition 7 gives that
h2,0 = 0 and so H2(X,C) = H1,1(X,C). Then, the image of H2(X,Z)→
H1,1(X,C) is nonempty and one can pick a positive class α there. Associated
to this class there is a positive holomorphic line bundle L with c1(L) =α and
the Kodaira Embedding theorem provides an embedding X ↪→CPh0(X,Lk)−1,
for sufficiently large k ∈ N.

4 G2-Manifolds
Let X7 be a 7 dimensional manifold and denote by Λ3

+ the bundle of stable
3 forms over X and by Ω3

+ its sections. Given φ ∈ Ω3
+, then at any point

p ∈X the stabilizer of φp in GL(7,R) is conjugate to G2 (as defined in the
third item of example 2). Given such a section, it determines via the weak
holonomy principle a G2 structure, which itself determines via lemma 2 a
Spin-structure on (X7,g). In fact, for G2-structures the converse also holds.

Proposition 9. A 7-dimensional oriented Riemannian manifold (X7,g) ad-
mits a G2-structure if and only if it is Spin.

Proof. Since G2 is simply connected, given a G2-structure lemma 2 guaran-
tees the existence of a Spin structure F̂ . To prove the converse let F̂ denote
a Spin bundle and ∆ the standard irreducible Spin(7) representation, then
rkR∆ = 8. Moreover, Spin(7) acts transitively on S7 with stabilizer G2, so
it is enough to find a unit section of the bundle of spinors S = F̂ ×Spin(7) ∆.
Since this bundle has rank 8> 7 there is a nowhere vanishing section of S,
which we can normalize to have norm 1. Then the weak holonomy principle
determines a G2-structure.

Definition 7. Let (X7,φ) be as above and φ ∈ Ω3
+. Then φ and g are

compatible if for all vector fields V,W , ιV φ∧ ιWφ∧φ= 6g(V,W )gdvolg.
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Definition 8. A G2-manifold (X,φ) is a real 7 dimensional Riemannian
manifold (X7,g), equipped with a compatible G2-structure φ ∈ Ω3

+ such that
∇φ= 0.

From the Holonomy Principle a G2-manifold has holonomy contained in
G2, when the holonomy is the full G2 one says that (X,φ) is an irreducible
G2-manifold. We shall now go on to investigate some topological and geo-
metric properties of (irreducible) G2-manifolds starting with the following
of Fernández and Gray [11].

Theorem 3. Let (X7,g) be a Riemannian 7 dimensional manifold equipped
with a stable 3 form φ compatible with g, the following are equivalent

1. ∇φ= 0,

2. dφ= d∗φ= 0,

3. The holonomy of g is contained in G2.

Proof. The holonomy principle (corollary 1) implies that the holonomy
of g is in G2 if and only if ∇φ = 0; and so it is enough to prove that
the first two items are equivalent. In one direction this is obvious since
∇φ ∈ Ω0(X,T ∗X ⊗T ∗X) and both dφ and d∗φ are obtained from ∇φ by
composition with algebraic operators, respectively the anti-symmetrization
map ∧ ∈ Hom(T ∗X ⊗T ∗X,Λ2X) and the trace with respect to metric g,
trg ∈Hom(T ∗X⊗T ∗X,Λ0). So if ∇φ= 0, then both dφ and d∗φ vanish.
In the opposite direction, suppose dφ= d∗φ= 0, and to proceed we need to
investigate ∇φ with more scrutiny. The intrinsic torsion of the G2-structure
determined by φ is ∇φ, seen as a section of coker(δ), where δ is the map de-
fined in the discussion preceeding Lemma 1. Recall that this bundle is mod-
eled on V ∗⊗g⊥2 , where g⊥2 ⊂ so(7) and V ∼=R7 is the standard 7 dimensional
representation of g2. By an abuse of language we shall say ∇φ is modeled
on V ∗⊗g⊥2 . Notice that so(7)∼= Λ2V ∼= Λ2

7⊕Λ2
14 with Λ2

7
∼= V ∗ and Λ2

14
∼= g2.

We conclude that g⊥2 ∼= V ∗ and so ∇φ is a section of V ∗⊗V ∗ ∼= Λ2V ⊕S2V .
In fact this further decomposes into

V ∗⊗V ∗ ∼= (V ∗⊕g2)⊕
(
S2

0V ⊕R
)
, (5)

where R is the trivial representation, and it follows from highest weight
theory that S2

0V is irreducible of dimension 27. Hence, the decomposition
above is irreducible.
Next, dφ is modeled on Λ4V ∼= Λ3V , which decomposes into irreducible
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components as R⊕V ⊕S2
0V . Since 0 = dφ= ∧◦∇φ and ∧ is a morphism of

representations and is surjective, it follows that ∇φ has values in the the g2
component of the decomposition in 5.
Next we analyse the vanishing of d∗φ which is modeled on Λ2V ∼= V ⊗ g2.
In the same way as before 0 = d∗φ= trg(∇φ) and since trg is also a surjec-
tive morphism of representations the component of ∇φ in g2 also vanishes.
Combined with dφ = 0 this shows that ∇φ = 0 and completes the proof of
the statement.

Comparing the second point above with proposition 3, more specifically
the third item in example 4 shows that G2-manifolds are (in the compact
case) critical points of Hitchin’s functional. In fact, they have maximal
volume with respect to local variations of the 3 form φ. Next, we shall give
a modern proof of the following Theorem of Bonan [3].

Theorem 4. Let (X7,g) be a G2-manifold, then g is Ricci flat.

Proof. Denote by P ⊂ FSO(n) the G2 structure and by R ∈ Ω0(X,S2gP )
the Riemann curvature tensor of g. Using highest weight theory we can
decompose the space of algebraic curvature tensors into irreducible repre-
sentations. We start by decomposing

S2g2 ∼=W0,0⊕W2,0⊕W0,2, (6)

where W0,0 ∼= R is the trivial irreducible representation and the (n,k) ∈ Z2

are labeling the weights, so that W1,0 ∼= V and W0,1 ∼= g2. Moreover, the
first Bianchi identity states that R ∈ ker(b), where

b : S2(V ∗)→ Λ3V ∗⊗V ∗

is the Bianchi map which antisymmetrizes the first three entries. However
ker(b) = ker(b : S2(g2)→ Λ4V ). Decompose the right hand side into irre-
ducibles Λ4V ∼=W0,0⊕W1,0⊕W2,0 and compare with the relation 6. In fact,
the Bianchi map is a morphism of G2-representations and is injective on
W0,0 and W2,0 ∼= S2

0V
∗, so we conclude that the kernel of the Bianchi map is

the 77 simensional piece W0,2. Hence the Riemannian curvature tensor has
values on W0,2 (this result is attributed to Alexeevski [1]).
We now use this information in order to analyze the Ricci tensor Ric, which
has values on S2(V ∗). It is obtained from R via Ric= r(R), where

r :W0,2→ S2(V ∗)
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is the Ricci contraction, mapping a curvature tensor to a symmetric, bilin-
ear form. This is also a morphism of G2 representations and since S2(V ∗)
decomposes into irreducible components as W0,0⊕W2,0, r must vanish iden-
tically and so does Ric.

G2-manifolds are Ricci flat (theorem 4) and a similar application of the
Cheeger-Gromoll splitting theorem and the Böchner technique, to the one
used for Calabi–Yau manifolds in Prposition 6 gives the following two propo-
sitions

Proposition 10. Let (X,g) be a compact G2-manifold. Then, there is a
finite cover X̃ of X, which is isometric to T 7−k × Y k, where T 7−k is a
torus and Y k is k dimensional manifold equipped with a Ricci flat metric.
Moreover, if (X,φ) is further supposed to be irreducible, then it has finite
fundamental group.

Proposition 11. Let (X,g) be a simply connected G2-manifold, then (X,g)
is irreducible, i.e. Hol =G2 if and only if there are no parallel 1-forms.

Proof. Since (X,g) is a G2-manifold the holonomy is contained in G2 and g
is Ricci flat. Hence, if there is a parallel one form one can use the flow of
the associated Killing field, which is parallel by the Bochner formula, to find
a line and use the Cheeger-Gromoll splitting theorem to write X = Rt×Y 6

with the cylindrical metric g = dt2 + g6. In this case Hol(g) = Hol(g6) ⊂
G2∩ (1×SO(6))∼= 1×SU(3), which is properly contained in G2.
In the opposite direction we prove that if the holonomy Hol is properly
contained in G2 then there is a parallel 1-form. First we analyze the case
where (X,g) is locally symmetric. If this is the case, then since from Bonan’s
theorem 4 is Ricci flat and locally symmetric it must actually be flat. If
(X,g) is not locally symmetric and Hol is a proper subgroup of G2 we
can invoke Berger’s theorem [2] to conclude that Hol is either 1×SU(3),
SO(3)×SU(2), 13×SU(2) or 17. In each of these cases there is a local
splitting U = U1×U2 and g|U = g1 +g2, where U1 is at most 3 dimensional
and Ricci flat and so flat. So the case SO(3)×SU(2) actually has to reduce
to 13×SU(2) and in all the cases there is a locally flat factor, then since X
is simply connected there is a global parallel one form.

Remark 6. Notice that in the first direction the condition that X is simply
connected is not used. Hence it is true that for (X,g) an irreducible G2-
manifold there are no parallel 1-forms.
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Proposition 12. Let (X,φ) be a G2-manifold, then the exterior bundle
splits orthogonally as

Λ1 = Λ1
7

Λ2 = Λ2
7⊕Λ2

14

Λ3 = Λ3
1⊕Λ3

7⊕Λ3
27,

where the subscript indicates the rank of the component and these compo-
nents are such that for ψ = ∗φ

Λ2
7 = {ιV φ,V ∈ Γ(TX)}= {β | ∗ (β∧φ) = 2ω}

Λ2
14 = {β | β∧ψ = 0}= {β | ∗ (β∧φ) =−β}

Λ3
1 = 〈φ〉

Λ2
7 = {ιV ψ,V ∈ Γ(TX)}

Λ3
27 = {β | β∧ψ = 0 and β∧φ= 0}.

Moreover if β is a 2-form and π7,π14 denote the respective projections on
the irreducible components, then the following algebraic identities hold

∗(∗(β∧ψ)∧ψ) = 3π7(β) (7)
∗(β∧φ) = 2π7(β)−π14(β). (8)

It follows from Chern’s theorem 1 that on a G2-manifold the Laplacian
∆φ preserves the decomposition of the spaces of differential forms into irre-
ducible G2 representations. Hence, the decomposition above still holds at
the level of Harmonic forms.

Corollary 2. Let (X,φ) be a G2-manifold, then the spaces of harmonic
forms H∗ decompose into irreducible representations as

H1 = H1
7

H2 = H2
7⊕H2

14

H3 = H3
1⊕H3

7⊕H3
27,

and there are isomorphisms H1 ∼=H2
7
∼=H3

7. In particular, if X is compact
this induces a splitting of the de Rham cohomology.

We can combine corollary 2 to Chern’s theorem with proposition 11 to
investigate further the topology of irreducible G2-manifolds.
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Proposition 13. Let (X7,g) be an irreducible G2-manifold, then the spaces
of harmonic forms H∗ decompose into irreducible representations as

H1 = 0
H2 = H2

14

H3 = H3
1⊕H3

27.

In particular, if X is compact then b1 = 0, b2 = b2
14 and b3 = 1 + b3

27.

Proof. The irreducibility condition, i.e. that Hol = G2 implies via remark
6 that there are no parallel 1 forms. Since Ric = 0 by Bonan’s theorem 4,
there is a Weitzenböck formula ∇∗∇α = ∆α for all 1-forms α. Combining
this with corollary 2 gives the decomposition of the harmonic forms in the
statement. In the particular case when X is compact, the result follows from
Hodge theory.

Remark 7. In particular, this further proves that a compact, irreducible
G2-manifold has finite fundamental group.

Now we will focus on compact G2-manifolds which were first constructed
by Dominic Joyce [15, 16], see also [17] for a summary of this first construc-
tion. On these we shall construct a quadratic form on the second cohomol-
ogy which can be used to identify a constraint on the first Pontryagin class
p1(X) ∈H4(X,R) of a compact, irreducible G2-manifold.

Definition 9. Let (X,g) be a compact G2-manifold and define the bilinear
form Q on H2(X,R) given by

Q(α,β) = 〈α∪β∪ [φ], [X]〉.

Lemma 3. Let (X,g) be a compact, irreducible G2-manifold. Then, the
quadratic form on H2(X,R) given by α 7→Q(α,α) is negative definite.

Proof. Let a ∈ α 6= 0 be the harmonic representative, then by proposition
13 it follows that a= π14(a), i.e. π7(a) = 0. Moreover, using equation 8 one
has

a∧a∧φ=−π14(a)∧∗π14(a) =−|a|2 dvol,

hence Q(α,α) =−
∫
X |a|2 dvol< 0.

Proposition 14. Let (X,g) be a compact, irreducible G2-manifold, then
〈p1(X)∪ [φ], [X]〉 ≤ 0.
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Proof. Let R denote the curvature of the Levi-Civita connection of g. In a
local trivialization R ∈ Ω2

14⊗g2 and g2 ⊂ so(4), i.e. it is represented by an
antisymmetric matrix Rij of forms in Ω2

14. Then, p1(X)∪ [φ] is represented
by

tr(R∧R)∧φ=
∑
i,j

Rij ∧Rji∧φ=−
∑
i,j

Rij ∧Rij ∧φ=−|R|2 dvol .

Hence as in the previous lemma (or rather as in its proof) 〈p1(X)∪ [φ], [X]〉=
−
∫
X |R|2 dvol≤ 0.

References
[1] D. V. Alekseevsky, Riemannian spaces with unusual holonomy groups.

Funct. Anal. Appl 2.2 (1968): 1–10.

[2] M. Berger, Sur les groupes d’holonomie homogènes de variétés a con-
nexion affine et des variétés riemanniennes, Bull. Soc. Math. France,
83 (1955): 279–330.

[3] E. Bonan, Sur des verietes Riemanniennes a groupe dholonomie G2 ou
Spin(7). Comptes Rendus Hebdomadaires des seances de l’Academie
des Sciences Serie A 262.2 (1966): 127–129.

[4] Robert L. Bryant, Metrics with exceptional holonomy, Annals of Math-
ematics, 126 (1987): 525–576.

[5] Robert L. Bryant, Simon M. Salamon, On the construction of some
complete metrics with exceptional holonomy. Duke Math. J. 58, (1989):
829–850

[6] Robert L. Bryant, Some Remarks on G2-Structures, Gökova Geometry
12th Topology Conference (GGT), 2003.

[7] Élie Cartan, Sur une classe remarquable d’espaces de Riemann. I Bul-
letin de la Société Mathématique de France 54 (1926): 214–264.

[8] Élie Cartan, Sur une classe remarquable d’espaces de Riemann. II. Bul-
letin de la Société Mathématique de France 55 (1927): 114–134.

[9] Shiing-Shen Chern, On a generalization of Kähler geometry, Algebraic
geometry and topology. A symposium in honour of S. Lefschetz, Prince-
ton University Press, Princeton, N. J., 1957, 103–121.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 85-104



104 Special Holonomy: Calabi–Yau and G2-Manifolds

[10] Simon Donaldson, Ed. Segal, Gauge theory in higher dimensions, II.
Surveys in differential geometry. Volume XVI. Geometry of special
holonomy and related topics (2013).

[11] Marisa Fernández, Alfred Gray, Riemannian manifolds with structure
group G2. Annali di matematica pura ed applicata 132.1 (1982): 19–45.

[12] Nigel Hitchin, The geometry of three-forms in six dimensions. Journal
of Differential Geometry 55.3 (2000): 547–576.

[13] Harvey, Reese, and H. Blaine Lawson. Calibrated geometries. Acta
Mathematica 148.1 (1982): 47-157.

[14] Nigel Hitchin, Stable forms and special metrics. Contemporary mathe-
matics 288 (2001): 70–89.

[15] D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. I, Jour-
nal of Differential Geometry 43 (1996), 291–328.

[16] D. Joyce, Compact Riemannian 7-manifolds with holonomy G2. II,
Journal of Differential Geometry 43 (1996), 329–375.

[17] D. Joyce, Compact manifolds with special holonomy. Oxford University,
2000.

[18] Simon Salamon, Riemannian geometry and holonomy groups, Pitman
Research Notes in Math., 201. Longman, Harlow, 1989.

[19] Gang Tian, Gauge theory and calibrated geometry, I. Annals of Math-
ematics 151.1 (2000): 193–268.

[20] Shing-Tung Yau, Calabi’s conjecture and some new results in algebraic
geometry. Proceedings of the National Academy of Sciences 74.5 (1977):
1798–1799.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 85-104



Dynamics of Planar Piecewise Isometries:
Recent Advances

Pedro Peres, Ana Rodrigues
University of Exeter
Department of Mathematics
Exeter EX4 4QF, UK
e-mail: pp334@exeter.ac.uk

a.rodrigues@exeter.ac.uk

Resumo: Neste trabalho revemos alguns resultados relacionados com o es-
tudo de isometrias por pedaços. Introduziremos embeddings de uma trans-
formação de troca de intervalos numa isometria por pedaços, discutiremos
a renormalização de uma isometria por pedaços particular e provaremos a
existência de curvas invariantes para estas transformações.

Abstract: In this survey we review recent results on the study of the dy-
namics of piecewise isometries. We will introduce embeddings of an interval
exchange transformation into a piecewise isometry, discuss the renormaliza-
tion of a particular piecewise isometry and finally show that invariant curves
exist for such transformations.

palavras-chave: Renormalização; curvas invariantes.

keywords: Renormalization; invariant curves.

1 Introduction
An interval exchange transformation (IET) is a bijective piecewise order
preserving isometry f of an interval I ⊂ R, where I is partitioned into su-
bintervals {Iα}α∈A, indexed over a finite alphabet A of d ≥ 2 symbols, so
that the restriction of f to each subinterval is a translation. IETs were stu-
died for instance in [20, 28]. Masur [22] and Veech [28] proved independently
that a typical IET is uniquely ergodic while Avila and Forni [12] established
that a typical IET is either weakly mixing or an irrational rotation.

Piecewise isometries (PWIs) are higher dimensional generalizations of
one dimensional IETs. They have been defined on higher dimensional spaces
and Riemannian manifolds [5, 17]. In this paper we consider orientation
preserving planar piecewise isometries with respect to the standard euclidean
metric. Let X be a subset of C and P = {Xα}α∈A be a finite partition of
X into convex sets (or atoms), that is

⋃
α∈AXα = X and Xα ∩ Xβ = ∅
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for α 6= β. Given a rotation vector θ ∈ TA (with TA denoting the torus
RA/2πZA) and a translation vector η ∈ CA, we say (X,T ) is a piecewise
isometry if T is such that

T (z) := Tα(z) = eiθαz + ηα, if z ∈ Xα,

so that T is a piecewise isometric rotation or translation (see [16]).
For a given PWI we may partitionX into a regular and an exceptional set

[7]. If we consider the zero measure set given by the union E of all preimages
of the set of discontinuities D, then its closure E (which may be of positive
measure) is called the exceptional set for the map. The complement of the
exceptional set is called the regular set for the map and consists of disjoint
polygons or disks that, if X is compact, are periodically coded by their
itinerary through the atoms of the PWI. There is numerical evidence that
the exceptional set may have positive Lebesgue measure for typical PWIs [5].
In [18], the author shows that this is the case for certain rectangle-exchange
transformations.

Even when the exceptional set has positive Lebesgue measure, there is
numerical evidence that Lebesgue measure on the exceptional set may not
be ergodic - there can be invariant curves that prevent trajectories from
spreading across the whole of the exceptional set [7]. In [3, 7], the existence
of a large number of these invariant curves, apparently nowhere smooth, are
investigated.

In [1] Adler, Kitchens and Tresser found renormalization operators for
three rational rotation parameters for a non ergodic piecewise affine map of
the Torus. Lowenstein and Vivaldi [21] gave a computer assisted proof of
the renormalization of a family of piecewise isometries of a rhombus with
one translation parameter and a fixed rational rotation parameter. Hooper
[19] investigated a two dimensional parameter space of polygon exchange
maps, a family of PWIs with no rotation, invariant under a renormalization
operation. In [2] the authors showed how to construct minimal rectangle ex-
change maps, associated to Pisot numbers, using a cut-and-project method
and prove that these maps are renormalizable. The maps described in these
papers are PWIs with no rotational component, exhibiting very particular
behaviour among more general PWIs, making it difficult to generalize their
techniques.

In this survey we present recent results on the study of the dynamics of
planar piecewise isometries. We introduce a new notion of renormalization to
study a class of PWIs called Translation Cone Exchange Transformations.
We also introduce the notion of embedding IETs into PWIs and use IET
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renormalization techniques to establish the existence of invariant curves for
PWIs which are not the union of line segments or circle arcs.

2 Interval exchange transformations
In this section we recall some notions of the theory of interval exchange
transformations following [13], [27] and [29].

As in [13, 29], let A be an alphabet on d ≥ 2 symbols, and let I ⊂
R be an interval having 0 as left endpoint. In what follows we use the
notation RA ' Rd and RA+ ' Rd+. We choose a partition {Iα}α∈A of I into
subintervals which we assume to be closed on the left and open on the right.
An interval exchange transformation (IET) is a bijection of I defined by

(1) A vector λ = (λα)α∈A ∈ RA+ with coordinates corresponding to the
lengths of the subintervals, that is, for all α ∈ A, λα = |Iα|. We write
I = I(λ) = [0, |λ|), where |λ| =

∑
α∈A λα.

(2) A pair π =
(
π0
π1

)
of bijections πε : A → {1, ..., d}, ε = 0, 1,

describing the ordering of the subintervals Iα before and after the application
of the map. This is represented as

π =
(
α0

1 α0
2 ... α0

d

α1
1 α1

2 ... α1
d

)
.

We call π a permutation and identify it, at times, with its monodromy inva-
riant π̃ = π1 ◦ π−1

0 : {1, ...d} → {1, ...d}. In algebra literature it is common
to reserve the term permutation for the monodromy invariant π̃, however,
unlike the present notation, this would not be invariant under the induction
and renormalization algorithms used in the study of IETs. We denote by
S(A) the set of irreducible permutations, that is π ∈ S(A) if and only if
π̃({1, ..., k}) 6= {1, ..., k} for 1 ≤ k < d.

Define a linear map Ωπ : RA → RA by

(Ωπ(λ))α∈A =
∑

π1(β)<π1(α)
λβ −

∑
π0(β)<π0(α)

λβ. (1)

Given a permutation π ∈ S(A) and λ ∈ RA+ the interval exchange transfor-
mation associated is the map fλ,π that rearranges Iα according to π, that is
fλ,π(x) = x + υα, for any x ∈ Iα, where υα = (Ωπ(λ))α. We write f = fλ,π
and also denote an IET by the pair (I, fλ,π).

Given (λ, π) ∈ RA+×S(A) and for ε = 0, 1, denote by βε the last symbol
in the expression of πε. Assume the intervals Iβ0 and Iβ1 have different
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lengths. Let I(1) be the interval obtained by removing the smallest of these
intervals from I. The first return map of fλ,π to I(1) is again an IET,
fλ(1),π(1) . This defines a map R(λ, π) = (λ(1), π(1)) called Rauzy induction.
We assume the infinite distinct orbit condition (IDOC), introduced by Keane
in [20], which assures that the iterates Rn are defined for all n ≥ 0. We
denote Rn(λ, π) = (λ(n), π(n)) and by {I(n)

α }α∈A the partition of the domain
I(n) of fλ(n),π(n) .

The Rauzy class (see [29]) of a permutation π ∈ S(A), is the set R(π)
of all π(1) ∈ S(A) such that there exist λ, λ(1) ∈ RA+ and n ∈ N such
that Rn(λ, π) = (λ(1), π(1)). A Rauzy class R can be visualized in terms
of a directed labelled graph, the Rauzy graph (see [27]). Its vertices are in
bijection with R and it is formed by edges that connect permutations which
are obtained one from another by R and are labeled respectively by 0 or 1
according to the type of the induction. A path % = (%1, ..., %n) is a sequence
of compatible edges of the Rauzy graph, that is, such that the starting vertex
of %i+1 is the ending vertex of %i, i = 1, ..., n− 1. We say a path is closed if
the starting vertex of %1 is the ending vertex of %n. The set of all paths in
this graph is denoted by Π(R).

The Rauzy cocycle BR(λ, π) is a matrix function such that each entry
(B(n)

R (λ, π))α,β of B(n)
R (λ, π) counts the number of visits of I(n)

α to Iβ during
the Rauzy induction time.

The projection of the Rauzy cocycle on the Torus TA ' RA/2πZA is
given by

BTA(λ, π) · θ = BR(λ, π) · θ mod 2π,
for any (λ, π) ∈ RA+ ×R, n ≥ 0 and θ ∈ TA.

A translation surface (see for instance [12], [28]), is a surface with a finite
number of conical singularities endowed with an atlas such that coordinate
changes are given by translations in R2. Given an IET it is possible to
associate, via a suspension construction, a translation surface, with genus
g(R) only depending on the combinatorial properties of the underlying IET
(see [28]).

3 Translated cone exchange transformations
In this section we present a result on the renormalization of a particular
family of PWIs which we designate by Translated cone exchange transfor-
mations following [24].

Consider a family of dynamical systems F = {fµ : X → X} parame-
trized by µ ∈ P, where P is called the parameter space of F . A renorma-
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lization scheme for F is a decreasing chain of subsets of X, X = Y0(µ) ⊃
Y1(µ) ⊃ Y2(µ) ⊃ ..., together with a renormalization operator R : P → P
such that the first return map of a point in Yn+1(µ) under iteration by
fRn(µ) : Yn(µ) → Yn(µ) is given by fRn+1(µ) : Yn+1(µ) → Yn+1(µ). Renor-
malization is a powerful tool in the study of nonlinear maps (see [10]), such
as diffeomorphisms of the circle [26], one-frequency Schrödinger cocycles [11]
and analytic unimodal maps [15].

Set ω = (ω1, ..., ωd) ∈W, where W is the open polytope defined by

W =

ω ∈ Rd+ : 0 <
d∑
j=1

ωj < π

 , (2)

and let ϑ = π

2 −
|ω|
2 , where |ω| is the `1 norm of ω.

In order to introduce the family of TCEs, consider a partition of the
upper half plane H into d+ 2 cones P = {P0, P1, . . . , Pd, Pd+1}, where Pj =
{z ∈ C : arg(z) ∈Wj}, and Wj for j = 0, . . . , d+ 1 are defined as

Wj =


[0, ϑ), for j = 0,
[ϑ, ϑ+ ω1] , for j = 1,
(ϑ+

∑j−1
k=1 ωk, ϑ+

∑j
k=1 ωk], for j ∈ {2, ..., d},

(π − ϑ, π], for j = d+ 1.

We set ν = tan(ϑ). Note that ν depends on |ω|, and when necessary to
stress this dependence we write ν = ν(|ω|).

Let G : H→ H be the following family of translation maps

G(z) =


z − 1, z ∈ P0,
z − η′, z ∈ Pj , j ∈ {1, ..., d},
z + η, z ∈ Pd+1,

depending on the parameters ϑ, η and η′ with ϑ > 0, η ∈ R+\Q and 0 <
η′ < η.

Consider a permutation π ∈ S({1, ..., d}) with a monodromy invariant
π̃, and let θj(ω, π̃) be the angle associated to the monodromy invariant π̃
for the cone Pj for j = 1, . . . , d. We have

θj(ω, π̃) =
∑

π̃(k)<π̃(j)
ωk −

∑
k<j

ωk. (3)

Let E : H→ H be the following family of maps

E(z) =
{
z, z ∈ P0 ∪ Pd+1,

zeiθj(ω,π̃), z ∈ Pj , j ∈ {1, ..., d},
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Figure 1: On the left a partition P with d = 5. On the right the action of
map E on this partition with π̃(1) = 4, π̃(2) = 3, π̃(3) = 2 and π̃(4) = 1.

depending on θj(ω, π̃). This map also depends on ω and ϑ as the partition
elements Pj depend on these parameters. Note that we have

ϑ+ arg (E(z)) = fω,π(arg(z)− ϑ),

for z ∈ Pj , j = 1, ..., d. Hence E exchanges these cones according to the
monodromy invariant π̃.

From the translation and exchange families of maps we get our family
of TCEs, F : H→ H, given by

F (z) = G ◦ E(z).

We define the central cone Pc of F as

Pc = P1 ∪ ... ∪ Pd,

the first hitting time of z ∈ H to Pc, as the map k : H→ N given by

k(z) = inf{n ≥ 1 : Fn(z) ∈ Pc}, (4)

and the first return map of z ∈ Pc to Pc, as the map Fc : Pc → Pc such that

Fc(z) = F k(z)(z). (5)

The typical notion of renormalization may not capture all possible self
similar behaviour in PWIs. TCEs apparently exhibit invariant regions on
which the dynamics is self similar after rescaling. Thus, we say a TCE is re-
normalizable if Fc, the first return map to Pc described above, is conjugated
to itself by a scaling map.

Theorem 3.1 ([24]) For all ω ∈ W, η = 1/(k + Φ) and η′ = 1 − kη
with k ∈ N, there is an open set U containing the origin such that F is
renormalizable for all z ∈ U , that is

Fc(Φ2z) = Φ2Fc(z). (6)
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The proof of this theorem uses a one dimensional approach to the study
of these TCEs. We define sequences coding information related to the first
return map of a given line contained in the cone Pc. We are then able
to relate the renormalizability of a map of this family with the periodicity
of these sequences and indeed, for the parameters in the statement of the
theorem, these are proved to be periodic. As a consequence of this we show
that for these parameters Fc is a PWI with respect to a partition PFc of
countably many atoms.

We say that a collection of atoms B ⊆ P is a barrier for a PWI (T,P) if
X\

⋃
B∈B B is the union of two disjoint connected components A1, A2 such

that
A1 ∩ T (A2) = T (A1) ∩A2 = ∅,

and for any P ∈ P such that P ⊆ Aj and T (P ) ∩ (
⋃
B∈B B) ∩ Aj = ∅ then

T (P ) ∩ (
⋃
B∈B B) = ∅, for j = 1, 2.

Denote the ray in H passing through the origin and with slope a ∈ R by

La = {z ∈ H : Im(z) = aRe(z)}, (7)

and by ∂P the union of the boundaries of the elements of the partition P
and by Lν and L−ν , respectively, the rays P0 ∩ P1 and Pd ∩ Pd+1.

For ω ∈ W, η = 1/(k + Φ) and η′ = 1 − kη, k ∈ N, we denote by
A(η, η′) the subset of W such that for all ω ∈ A(η, η′) there are d′ ≥ 2,
λ ∈ Rd′+ , π ∈ S({1, ..., d′}) and a continuous embedding γ of fλ,π : I → I
into Fc : Pc → Pc such that

i) the collection B = {P ∈ PFc : P ∩ γ(I) 6= ∅}, is a barrier for Fc,
ii) γ(0) ∈ L−ν and lima→|λ| γ(a) ∈ Lν ,
iii) γ(I) ⊂ Φ2U , where U is the open set from Theorem 3.1.
In the next theorem we show, as a consequence of Theorem 3.1, that the

existence of one continuous embedding of an IET into a first return map
Fc of a TCE, satisfying the property that the image of the embedding is
contained in a barrier, implies the existence of infinitely many embeddings
of the same IET into Fc, as well as infinitely many bounded and forward
invariant regions.

Theorem 3.2 ([24]) Let η = 1/(k + Φ), η′ = 1 − kη with k ∈ N and
assume that A(η, η′) is non-empty. For all ω ∈ A(η, η′),

i) There exist sets V1, V2, ..., which are forward invariant for Fc and y∗ > 0
such that for all z ∈ Pc, satisfying 0 < Im(z) < y∗, there is an n ∈ N for
which z ∈ Vn.
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ii) For all n ∈ N there exist constants 0 < bn < bn such that for all
z ∈ Vn and k ∈ N,

bn < |F k(z)| < bn. (8)

iii) There exist infinitely many continuous embeddings of IETs into Fc.

The proof of Theorem 3.2 relies on the Jordan curve Theorem, and on
the properties of the barrier containing the image of the embedding in order
to prove the existence of one invariant set V1. Then the renormalizability of
F implies the existence of infinitely many such sets.

4 Embedding interval exchange transformations
into piecewise isometries

Recently [9], we developed a new mechanism that allow us to study the
dynamics of PWIs using tools from IETs - embeddings - and we used com-
binatorial properties of IETs to prove that in order for a PWI to realize a
continuous embedding of an IET with the same permutation its parameters
must satisfy a particular condition. In this section we give an overview of
these mathematical tools.

It is commonly accepted that the phase space of typical Hamiltonian
systems is divided into regions of regular and chaotic motion [14]. Area
preserving maps which can be obtained as Poincaré sections of Hamiltonian
systems, exhibit this property as well, with KAM curves splitting the domain
into regions of chaotic and periodic dynamics (see for instance [23]). A
general and rigorous treatment of this has been however missing. Area
preserving PWIs that have been studied as linear models for the standard
map (see [4]), can exhibit a similar phenomenon. Unlike IETs which are
typically ergodic, there is numerical evidence, as noted in [7], that Lebesgue
measure on the exceptional set is typically not ergodic in some families of
PWIs - there can be non-smooth invariant curves that prevent trajectories
from spreading across the whole of the exceptional set. These curves were
first observed in [3] for an isolated parameter and later found in [7] to be
apparently abundant for a large family of PWIs.

We now relate the existence of invariant curves to the general problem
of embedding IET dynamics within PWIs. We start by introducing some
definitions.

An injective map γ : I → X is a piecewise continuous embedding of (I, f)
into (X,T ) if γ|Iα is a homeomorphism for each α ∈ A such that γ(Iα) ⊂ Xα
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and
γ ◦ f(x) = T ◦ γ(x), (9)

for all x ∈ I. In this case note that γ(I) ⊂ X is an invariant set for (X,T ).
If γ is a piecewise continuous embedding that is continuous on I, we say

it is a continuous embedding (or embedding when this does not cause any
ambiguity). Otherwise we say it is a discontinuous embedding.

We say γ is a differentiable embedding if it is a piecewise continuous
embedding and γ|Iα is continuously differentiable. We characterize certain
differentiable embeddings as, in some sense, trivial: given I ′ ⊆ I we say a
map γ : I ′ → C is an arc map if there exists ξ ∈ C, r, a > 0 and ϕ ∈ [0, 2π)
such that for all x ∈ I ′,

γ(x) = rei(ax+ϕ) + ξ.

We say an embedding γ : I → C of an IET into a PWI is an arc embedding if
there exists a finite partition of I into subintervals such that the restriction
of γ to each subinterval is an arc map. We say an embedding γ of an IET
into a PWI is a linear embedding if γ is a piecewise linear map. Moreover an
embedding is non-trivial if it is not an arc embedding or a linear embedding.
Figure 4 shows an illustration of a non-trivial embedding.

From the definitions it is clear that the image γ(I) of an embedding is
an invariant curve for the underlying PWI and that if the embedding is non-
trivial this curve is not the union of line segments or circle arcs. For any IET
it is straightforward to construct a PWI in which it is trivially embedded.
The same is not true for non-trivial embeddings, for which results have been
much scarcer.

We say a d-PWI is a PWI with a partition of d atoms. Similarly, a d-IET
is an IET with a partition of d subintervals. In [9] we showed that there
are no non-trivial continuous embeddings of minimal 2-IETs into orientation
preserving planar PWIs.

Theorem 4.1 ([9]) A minimal 2-IET has no non-trivial continuous em-
bedding into a 2-PWI.

The next theorem states that a 3-PWI has at most one non-trivially con-
tinuously embedded minimal 3-IET with the same underlying permutation.

Theorem 4.2 ([9]) A 3-PWI has at most one non-trivially continuously
embedded minimal 3-IET with the same underlying permutation.

The proofs of Theorems 4.1 and 4.2 rely on the use of combinatorial
properties of IETs to prove that in order for a PWI to realize a continuous
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(a) (b)

Figure 2: An illustration of the action of a PWI T with rotation vector θ ≈
(4.85, 0.92, 1.31, 1.28) on its partition and on an invariant curve γ(I). The
map γ, estimated using technical tools from [25], is a non-trivial embedding
of a self-inducing IET associated to the monodromy invariant π̃(j) = 4 −
(j − 1), j = 1, ..., 4 and a translation vector of algebraic irrationals λ ≈
(0.43, 0.34, 0.12, 0.11).

embedding of an IET with the same permutation, its parameters must satisfy
a necessary condition which may be found in [9].

5 Existence of invariant curves
In this section we show that almost every IET with an associated translation
surface of genus g ≥ 2 can be non-trivially and isometrically embedded in a
family of piecewise isometries giving an overview of the technical tools used
to prove the main results following our work in [25] .

In order to prove the main result presented in this section, we need to
define the Breaking operator Br: given an ordered sequence J = {Jk}k of
subintervals of I, an angle ϕ ∈ [−π, π) and a piecewise linear map γ : I → C
the image of Br(ϕ, J) · γ is a piecewise linear curve, obtained from γ(I) by
rotating the segments γ(Jk) by ϕ,

Br(ϕ, J) · γ(x) =
{
γ(x) · eiϕ + εk(ϕ, J), x ∈ Jk,

γ(x) + εk(ϕ, J), x ∈ Lk,

where εk(ϕ, J) and εk(ϕ, J) are determined by continuity and L = {Lk}k is
the ordered sequence of subintervals determined by I\J .

Given (λ, π) ∈ RA+ ×S(A), consider the sequence J (n) = {J (n)
k }k<r(n−1)

obtained by ordering the collection of sets {fkλ,π(I(n−1)\I(n))}k<r(n−1), where
r(n− 1) is the smallest r ≥ 1 such that fkλ,π(I(n−1)\I(n)) ⊂ I(n). Recall that
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(a) (b)

Figure 3: Action of the operator Br: (a) shows the image γ(I) of a piecewise
linear curve; (b) shows the image Br(ϕ, J) · γ(I) , with ϕ = π

4 and J =
{J1, J2, J3}.

(a) (b)

Figure 4: Action of a 4-PWI θ-adapted to a self-similar 4-IET. The curve
depicted is γθ(I) and it is the image of a non-trivial embedding of the IET
into this PWI.

BTA is the projection of the Rauzy cocycle on the Torus defined in the
introduction. Given θ ∈ TA let

θ(0) = θ, θ(n) = B
(n)
TA (λ, π) · θ,

With β1,m = (π(m)
1 )−1(d), we define the breaking sequence of curves

{γ(n)
θ (x)}, by

γ
(0)
θ (x) = x, γ

(n)
θ (x) = Br

(
θ

(n−1)
β1,n−1

, J (n)
)
· γ(n−1)

θ (x), x ∈ I.

Denote by Θ′λ,π the set of all θ ∈ TA such that:

• for all n ≥ 0, γ(n)
θ : I → C is an injective map;

• there exists a topological embedding γθ : I → C such that

γθ(x) = lim
n→+∞

γ
(n)
θ (x), x ∈ I.
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Given θ ∈ Θ′λ,π, we say that a PWI T : X → X together with a partition
{Xα}α∈A is θ-adapted to (λ, π) if for all α ∈ A,

1. Xα ⊇ γθ(Iα) ;

2. For any z ∈ C, we have T (z) = Tα(z), for all z ∈ Xα, where

Tα(z) = eiθα
(
z − γθ

(∑
π0(β)<π0(α) λβ

))
+ γθ

(
fλ,π(

∑
π0(β)<π0(α) λβ)

)
.

Given (λ, π) ∈ RA+ × R it is possible to associate, via a suspension cons-
truction, a translation surface, with genus g(R) ≥ 1 depending only on the
Rauzy class R.

The next theorem states the existence of invariant curves for PWIs which
are not unions of circle arcs or line segments.

Theorem 5.1 ([25]) For almost every IET (I, fλ,π) with a Rauzy class R
satisfying g(R) ≥ 2, there exists a set W ⊆ TA of dimension g(R) such
that for all θ ∈ W there exists a map γθ : I → C, which is a non-trivial
embedding of (I, fλ,π) into any PWI that is θ-adapted to (λ, π).
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Resumo: Este artigo é uma introdução a variedades simplécticas tóricas
para não especialistas, começando com uma breve síntese de variedades sim-
plécticas e acções hamiltonianas. As variedades simplécticas tóricas formam
já um tema extenso, ao qual a modesta lista de referências abaixo não faz
justiça – o objectivo deste texto não é ser exaustivo ou justo, mas simples-
mente deixar entrever o que são estes espaços e a razão pela qual o leitor
poderá querer adicioná-los ao seu repertório de objectos geométricos.

Abstract This is an elementary introduction to symplectic toric manifolds
for nonspecialists, starting with a brief review of symplectic manifolds and
hamiltonian torus actions. Symplectic toric manifolds are by now a vast
subject, for which the undersized list of references below does no justice –
the aim of this text is not to be exhaustive or fair, but simply to give a
glimpse into what these spaces are like and why it can be a good idea to
add them to your repertoire of geometric objects.

palavras-chave: Variedade simpléctica; acção hamiltoniana; polítopo.

keywords: Symplectic manifold; hamiltonian action; polytope.

1 What is Symplectic Geometry?
Geometry concerns the study and measure of space. Symplectic refers to an
additional structure that can be put on some even-dimensional spaces. Sym-
plectic geometry is intrinsically related to complex geometry and, just like
complex geometry, is sometimes counterintuitive. Whereas local complex
geometry is basically modelled on C, C2, C3, etc, local symplectic geometry
is basically modelled on R2, R4, R6, etc.

1This text is based on the lecture titled Symplectic Toric Manifolds at the conference
Matemáticos Portugueses pelo Mundo (Portuguese Mathematicians around the World) in
Porto on 24/June/2019. Many thanks to Diogo Oliveira e Silva, Jorge Milhazes de Freitas
and Samuel Lopes for organizing this excellent mathematical S. João celebration!
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A symplectic form ω at a point p of a manifold M is a special type of
differential 2-form, i.e., a device that takes two tangent vectors u⃗, v⃗ ∈ TpM
as input and returns a real number as output, that may be interpreted as

ω(u⃗, v⃗) = kind of signed area of parallelogram spanned by u⃗ and v⃗.

By signed area we mean, in particular, a number that may be positive, nega-
tive, or zero, contrasting with usual (euclidean, riemannian, ...) geometries.

In the case of the basic model of R2 with its so-called standard sym-
plectic form,

ω0 ∶= dx ∧ dy ,

this signed area is

ω0(u⃗, v⃗) = det(u1 v1
u2 v2

) = u1v2 − u2v1 ,

thus actually equal to plus or minus the euclidean area of the parallelogram
spanned by u⃗ and v⃗. The sign depends on the orientation of the basis u⃗, v⃗
and ω0(v⃗, u⃗) = −ω0(u⃗, v⃗). Moreover, there is only zero as output in just one
dimension, since ω0(v⃗, v⃗) = 0 for all v⃗.

In the next case of R4, the standard symplectic form,

ω0 ∶= dx1 ∧ dy1 + dx2 ∧ dy2 ,

just adds up the contributions from the projections onto the two coordinate
planes x1, y1 and x2, y2. If we have vectors u⃗ = u⃗1+ u⃗2 and v⃗ = v⃗1+ v⃗2 (where
u⃗1, v⃗1 and u⃗2, v⃗2 denote the projections onto the coordinate planes x1, y1 and
x2, y2), then

ω0(u⃗, v⃗) = (dx1 ∧ dy1) (u⃗1, v⃗1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

signed area of A1

+ (dx2 ∧ dy2) (u⃗2, v⃗2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

signed area of A2

can be thought of as a sum of signed areas for the projections A1 and A2
onto each of the coordinate planes x1, y1 and x2, y2. Other projections are
not taken into account.

The higher cases R2n are analogous. In particular, in R6 we have the
standard symplectic form

ω0 ∶= dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3 .

Physicists often regard (x1, x2, x3) as position coordinates and (y1, y2, y3)
as momentum (kind of velocity) coordinates of a particle in 3-dimensional
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space. The symplectic form ω0 encodes the mutual entanglement of position
and momentum in a somewhat implausible way that actually fits reality. In
Section 2, we will describe the motion of a classical mechanical system via
Hamilton’s equations for position and momentum in terms of a flow on a
symplectic manifold.

Historical remark:

Symplectic geometry is a branch of mathematics, that could be viewed
as emerging in the XIX century from classical mechanics. The
mathematicians William Rowan Hamilton (1805-1865) and Sofia Ko-
valevskaya (1850-1891) were at the onset of this field and worked on
problems related to the motion of rigid bodies. Symplectic geome-
try experienced a vigorous expansion in the last 50 years and deals
nowadays with many other geometric problems, stimulated by inter-
actions with diverse areas of mathematics and physics. The adjective
symplectic in mathematics is a calque2 coined by Hermann Weyl, by
substituting the Latin root in complex by the corresponding Greek
root, in order to label the symplectic group.

In general, a symplectic manifold is a pair (M,ω) whereM is a mani-
fold (necessarily even-dimensional, say dimM = 2n) and ω is a closed nonde-
generate 2-form onM . Whereas closedness is a natural differential condition
from analysis, nondegeneracy is an algebraic condition saying that at each
point any nonzero tangent vector admits a nontrivial pairing with some
other tangent vector – this is what forces the evenness of the dimension.

One of the fundamental theorems in symplectic geometry goes back to
Darboux [6] in the late XIX century in the context of differential systems.
What is now known as Darboux’s theorem states that any symplectic
manifold looks locally near any of its points like a neighborhood of the origin
in R2n equipped with

ω0 ∶= dx1 ∧ dy1 + . . . + dxn ∧ dyn .

We hence refer to (R2n, ω0) as the local model. Although this shows that
there are no local invariants in symplectic geometry besides the dimension,
the local symplectic geometry, i.e. the symplectic geometry of (R2n, ω0),
is already quite interesting and there remain deep open questions about

2A calque or loan translation is a word or phrase that is introduced through translation
of the constituents into another language.
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it. Normal form theorems like Darboux’s play a central role in symplectic
geometry.

On a symplectic manifold (M,ω), the top power of the symplectic form,
ωn, is necessarily a volume form, called the symplectic volume. This fol-
lows from the nondegeneracy of ω, and may be also seen through Darboux’s
theorem with ωn0 = n!dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn. Therefore, a symplectic
manifold is symplectically oriented, and nonorientable manifolds cannot be
symplectic.

On a symplectic manifold (M,ω), we are able to integrate the symplectic
form ω over a surface A ⊂M :

∫
A
ω = symplectic area of A.

In the case of (R4, ω0), this yields again a sum of contributions from the two
projections onto each of the coordinate planes x1, y1 and x2, y2:

∫
A
ω = ∫

A1
dx1 ∧ dy1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
signed area of A1

+∫
A2
dx2 ∧ dy2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
signed area of A2

.

Such a measurement is anisotropic in the sense that (multiple-dimensional)
directions are not all the same. For instance, a nontrivial surface in the
x1, x2-plane has one-dimensional projection onto the x1, y1 and x2, y2 planes,
hence has zero symplectic area. Such a surface in a four-dimensional man-
ifold is called lagrangian. On the other hand, a nontrivial surface in the
x1, y1 plane already has a nonzero symplectic area. Such a surface is called
symplectic.

In general, we distinguish different important types of submanifolds in
a 2n-dimensional symplectic manifold (M,ω). A symplectic submani-
fold is a submanifold where the restriction of the symplectic form is non-
degenerate, hence still a symplectic form. Such submanifolds are again
even-dimensional. When n = 1, these submanifolds turn out to be re-
lated to complex curves. An isotropic submanifold is a submanifold
where the restriction of the symplectic form vanishes identically. Any one-
dimensional submanifold is isotropic and isotropic submanifolds are at most
half-dimensional; this follows from linear algebra. A lagrangian subman-
ifold is an n-dimensional isotropic submanifold. Lagrangian submanifolds
are thus the largest isotropic submanifolds and turn out to be related to
dynamics.
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Examples and nonexamples:

(0) As mentioned, the examples (R2n, ω0) above are the local prototypes
of symplectic manifolds.

(1) Any oriented surface may be equipped with a symplectic structure
by choosing any area form to take the role of symplectic form. In
particular, a unit sphere in R3 equipped with the standard (euclidean)
area form is automatically a symplectic manifold. This area form may
be written away from the poles as

ωstd ∶= dθ ∧ dh ,

where h is a height function and θ the angle around that height axis,
giving total area 4π; cf. Section 4.

(2) Some of the simplest 4-dimensional symplectic manifolds are products
of oriented surfaces, such as S2 × S2 equipped with a sum of area
forms (eventually different on each factor), and complex projective
space CP2, that is, the space of complex lines in C3. The standard
symplectic form in CP2 (or, for that matter, in CPn) is called Fubini-
Study form and we will give some insight into it in Section 3. In
general, products of symplectic manifolds are symplectic.

(3) The only spheres that may be symplectic are the 2-dimensional ones.
Let us see why. In a sphere Sk of any other dimension, closed 2-forms
are always exact (this topological fact is usually encoded asH2(Sk) = 0
for k ≠ 2). Now, by Stokes’ theorem, a symplectic form cannot be exact
on a compact manifold without boundary, because if it were ω = dα,
then its top power ωn = d(α ∧ ωn−1) would also be exact, which is
impossible for a volume form on such a manifold:

∫
M
ωn = ∫

M
d(α ∧ ωn−1) = ∫

∂M
α ∧ ωn−1 = 0 contradicting ∫

M
ωn > 0 .

By now there are a number of texts on symplectic geometry, a subset
of which is [11, 12, 4]. For a beautiful overview geared towards symplectic
topology, see McDuff’s lecture [10].

2 What are Hamiltonian Torus Symmetries?
The definition of symplectic form contains exactly what is needed for the
following general assertion: On a symplectic manifold (M,ω), any smooth
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function H ∶ M → R generates (in a nontrivial way) a flow that preserves
both the symplectic structure ω and the function H.

Such a flow is called the hamiltonian flow generated by H and then
H is called a corresponding hamiltonian function. The asserted property
refers to the existence and uniqueness (by nondegeneracy of ω) of a vector
field X

H
defined by

ω(X
H
, ⋅) = dH(⋅) . ☆

This vector field X
H
satisfies the following equations where we use Cartan’s

magic formula, L
X
= dı

X
+ı

X
d, for the Lie derivative with respect to a vector

field X:

L
XH
ω = d ı

XH
ω

²
dH

+ ıXH
dω

0̄

= 0 and L
XH
H = ı

XH
dH
°
ıXH

ω

= 0 .

This vector field X
H

integrates (by the theorem of Picard-Lindelöf) into a
local time evolution, a.k.a. flow, and the equations L

XH
ω = 0 and L

XH
H = 0

amount infinitesimally to this flow preserving ω and H. The vector field X
H

is called the hamiltonian vector field of H.

Examples and nonexamples:

(0) For euclidean space (R6, ω0) and any function H ∶ R6 → R, equation ☆
for the flow generated by H translates into Hamilton’s equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dxk
dt

= ∂H
∂yk

dyk
dt

= − ∂H
∂xk

.

(1) For the unit sphere (S2, ωstd = dθ ∧ dh) and hamiltonian function H
equal to the height function h, equation ☆ yields as hamiltonian vector
field

X
H
= ∂

∂θ
,

so the corresponding flow rotates around the height axis. This clearly
preserves area ωstd and height H. Notice how this contrasts with the
gradient flow of H, which is basically perpendicular and preserves
neither ωstd nor H.
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Figure 1: Hamiltonian function for the rotation of S2 around the height
axis.

(2) For the 2-torus (T2, ω ∶= dθ1 ∧ dθ2), we have that the rotation given
by the vector field ∂

∂θ1
preserves area, yet is not hamiltonian, since the

contraction
ω( ∂

∂θ1
, ⋅) = dθ2(⋅)

is closed yet not exact, i.e., there is no corresponding global hamilto-
nian function.

The flow in Example (1) is also an example of S1-action. Indeed,
the time-t evolution ϕt is given, with respect to these coordinates, by
ϕt ∶ (θ, h) z→ (θ + t, h), so it is 2π-periodic (i.e., ϕt+2π ≡ ϕt) and satis-
fies the group law (i.e., ϕt1 ○ϕt2 ≡ ϕt1+t2). Because it is also hamiltonian, we
call it a hamiltonian S1-action.

Analogously, for a d-dimensional torus Td = S1 × . . . × S1 we define a
hamiltonian TdTdTd-action to be an action of Td for which each of the S1-
factors acts in a hamiltonian fashion, say with hamiltonian function Hk,
and each of these Hk is invariant by the rest of the action. By collecting
these hamiltonian functions, we build an invariant function

H ∶= (H1, . . . ,Hd) ∶M → Rd .

This upgraded version of hamiltonian function is known as a (special case
of) moment map. The concept of moment map for hamiltonian actions of
arbitrary Lie groups has recently become central in geometry and topology.

Atiyah [2] and, independently, Guillemin and Sternberg [9] proved in
the 80’s, that the image of such a function H ∶ M → Rd on a compact,
connected symplectic manifold (M,ω) corresponding to a hamiltonian Td-
action is always a convex polytope. Moreover, they showed that that image
is simply the convex hull of the images of the fixed points of the action. This
deep and key theorem is known as the convexity theorem.
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To get rid of lazy factors in that action, we concentrate on faithful
(i.e. effective) actions for which only the identity group element gives
rise to the identity diffeomorphism. We think of effective hamiltonian Td-
actions as hamiltonian torus symmetries. Now, if a d-dimensional torus
acts in a faithful and hamiltonian fashion on a 2n-dimensional symplectic
manifold, then it must be d ≤ n. This follows from the fact that the orbits
are isotropic, that isotropic submanifolds are at most half-dimensional, and
that Lie theory tells us that a faithful action of a d-dimensional Lie group
always admits orbits equivariantly diffeomorphic to the group itself, the so-
called principal orbits. Therefore, a maximal hamiltonian torus symmetry
is of the form Tn acting on M2n.

3 What are Symplectic Toric Manifolds?
A symplectic toric manifold is a compact connected symplectic manifold
(M,ω) with a maximal hamiltonian torus symmetry, meaning, with a faith-
ful hamiltonian action of a half-dimensional torus. If dimM = 2n, then we
have the n-dimensional torus Tn acting faithfully and with a moment map

H ∶M → Rn .

Examples and nonexamples:

(0) Examples with (R2n, ω0) are ruled out by lack of compactness. How-
ever, most of the theory could be, and often is, extended to such
examples.

(1) The unit sphere (S2, ωstd = dθ∧dh) together with the S1-action gener-
ated by the height function H = h is a symplectic toric manifold. We
point out some of the features of this example, to which we will come
back in more general set-ups:

(a) The image interval [0,2] is the orbit space, i.e., there is exactly
one S1-orbit per height value. The endpoints of this interval
correspond to the two fixed points (singular orbits), South pole
and North pole.

(b) The best coordinates to understand this system are the angle
coordinate θ where the rotation occurs and the function H = h
encoding the hamiltonian action, valid away from the poles. Such
coordinates are called action-angle coordinates. With respect
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to such coordinates, the symplectic form is simply a product form
dθ ∧ dH, just like a form in the local model space (R2, dx ∧ dy).

(c) The area of an invariant strip on S2 corresponding to a subinterval
of [0,2] of height ∆h is equal to 2π ⋅ ∆h. This result goes back
more than two millenia; see Section 4.

(1’) We revisit the previous example from a complex viewpoint. Regard-
ing S2 as a Riemann sphere, we denote by [z0 ∶ z1] the point given
by the complex line in C2 through (z0, z1) and (0,0). The South pole
is [1 ∶ 0] and the North pole is [0 ∶ 1]. Now we recast that exam-
ple as (CP1, ωFS), where the Fubini-Study symplectic form ωFS is equal
to 1

4ωstd, the element eit of the circle acts by multiplication on the
coordinate z1,

eit ⋅ [z0 ∶ z1] = [z0 ∶ eitz1] ,

which, on a chart, is again a simple shift of the angle coordinate, and
the corresponding hamiltonian function is

H1 ∶=
∣z1∣2

2 (∣z0∣2 + ∣z1∣2)
.

(2) Consider now complex projective space CPn (as a 2n-dimensional real
manifold) with a diagonal action of Tn by

(eiθ1 , . . . , eiθn) ⋅ [z0 ∶ z1 ∶ . . . ∶ zn] = [z0 ∶ eiθ1z1 ∶ . . . ∶ eiθnzn] .

The Fubini-Study symplectic form is a globally well-defined form,
which, away from the hyperplanes zk = 0, is given by the Darboux-type
formula

ωFS = dθ1 ∧ dH1 + . . . + dθn ∧ dHn ,

where the component Hk of the moment map H ∶ CPn → Rn is

Hk ∶=
∣zk∣2

2 (∣z0∣2 + . . . + ∣zn∣2)
.

For instance, when n = 3 we get the following picture:
We list again the earlier features, some of which now take more thought
to check:

(a) The image simplex is the orbit space, i.e., there is exactly one
Tn-orbit per point on the n-simplex. The vertices of this simplex
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Figure 2: Moment map for the standard action on CP3.

correspond to the n + 1 fixed points, [1 ∶ 0 ∶ . . . ∶ 0], . . . [0 ∶ . . . ∶
0 ∶ 1]. The interior points correspond to orbits through points of
the form [z0 ∶ z1 ∶ . . . ∶ zn] with all coordinates zk nonzero.

(b) Best to understand this system are the action-angle coordinates,
H1, . . . ,Hn and θ1, . . . , θn. With respect to these coordinates,
and in points mapping by H to the interior of the simplex,
the symplectic form is just like a form in the local model space
(R2n, dx1 ∧ dy1 + . . . + dxn ∧ dyn).

(c) The (symplectic) volume of a Tn-invariant subset H−1(S) is sim-
ply equal to (2π)n ⋅ ∣S∣, where ∣S∣ is the (euclidean-)volume of the
subset S of the simplex.

By the convexity theorem, we already know that the moment map image
of a 2n-dimensional symplectic toric manifold is a polytope in Rn. One can
show that such a polytope enjoys special properties: it is simple, i.e., there
are n edges meeting at each vertex, it is rational, i.e., the edges meeting at
each vertex τ are of the form τ + tuj , t ≥ 0, with each uj ∈ Zn, and it is
smooth, i.e., for each vertex, the corresponding u1, . . . , un can be chosen to
form a Z-basis of Zn; see, for instance, [5].

As first proved by Delzant [7], it turns out that this polytope encodes
enough information to reconstruct its originating symplectic toric manifold,
and that all such simple, rational, smooth polytopes occur as moment map
images of symplectic toric manifolds. Delzant’s theorem is a celebrated
result classifying symplectic toric manifolds in terms of polytopes:

{ 2n-dim’l symplectic
toric manifolds } ←→ { simple rational smooth

polytopes in Rn }

where this one-to-one correspondence takes a symplectic toric manifold,
(M,ω,H) where the Tn-action admits H ∶ M → Rn as moment map, to
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the polytope which is the image of this moment map:

(M,ω,H) ←→ H(M) .

For such a correspondence, there are underlying notions of equivalence of
the objects involved. In the simplest version, polytopes in Rn are identi-
fied up to translation, and symplectic toric manifolds are identified up to
equivariant diffeomorphism preserving the symplectic forms: (M1, ω1,H1)
and (M2, ω2,H2) with actions of Tn are equivalent if and only if there is a
diffeomorphism ϕ ∶M1 →M2 such that ϕ∗ω2 = ω1 and ϕ(g ⋅ p) = g ⋅ ϕ(p) for
all g ∈ Tn and p ∈M1.

Note that the problem of classifying compact symplectic manifolds in
dimension 4 or higher is completely open. The presence of a hamiltonian
torus symmetry significantly helps.

Since there is just one 1-dimensional polytope of length ` up to trans-
lation, we see that the only 2-dimensional symplectic toric manifolds are
scaled spheres (S2, `2 ωstd) with rotation action as above. The panorama
for 2-dimensional polytopes is much more rich. Still, up to translation, the
2-dimensional simple, rational, smooth polytopes with only three vertices
are the triangles with vertices (0,0), (`,0) and (0, `) or their transforms
by GL(2;Z). This is saying that the corresponding symplectic toric man-
ifolds are (CP2,2`ωFS) with standard T2-action or their transforms by an
isomorphism of T2.

The upshot is that any such symplectic toric manifold is given combina-
torially in terms of a polytope in an euclidean space of half the dimension
that of the manifold. Hence, all questions pertaining to such manifolds
should admit an answer in terms of polytopes – a mathematician’s dream!
In particular, the earlier properties admit generalizations to all symplectic
toric manifolds (M,ω,H) as follows:

(a) The polytope image is the orbit space, so H is also the point-orbit
projection, and the vertices of the polytope correspond to the fixed
points. There are precise descriptions of the isotropy subgroups in
terms of the face-stratification.

(b) There are action-angle coordinates, H1, . . . ,Hn and θ1, . . . , θn, valid at
points mapping to the interior of the polytope, which are the best
coordinates to understand this system. With respect to them, the
symplectic form is ω = dθ1 ∧ dH1 + . . . + dθn ∧ dHn.

(c) The (symplectic) volume of a Tn-invariant subset is equal to (2π)n
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times the (euclidean) volume of the corresponding subset in the poly-
tope.

A lot of the geometry of symplectic toric manifolds has already been un-
derstood, yet many interesting questions remain. Currently, these manifolds
are used as test grounds for theories or conjectures in topology, geometry
and mathematical physics, such as mirror symmetry.

Many open questions for these manifolds relate to their lagrangian sub-
manifolds. We can see that connected lagrangian submanifolds invariant by
Tn are principal Tn-orbits, i.e., those corresponding to the interior points of
the image polytope. We might now ask about other lagrangian submanifolds
that fit nicely with respect to the torus action, in the sense that they are
invariant by some subgroup of Tn and they intersect Tn-orbits in a clean
way. The image under the moment map of such a lagrangian submanifold
of (M,ω,H) lies in the intersection of the polytope H(M) with an affine
subspace. Examples are all principal Tn-orbits, the standard real part sub-
manifolds like RPn in CPn, lagrangian submanifolds like the one presented
in [3], and many lagrangian submanifolds sitting in level sets of components
of the moment map.

4 Epilogue – all the way from Archimedes
We close by going back more than two millenia to Archimedes’ supposedly
favourite work on measuring spheres and cylinders. In around 200 BC,
Archimedes was the first to realize that the surface area of a sphere between
two parallel planes intersecting it depends only on the distance between those
planes and not on the height where they intersect the sphere. Moreover,
Archimedes asserted that the surface area on the sphere is the same as that
of a cylinder with the radius of that sphere and height given by the distance
between the planes, as the following figure illustrates. This is exactly the
feature that allows us to write the standard area form as ωstd = dθ ∧ dh.

Nowadays, if you know first-year calculus, you may check Archimedes
result by computing an appropriate surface integral using, for instance,
cylindrical coordinates (θ, z) to write points on the sphere as (x, y, z) =
(
√
R2 − z2 cos θ,

√
R2 − z2 sin θ, z):

Area = ∫
2π

0 ∫
h+∆h

h
Rdz dθ = 2πR ⋅∆h ,

or else use some approximation method and then take the limit [1]. However,
Archimedes did not know calculus. It seems that he used an approximation
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Figure 3: Spherical and cylindrical strips all with the same area: 2πR ⋅∆h;
image kindly reproduced from [1].

argument, for which a relevant reference is the palimpsest3 discovered in the
XX century after some quite adventurous history.

In the 80’s, Duistermaat and Heckman [8] showed powerful results for
symplectic manifolds with hamiltonian torus actions, which may be viewed
as a vast generalization of Archimedes’ theorem for the 2-sphere. Just like
Archimedes might have had no idea that, more than two millennia later, his
spirit would be at the origin of new mathematics, one wonders what other
leaps await mankind starting from symplectic toric manifolds.
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Resumo: Recentemente, os autores provaram em [15, 16] que as funções
constantes são os únicos maximizantes reais da desigualdade L2 → L6 de
extensão de Fourier na 2-esfera. Isto é um caso particular de [16, Teorema
1.1], cuja prova contém vários dos métodos e ideias-chave. Neste artigo,
descrevemos a prova deste caso particular, e apresentamos algumas genera-
lizações e problemas em aberto.

Abstract: We focus on the proof of the following recent result [15, 16] in
Sharp Fourier Restriction Theory: Constant functions are the unique real-
valued maximizers for the L2 → L6 adjoint Fourier restriction inequality
on the 2-sphere. This is a special case of [16, Theorem 1.1] which already
relies on several of the key methods and ideas. We discuss generalizations,
extensions, and present a few open problems.

palavras-chave: Teoria de restrição de Fourier; desigualdade de Tomas–
Stein; constantes ótimas; maximizantes.

keywords: Sharp Fourier Restriction Theory; Tomas–Stein inequality; op-
timal constants; maximizers.

1 Introduction
We start with a collection of three apparently unrelated problems from ge-
ometry, probability theory, and algebra.

Question 1 Given d ≥ 2, 0 < k < d, what is the maximal volume of the
intersection of the unit cube [−1

2 ,
1
2 ]d with a k-dimensional subspace of Rd?

Question 2 Given d, n ≥ 2, what is the probability distribution of an n-step
uniform random walk in Rd?
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Question 3 Given d ≥ 2, what is the minimal codimension of a proper
subalgebra of the special orthogonal Lie algebra so(d)?

One of the goals of the present note is to describe how each of these questions
played a very natural role in the recent solution of an extremal problem from
harmonic analysis, to which we now turn our attention.

1.1 Fourier restriction theory

The Fourier transform is one of the most ubiquitous tools in mathematics.
By decomposing a general function f : Rd → C into a superposition of
simpler, “symmetric” functions,

f̂(ξ) =
∫
Rd
f(x)e−ix·ξ dx,

it opens the door to powerful analytic arguments that have shaped the his-
tory of mathematics for the last two centuries. Despite its paramount im-
portance, fundamental questions about the Fourier transform remain open.

A consequence of the classical Hausdorff–Young inequality is that the
Fourier transform f̂ of an Lp function f : Rd → C is defined almost
everywhere on Rd, provided 1 ≤ p ≤ 2. It is a striking observation of
E. M. Stein from the late 1960s that, for a special range of p’s, the function
f̂ can be meaningfully defined on submanifolds of Rd possessing some de-
gree of curvature. The simple yet fundamental observation that curvature
causes the Fourier transform to decay links geometry to analysis, and lies
at the base of Fourier restriction theory. Take, for instance, the example
of the unit sphere, Sd−1 := {ω ∈ Rd : |ω| = 1}, a compact manifold with
positive Gaussian curvature which inherits its surface measure dσd−1 from
the ambient space Rd in the natural way. The celebrated Fourier restriction
conjecture predicts the validity of the estimate1

∫
Sd−1
|ĝ(ω)|q dσd−1(ω) ≤ C‖g‖q

Lp(Rd), if 1 ≤ p < 2d
d+ 1 , q ≤

d− 1
d+ 1p

′, (1)

and is remarkable in its numerous connections and applications. It exhi-
bits deep links to Bochner–Riesz summation methods and to decoupling
phenomena for the Fourier transform, and is known to imply the Kakeya
conjecture. Despite the great deal of attention received by this circle of pro-
blems during the past four decades, the restriction conjecture remains open

1Here, p′ denotes the conjugate exponent to p, given by 1
p

+ 1
p′ = 1.
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in dimensions d ≥ 3. For further details, we refer the interested reader to
the classical survey [20], and the very recent, exciting account from [18].

If d ≥ 2 and q ≥ 2d+1
d−1 , then the cornerstone Tomas–Stein inequality

[17, 21] states that there exists C = C(d, q) <∞, such that

‖f̂σd−1‖Lq(Rd) ≤ C‖f‖L2(Sd−1), (2)

for every function f : Sd−1 → C which is square-integrable with respect to
dσd−1. Here, f̂σd−1(x) := E(f)(x) :=

∫
Sd−1 f(ω)eiω·x dσd−1(ω), x ∈ Rd, de-

notes the Fourier extension operator, which is the adjoint of the restriction
operator, E∗(g) := ĝ |Sd−1 , considered in (1). Inequality (2) finds deep ap-
plications in harmonic analysis and PDE. In particular, it underlies most of
the early progress towards the Fourier restriction conjecture; see [20]. The
Tomas–Stein argument directly implies some of the foundational Strichartz
estimates for various dispersive partial differential equations, e.g. the Schrö-
dinger, wave, and Klein–Gordon equations; see [19]. Moreover, inequality
(2) has been generalized to a variety of contexts, and found surprising ap-
plications ranging from fractal geometry [14] to number theory [10], among
many others.

1.2 Sharp Fourier Restriction Theory

A class of problems which is the subject of some exciting ongoing research
goes under the name of Sharp Fourier Restriction Theory. For a gentle
introduction to this fascinating topic, we refer the reader to the recent survey
[7], and proceed to describe a few concrete examples.

Associated to (2), we have the functional

f 7→ Φd,q(f) :=
‖f̂σd−1‖

q
Lq(Rd)

‖f‖q
L2(Sd−1)

.

A very natural problem is to determine the value of the best (smallest)
constant in inequality (2),

Tq
d,q := sup

0 6=f∈L2
Φd,q(f),

i.e. the operator norm of the extension operator. A related, but typically
harder, problem is to characterize all the maximizers of Φd,q, that is to say,
the nonzero functions which realize the best constant Td,q. The mere exis-
tence of maximizers is a highly non-trivial question, which for Φd,q happens
to be open at the endpoint q = 2d+1

d−1 in all dimensions d ≥ 4; see [8] for a
conditional result in this direction.
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1.2.1 A sharp L2–L4 result

A remarkable recent result of D. Foschi [6] establishes that constant func-
tions are the unique real-valued maximizers for the endpoint Tomas–Stein
inequality in three-dimensional space,

‖f̂σ2‖L4(R3) ≤ T3,4‖f‖L2(S2). (3)

In particular, T3,4 = ‖σ̂2‖L4(R3)‖1‖−1
L2(S2) = 2π. The proof is short, simple,

and relies on an elegant geometric identity,

|ω + ν|2 + |ν + ζ|2 + |ζ + ω|2 = 4,

which holds for any triple of unit vectors (ω, ν, ζ) ∈ (S2)3 satisfying |ω+ν+
ζ| = 1. Additional ingredients that play a key role in [6] are some symmetry
considerations, a natural spectral analysis, and two fortuitous coincidences.

The first coincidence is that in the three-dimensional case some calculati-
ons simplify considerably in comparison with other dimensions. Technically,
this is seen at the level of the convolution measure σd−1 ∗ σd−1, which finds
its simplest form when d = 3; see (23) below. The difficulties inherent to the
higher dimensional cases were partially overcome in [4], thereby extending
Foschi’s L2 → L4 sharp result to dimensions 4 ≤ d ≤ 7. If d = 8, then a
new phenomenon emerges, and the identification of one single maximizer of
Φd,4 is a challenging open problem in all dimensions d ≥ 8.

The second coincidence is that 4 = 2×2. In particular, since the Fourier
transform intertwines multiplication and convolution,

|f̂σ2|4 = (f̂σ2f̂σ2)2 = ( ̂fσ2 ∗ f̄σ2)2.

An application of Plancherel’s identity, ‖F̂‖L2(R3) = (2π)3/2‖F‖L2(R3), then
reveals that (3) can be equivalently recast as a convolution inequality,

‖fσ2 ∗ f̄σ2‖L2(R3) ≤ (2π)−3/2T2
3,4‖f‖2L2(S2).

The 2-fold convolution measure fσ2 ∗ f̄σ2 turns out to be a relatively simple
object of study, even though the function f ∈ L2 may be quite rough. The
situation changes dramatically if instead we consider the k-fold convolution
(fσ2)∗k, for k ≥ 3. In fact, prior to our very recent work [15, 16], no sharp
instance of inequality (2) was known if q ∈ (4,∞), in any dimension d ≥ 2.
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1.2.2 A sharp L2–L6 result

In [16], we proved that constant functions are the unique real-valued maxi-
mizers of the functional Φd,2n, whenever d ∈ {3, 4, 5, 6, 7} and n ≥ 3 is an
integer. The following particular case of [16, Theorem 1.1] will be the focus
of our attention.

Theorem 1 Constants are the unique real-valued maximizers of Φ3,6.

This of course translates into a sharp inequality

‖f̂σ2‖L6(R3) ≤ T3,6‖f‖L2(S2), (4)

with T3,6 = ‖σ̂2‖L6(R3)‖1‖−1
L2(S2) = (2π)5/6. We choose to delve into the

proof of Theorem 1 because it already contains several of the main themes
which were introduced in [15, 16]. On the other hand, the convenient choice
of parameters (d, q) = (3, 6) causes several technicalities to disappear, and
makes us hopeful that the key ideas may be conveyed in the course of this
short note.

1.3 Notation

The constant function is denoted 1 : Sd−1 → {1}, 1(ω) ≡ 1, and the zero
function is denoted 0 : Sd−1 → {0}, 0(ω) ≡ 0. If there is no danger of
confusion, we sometimes write L2 = L2(Sd−1). Since we will mostly be
working in dimension d = 3, we simplify the forthcoming notation by setting
Φq := Φ3,q, Tq := T3,q, and dσ := dσ2. Finally, if x, y are real numbers, we
write x . y if there exists a finite absolute constant C such that |x| ≤ C|y|.

1.4 Outline

We organize the exposition in five steps, each of them bringing in tools from
the calculus of variations (§2), symmetrization techniques (§3), operator
theory (§4), Lie theory (§5), and probability theory (§6). These ingredients
are then combined in §7, yielding a short proof of Theorem 1. In §8, we
discuss some extensions, generalizations, and open problems.

2 Step 1: Calculus of variations
Let f be a maximizer2 for Φ6, and normalize it so that ‖f‖L2 = 1. Recall
the operators E , E∗ which were defined immediately after (2). The following

2The existence of maximizers for Φ6 follows from [5, Theorem 1.1].
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chain of inequalities holds:

‖E‖6L2→L6 = ‖E(f)‖6L6(R3) = 〈|E(f)|4E(f), E(f)〉 = 〈E∗(|E(f)|4E(f)), f〉L2(S2)

≤ ‖E∗(|E(f)|4E(f))‖L2(S2) ≤ ‖E∗‖L6/5→L2‖|E(f)|4E(f)‖L6/5(R3)

= ‖E∗‖L6/5→L2‖E(f)‖5L6(R3) = ‖E‖6L2→L6 , (5)

where 〈·, ·〉 denotes the L6′ − L6 pairing in R3, and 〈·, ·〉L2(S2) denotes the
L2 pairing on S2. The only steps which are not entirely trivial amount
to an application of the Cauchy–Schwarz inequality, and the fact that the
operators norms ‖E‖L2→L6 = ‖E∗‖L6/5→L2 coincide.3 Since the first and
the last terms in the chain of inequalities (5) are the same, all inequalities
have to be equalities. In particular, equality holds in the application of the
Cauchy–Schwarz inequality, which forces the two functions in question to
be constant multiples of each other. In other words, E∗(|E(f)|4E(f)) = λf,
for some λ ∈ C. Recalling the definition of the extension and restriction
operators, this boils down to

(|f̂σ|4f̂σ)∨|S2 = λf. (6)

By Plancherel’s identity, the latter equality can be written in convolution
form,

(fσ ∗ f?σ ∗ fσ ∗ f?σ ∗ fσ)|S2 = (2π)−3λf. (7)

Here, f? = f̄(−·) denotes the conjugate reflection of f , and accounts for
the complex conjugates that appear on the left-hand side of (6). Identity
(7) is the Euler–Lagrange equation associated to the functional Φ6, and any
nonzero, square integrable solution of (7) is called a critical point of Φ6.

The Euler–Lagrange equation (7) can be used to show that any maxi-
mizer of (4), and more generally any critical point of Φ6, is an infinitely
differentiable function. This is a manifestation of the general phenomenon
that convolution operators are smoothing, but the actual proof entails a
number of technical difficulties. We omit the details, and encourage the
interested reader to take a look at [15].

3 Step 2: Symmetrization
This step is more elementary than the previous one, but plays an equally
important part in the analysis. Inequality (4) can be equivalently rewritten

3If T : Lp → Lq is a bounded linear operator, then its adjoint T ∗ defines a bounded
linear operator from Lq′

to Lp′
, with the same operator norm. Also, 6′ = 6

5 .
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in convolution form as

‖fσ ∗ fσ ∗ fσ‖L2(R3) ≤ (2π)−3/2T3
6‖f‖3L2(S2).

Since |fσ ∗ fσ ∗ fσ| ≤ |f |σ ∗ |f |σ ∗ |f |σ holds pointwise, it follows that4

‖fσ ∗ fσ ∗ fσ‖L2(R3) ≤ ‖|f |σ ∗ |f |σ ∗ |f |σ‖L2(R3). (8)

Further define the antipodally symmetric rearrangement f] of f via

f] :=

√
|f |2 + |f?|2

2 ,

where f? denotes the conjugate reflection of f as above. Note that the L2-
norms of f] and f (or f?) coincide. A straightforward application of the
elementary inequality between the arithmetic and geometric means reveals
that

‖fσ ∗ fσ ∗ fσ‖L2(R3) ≤ ‖f]σ ∗ f]σ ∗ f]σ‖L2(R3),

with equality if and only if f = f? = f]. These considerations imply that, in
the search for maximizers of Φ6, we may limit our attention to non-negative,
antipodally symmetric functions. In other words,

T6
6 = max

0≤f=f?∈L2\{0}
Φ6(f). (9)

This is a key simplification which enables several of the subsequent steps to
work.

4 Step 3: Operator theory
In this section, we explore some of the compactness inherent to the problem.
Given a nonzero function f ∈ L2(S2), normalized so that ‖f‖L2 = 1, consider
the integral operator

Tf : L2(S2)→ L2(S2), Tf (g) = g ∗Kf ,

with convolution kernel given by

Kf (ξ) = (|f̂σ|4)∨(ξ) = (2π)3(fσ ∗ f?σ ∗ fσ ∗ f?σ)(ξ). (10)
4For a characterization of the cases of equality in (8), see [4, Lemma 8].

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 133-150



140 A sharp inequality in Fourier restriction theory

The relevance of this operator is easy to highlight. In fact, the Euler–
Lagrange equation (6) is nothing but the eigenvalue problem for Tf , namely
Tf (f) = λf . Observe that λ is entirely dictated by f : From λf = Tf (f) one
has that λ

∫
|f |2 =

∫
Tf (f)f̄ =

∫
|f̂σ|6, whence λ = Φ6(f) (since ‖f‖L2 = 1).

We proceed to study Tf from the operator theoretic point of view. First
of all, the function Kf from (10) satisfies Kf (0) = ‖f̂σ‖4L4 . Moreover, Kf

defines a bounded, continuous function on R3, satisfying Kf (ξ) = Kf (−ξ),
for all ξ. As a consequence, the operator Tf is self-adjoint, Tf = T ∗f , and
positive definite: 〈Tf (g), g〉L2 > 0, for every nonzero g ∈ L2. The operator
Tf is also Hilbert–Schmidt (and therefore compact), since the companion
kernelK[

f defined byK[
f (ω, ν) := Kf (ω−ν) belongs to L2(S2×S2). But more

is true: the operator Tf is actually trace class. To see this, let {λj}∞j=0 ⊂
(0,∞) denote the eigenvalues of Tf in non-increasing order, counted with
multiplicity, with corresponding L2-normalized eigenfunctions {ϕj}∞j=0. By
the classical theorem of Mercer (see e.g. [22, §VI.4]),

K[
f (ω, ν) =

∞∑
j=0

λjϕj(ω)ϕj(ν),

where the series converges absolutely and uniformly. The trace of Tf can be
then estimated as follows:

tr(Tf ) =
∞∑
j=0
〈Tf (ϕj), ϕj〉L2(S2) =

∞∑
j=0

λj =
∫
S2
K[
f (ω, ω) dσ(ω)

= 4πKf (0) = 4π‖f̂σ‖4L4(R3) . ‖f‖
4
L2(S2) <∞,

(11)

where in the last line we invoked the endpoint Tomas–Stein inequality (3).

5 Step 4: Lie theory
It is natural to expect the symmetries of the sphere to enter the picture
at some point. The symmetry group of S2, including reflections, is the
orthogonal group, O(3). The subgroup of rotations, i.e. orthogonal 3 × 3
matrices with unit determinant, is the so-called special orthogonal group,
SO(3). As a Lie group, SO(3) is compact, connected, and of dimension
3. Its Lie algebra, so(3), consists of skew-symmetric 3 × 3 matrices with
real entries. The exponential map, exp : so(3) → SO(3), A 7→ exp(A), is
surjective onto SO(3). For more information on the Lie group SO(3) and its
Lie algebra, see [11].
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Given a matrix A ∈ so(3), define the vector field ∂A acting on sufficiently
smooth functions f : S2 → C via ∂Af := limt→0 t

−1(f(exp(tA)·) − f). The
functional Φ6 enjoys the following symmetries:

Φ6(f ◦ exp(tA)) = Φ6(f) = Φ6(eξf),

for all t ∈ R, A ∈ so(3), and ξ ∈ R3, where eξ stands for the character
eξ(ω) = eiξ·ω. These symmetries naturally give rise to new eigenfunctions
for the operator Tf considered in §4, as the following result indicates. We
write ω = (ω1, ω2, ω3) ∈ S2, and by ωjf we mean the function defined via
(ωjf)(ω) = ωjf(ω).

Lemma 1 Let f : S2 → R be non-constant, continuously differentiable,
antipodally symmetric, and such that ‖f‖L2 = 1. Assume Tf (f) = λf .
Then:

Tf (ωjf) = λ
5 ωjf, for every j ∈ {1, 2, 3}, (12)

Tf (∂Af) = λ
5 ∂Af, for every A ∈ so(3). (13)

Moreover, there exist A,B∈so(3), such that the set {ω1f, ω2f, ω3f, ∂Af, ∂Bf}
is linearly independent over C.

Sketch of proof. We omit the derivation of the identities (12), (13), and
instead refer the reader to the proof of [16, Prop. 5.2]. The functions
ω1f, ω2f, ω3f are linearly independent5 – this is elementary.

Since f ∈ C1(S2) is non-constant, there exist A,B ∈ so(3), such that
∂Af, ∂Bf are linearly independent. To see why this is necessarily the
case, consider the linear map D : so(3) → C0(S2), D(A) = ∂Af . Let
r := dim kerD. By the Rank-Nullity Theorem, the image of D has dimen-
sion dim so(3) − dim kerD = 3 − r, and so it suffices to show that r ≤ 1.
Aiming at a contradiction, suppose that r ≥ 2. In this case, there exist
linearly independent matrices X,Y ∈ so(3), such that ∂Xf = ∂Y f ≡ 0.
The matrices X,Y correspond to infinitesimal rotations around certain unit
vectors ω, ν ∈ S2, respectively. Since X,Y are linearly independent, then so
are ω, ν. But ∂Xf ≡ 0 implies that f is constant along all ω-latitudes, i.e.
circles determined by intersecting S2 with the translates of a 2-plane ortho-
gonal to ω. In a similar way, f is constant along all ν-latitudes. Since ω, ν
are linearly independent, it follows that any two points on S2 can be joined
by a path consisting of the alternating concatenation of a certain (finite)

5Since f is real-valued, linear independence of the set {ω1f, ω2f, ω3f, ∂Af, ∂Bf} over
C is equivalent to that over R.
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number of ω-latitudes and ν-latitudes. Since f is constant along each such
latitude, it is constant along the whole path. It follows that f is identically
constant, which is absurd.

An alternative approach, which is perhaps less intuitive but has the ad-
vantage of generalizing to higher d ≥ 3, uses the fact6 that the dimension
of a proper, nontrivial subalgebra of so(3) is equal to 1 (think of the em-
bedding so(2) ⊆ so(3)). As a consequence, if r ≥ 2, then the Lie algebra
generated by kerD equals the whole of so(3). In turn, this together with
the fact that the action of SO(3) on S2 is transitive, can be used to show
that f is constant, which again yields the desired contradiction.

Finally, the linear independence of the set {ω1f, ω2f, ω3f, ∂Af, ∂Bf}
follows from the facts that ω1f, ω2f, ω3f are real-valued, antipodally
anti-symmetric functions, whereas ∂Af, ∂Bf are real-valued, antipodally
symmetric functions. �

The conclusion is that, given a sufficiently smooth, non-constant eigen-
function f = f? of Tf with eigenvalue λ, we can always find five further
eigenfunctions of Tf , each with eigenvalue λ

5 , and with the crucial property
that the set {ω1f, ω2f, ω3f, ∂Af, ∂Bf} is linearly independent over C.

6 Step 5: Probability theory
Consider three independent, identically distributed random variables
X1, X2, X3, taking values on S2 with uniform distribution. In this case,
the random variable Y3 = X1 + X2 + X3 corresponds to the so-called uni-
form 3-step random walk in R3, and is distributed according to the 3-fold
convolution of the normalized surface measure on S2. In other words, if
σ̄ := σ(S2)−1σ and Ω ⊆ R3 is a Borel subset, then

P(Y3 ∈ Ω) =
∫

Ω
(σ̄ ∗ σ̄ ∗ σ̄)(ξ) dξ.

Let p3 denote the probability density associated to the random variable |Y3|.
For any measurable subset E ⊆ (0,∞), we then have that

P(|Y3| ∈ E) =
∫
E
p3(r) dr.

A straightforward computation in spherical coordinates further reveals that
(σ ∗ σ ∗ σ)(r) = σ(S2)2p3(r)r−2. Similar considerations apply to the simpler

6Incidentally, this provides an answer to Question 3 when d = 3.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 133-150



Diogo Oliveira e Silva and René Quilodrán 143

0.0 0.5 1.0 1.5 2.0
r

20

40

60

80

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

20

40

60

80

Figura 1: Left: Plot of the function r 7→ (σ ∗ σ)(r) for 0 ≤ r ≤ 2. Pairs of
antipodal points on S2 contribute towards the singularity at r = 0. Right:
Plot of the function r 7→ (σ ∗ σ ∗ σ)(r) for 0 ≤ r ≤ 3.

uniform 2-step random walk in R3, Y2 = X1 + X2, in which case we let p2
denote the density of |Y2|.

Random walks have been the subject of active investigation for more
than a century, and as such it comes as no surprise that explicit formulae
for p2, p3 are well-known, thereby providing an answer to Question 2 when
d = 3 and n ∈ {2, 3}; see [3, 9]. They translate into the following result for
convolutions; see also Figure 1.

Lemma 2 The following identities hold:

(σ ∗ σ)(ξ) = 2π
|ξ|
, if |ξ| ≤ 2, (14)

(σ ∗ σ ∗ σ)(ξ) =


8π2, if |ξ| ≤ 1,

4π2
(
−1 + 3

|ξ|

)
, if 1 ≤ |ξ| ≤ 3. (15)

As an immediate consequence of Lemma 2, we may compute the quantities

Φ4(1) = (2π)3‖1‖−4
L2(S2)‖σ ∗ σ‖

2
L2(R3) = 16π4, (16)

Φ6(1) = (2π)3‖1‖−6
L2(S2)‖σ ∗ σ ∗ σ‖

2
L2(R3) = 32π5, (17)

which will be of use in the next section.

7 Proof of Theorem 1
Armed with the tools developed in §2–§6, the proof of Theorem 1 is now
quite short.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 133-150



144 A sharp inequality in Fourier restriction theory

Proof of Theorem 1. It will suffice to prove that any real-valued, continuously
differentiable, non-constant critical point f of Φ6 satisfies Φ6(f) < Φ6(1). In
view of (9), we may further assume that f = f?, and naturally that ‖f‖L2 =
1. Multiplying both sides of the Euler–Lagrange equation, Tf (f) = λf , by
f , and then integrating, one checks as in §4 that λ = Φ6(f). It then follows
that

Φ6(f) = λ = 1
2(λ+ 5× λ

5 ) < 1
2

∞∑
j=0

λj = 1
2

∫
S2
K[
f (ω, ω) dσ(ω) = 2πKf (0),

(18)
where the strict inequality is a consequence of Lemma 1, together with the
fact that all eigenvalues of Tf are positive. The remaining identities in (18)
have already appeared in (11). On the other hand, we have that

Kf (0) = ‖f̂σ‖4L4(R3) = Φ4(f) ≤ Φ4(1), (19)

where the last inequality follows from Foschi’s result [6], discussed in §1.2.1.
From (16), (17), we further have that

2πΦ4(1) = Φ6(1), (20)

and so from (18) and 2π× (19), it then follows that Φ6(f) < Φ6(1). This
completes the proof of the theorem. �

8 Extensions, generalizations, and open problems
In the last section, we discuss the extension of Theorem 1 to other exponents
q ≥ 6, its generalization to higher dimensions d ≥ 3, and the corresponding
questions for complex-valued maximizers. We conclude with a list of open
problems.

8.1 Other exponents.

We have already hinted at the very special role played by even integers. It is
reassuring to observe that all the steps from §2–§6 work, mutatis mutandis,
whenever q ≥ 6 is an even integer. In fact, the whole proof strategy can
be made to work, for any q ∈ {6, 8, 10, . . .}. However, one encounters some
difficulties along the way. Perhaps most significantly, the natural substitute
of (20) boils down to the inequality

Φq(1) ≤ 1
σ(S2)

q + 6
q + 1Φq+2(1), (21)
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which needs to be checked for each of the relevant values of q. If q ≥ 4 is an
even integer, then

σ(S2)q/2Φq(1) = (2π)3‖σ∗(q/2)‖2L2(R3) = ‖σ̂‖qLq(R3).

The Fourier transform of the surface measure σ on S2 is given by7 σ̂(x) =
4π sinc(|x|), and so (21) holds if and only if∫ ∞

0
|sinc(r)|q r2 dr ≤ q + 6

q + 1

∫ ∞
0
|sinc(r)|q+2 r2 dr. (22)

Three natural paths to tackle inequality (21) present themselves. In fact,
one can proceed via:

(a) explicit formulae for uniform random walks;

(b) rigorous numerical integration;

(c) asymptotic analysis of the weighted integrals in (22).

Path (a) is quite elegant, path (b) is very robust, and path (c) gathers
elements from both. By construction, paths (a), (b) are able to provide a
solution to a finite number of exponents only. On the other hand, path (c)
relies on asymptotics, and as such it naturally misses a few initial cases.
Therefore each of the paths is useful on its own, and the three of them
intertwine nicely together.

The integrals in (22) are related to the cube slicing problem, addressed
in Question 1. To see why this is the case, consider the unit cube Qd :=
[−1

2 ,
1
2 ]d ⊂ Rd, and let H ⊂ Rd be a linear subspace of codimension 1. Then

the volume of the (d − 1)-dimensional section H ∩ Qd is at least 1, and at
most

√
2. The lower bound is best possible, and attained if and only if H is

parallel to a face of Qd. The upper bound is also best possible, and attained
if and only if H contains a (d − 2)-dimensional face of Qd. These results
were obtained by K. Ball [1], as a consequence of the key inequality

1
π

∫ ∞
−∞
|sinc(r)|p dr ≤

√
2
π
,

which holds for every p ≥ 2, with equality if and only p = 2. Even though
many partial results are known, the complete answer to Question 1 for ge-
neric values of d, k remains a topic of current research interest; see [13] and
the references therein.

7The sinc function is defined as sinc(r) := sin r
r

.
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8.2 Higher dimensions

The sharp form of inequality (2) for q = 4 is unknown if d ≥ 8. Without
this starting point, our bootstrapping approach to proving Theorem 1 seems
condemned from the very start. On the other hand, the whole proof strategy
can be made to work in dimensions d ∈ {4, 5, 6, 7}, but at least three new
difficulties arise.

Firstly, the results in §2–§5 can all be adapted to the higher dimensional
case, even though the discussion in §5 (in particular, the proof of Lemma
1) requires some care. In fact, a complete answer to Question 3 is known,
and reveals a curious difference that occurs in the four-dimensional case:
The minimal codimension of a proper subalgebra of so(d) equals d − 1 if
d ≥ 3, d 6= 4, but equals 2 if d = 4; see [12]. This stems from the fact that
the group SO(4)/{±I} is not simple, whereas all other groups SO(d), d 6= 4,
are simple (after modding out by {±I} is d if even). In turn, this relates
back to the existence of quaternions, and partly accounts for some exotic
aspects of the geometry of 4-manifolds.

Secondly, the computations from §6 rely on a solution to Question 2,
which for general values of n was obtained recently, but only under the
additional assumption that d is odd; see [2, 9]. This can be partly explained
by the formula which generalizes (14) to all dimensions d ≥ 2:

(σd−1 ∗ σd−1)(ξ) = σd−2(Sd−2)
2d−3

1
|ξ|

(4− |ξ|2)
d−3

2
+ , (23)

together with the realization that the right-hand side of (23) defines a poly-
nomial expression in the variables |ξ|, |ξ|−1 if and only if d is odd. For a
generalization of (15) to dimensions d ∈ {3, 5, 7, 9}, see Figure 2. To the
best of our knowledge, a complete answer to Question 2 in even dimensions
remains a fascinating, largely open problem, which via the theory of hyper-
geometric functions and modular forms exhibits some deep connections to
number theory; see [3] and the references therein.

Thirdly, the higher-dimensional generalization of (21) boils down to the
inequality8

Φd,q(1) ≤ 1
σd−1(Sd−1)

q + 2d− δd,4
q + 1 Φd,q+2(1), (24)

which needs to be checked for each of the relevant values of d, q. An explicit
formula for the Fourier transform σ̂d−1 is known in all dimensions d ≥ 2, but

8The Kronecker delta satisfies δd,4 = 1 if d = 4, and δd,4 = 0 if d 6= 4. The introduction
of δd,4 is justified by the distinct behaviour of so(4) discussed above.
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Figura 2: Plot of the function r 7→ rd−1(σd−1 ∗ σd−1 ∗ σd−1)(r) for 0 ≤
r ≤ 3, when d ∈ {3, 5, 7, 9}. Multiplication by rd−1 distorts the picture but
clarifies the behavior, because the surface area of a sphere of radius r in
Rd is proportional to rd−1; in particular, one-dimensional integrals of the
plotted function are proportional to integrals of the function in Rd.

it involves the Bessel function J(d−2)/2, which is not an elementary function
whenever d is even; see [17, Ch. VIII, §3]. In fact, setting ν = (d− 2)/2, we
have that

σ̂d−1(x) = (2π)
d
2 |x|−νJν(|x|),

and consequently (24) holds if and only if
∫ ∞

0
|Jν(r)|q rd−1−qν dr ≤

((d2)!)2

22−d
q + 2d− δd,4

q + 1

∫ ∞
0
|Jν(r)|q+2 rd−1−(q+2)ν dr.

(25)
A careful combination of the paths (a), (b), (c) outlined in §8.1 above can be
used to verify inequality (25), and therefore (24), in the appropriate range
of exponents and dimensions. Details can be consulted in [16, §7].

8.3 C-valued maximizers

It is natural to ask about general complex-valued maximizers of Φd,q, for
d ≥ 2 and even q ≥ 2d+1

d−1 . In [16, Theorem 1.2], we show that in this case
any C-valued maximizer of Φd,q is of the form ceiξ·ωF (ω), for some ξ ∈ Rd,
some c ∈ C \ {0}, and some nonnegative, antipodally symmetric maximizer
F of Φd,q. Given the discussion in §8.1 and §8.2, all C-valued maximizers
of Φd,q are then given by ceiξ·ω, for some ξ ∈ Rd and c ∈ C \ {0}, provided
d ∈ {3, 4, 5, 6, 7} and q ≥ 4 is an even integer.
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8.4 Open problems

We collect some of the outstanding problems which have been mentioned
throughout the present note, and add a few others to the list.

1. Do constant functions maximize Φ2,6? If this is indeed the case, then
[16, Theorem 1.1] implies that constant functions maximize Φ2,q as
well, for every even integer q ≥ 6.

2. Are non-zero solutions of the Euler–Lagrange equation which genera-
lizes (6) to arbitrary dimensions d ≥ 2 and exponents q ≥ 2d+1

d−1 ,

(|f̂σd−1|q−2f̂σd−1)∨|Sd−1 = λf,

necessarily C∞-smooth even when q is not an even integer?

3. Do maximizers of Φd,q exist at the endpoint q = 2d+1
d−1 if d ≥ 4? See

[8, Theorem 1.1] for a conditional result along these lines.

4. Assuming the answer to the question in (3) to be affirmative, do cons-
tant functions maximize Φd,q if q = 2d+1

d−1 , in all dimensions d ≥ 4?
Conversely, are all real-valued maximizers of Φd,2 d+1

d−1
constant?
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Resumo: Neste texto revemos dois resultados na teoria das representações
de álgebras de dimensão finita nos quais a quantidade de um certo tipo de
estruturas está intimamente ligado ao tamanho dessas mesmas estruturas.
Mais concretamente, discutimos os seguintes factos: (1) uma álgebra de di-
mensão finita admite apenas um número finito de módulos indecomponíveis
a menos de isomorfismo se e só se todos os módulos indecomponíveis são
de dimensão finita; (2) a categoria de módulos de uma álgebra de dimensão
finita admite apenas um número finito de classes de torsão se e só se todas
as classes de torsão são geradas por módulos de dimensão finita.

Abstract: In this note, we survey two instances in the representation the-
ory of finite-dimensional algebras where the quantity of a type of structures
is intimately related to the size of those same structures. More explicitly,
we review the fact that (1) a finite-dimensional algebra admits only finitely
many indecomposable modules up to isomorphism if and only if every inde-
composable module is finite-dimensional; (2) the category of modules over
a finite-dimensional algebra admits only finitely many torsion classes if and
only if every torsion class is generated by a finite-dimensional module.

palavras-chave: categorias de módulos; módulos indecomponíveis; classes
de torsão.

keywords: module categories; indecomposable modules; torsion classes.

1 Introduction
In representation theory we strive to understand how the properties of a gi-
ven ring are reflected on that ring’s actions on abelian groups. These actions
are formalised by the notion of a module over a ring, and they are often diffi-
cult, if not impossible, to classify completely. Hence, questions in the subject
area typically include the problem of classifying modules with certain com-
mon properties (simplicity, indecomposability, projectivity, injectivity, ...)
up to isomorphism. One could call this a microscopic approach to represen-
tation theory, in which the main actors are the actual modules over a given
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ring. These are difficult problems and, more often than not, their solutions
involve a fair amount of combinatorics. Another strand of representation
theory takes instead a bird’s eye view of the subject, i.e. a macroscopic
point of view, considering the category of all modules and its subcategories
as central objects of study. Typical questions within this line of thought in-
clude classification problems for subcategories of modules subject to certain
properties. Here the tools are more of a homological and categorical nature.

These different points of view are used to study a broad range of rings,
from group rings (in representation theory of finite groups) to universal
enveloping algebras (in Lie theory) from commutative rings (often occurring
in algebraic geometry) to path algebras of quivers (central to the study of
finite-dimensional algebras). Recall that an (associative) algebra over a field
K is nothing but a ring with a compatible K-vector space structure. Here, we
will be focused on some aspects of the representation theory of K-algebras
which are finite-dimensional as K-vector spaces. Our aim is to survey two
results that attempt to answer the following type of question:

Question: To which extent do finite-dimensional modules over a finite-
dimensional algebra Λ control the structure of the category of all Λ-modules?

To make this question precise, we need to establish what we mean by
structure. In this paper this expression will have two meanings. The first
surveyed result is a classical theorem in representation theory, and it discus-
ses when is it true that any given module can be built from finite-dimensional
modules using the simplest operation available: direct sums. On the second
result, however, the structures we want to have under control are distin-
guished classes of modules, called torsion classes. We then aim to answer
the question of whether any torsion class in the category of all modules is
determined by the finite-dimensional modules contained in it.

In both settings, however, a remarkable pattern arises: the fewer the
objects under consideration in the finite-dimensional world (may they be
modules or torsion classes), the tighter is the grip that finite-dimensional
modules have on the whole category. In other words, quantity controls size.
Moreover, and perhaps equally surprising, the converse also holds.

This note is structured as follows. In Section 2 we discuss some basic no-
tions from representation theory of finite-dimensional algebras. In Section 3
we discuss, without proof, the first surveyed result: a well-known, classical
theorem in representation theory, due to Auslander ([5, 6]), Fuller-Reiten
([11]) and Ringel-Tachikawa ([15]) concerning algebras of finite representa-
tion type. We illustrate the properties under study through some examples.
In Section 4 we look at torsion classes and discuss some examples. Finally,
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in Section 5 we survey a recent result from [3] that builds on the work of
Demonet-Iyama-Jasso ([10]). It focuses on algebras whose module category
admits only finitely many torsion classes. We sketch a proof of the theorem,
leaving out some technical facts that we state without proof. In that respect,
the choice made in this paper is to present the results from a torsion-theoretic
point of view, leaving outside of the exposition the (intrinsic) relation of the
arguments to τ -tilting theory ([1]) or silting modules ([2]).

Acknowledgements: The author is very grateful for many insightful dis-
cussions with Lidia Angeleri Hügel, Frederik Marks and Rosanna Laking on
these topics, and for their comments on a preliminary version of the article.

2 Representations of finite-dimensional algebras
Throughout, let K be an algebraically closed field and Λ a finite-
dimensional K-algebra. In this section we discuss finite-dimensional alge-
bras and their representations. For a thorough introduction to the subject,
we refer the reader to [4] or [13].

Example 2.1. Let Q be a finite directed graph (usually called a quiver).
Consider the K-vector space spanned by all oriented paths in Q, and endow
it with a multiplication defined by concatenation of paths when possible, and
zero when concatenation is not possible. This yields a K-algebra, denoted by
KQ, called the path algebra of Q. If Q has no oriented cycles then KQ is
finite-dimensional. For example, if Q is the quiver

1 α // 2 β // 3

then Λ := KQ is a 6-dimensional K-vector space spanned by the stationary
paths e1, e2, e3, and the paths α, β and βα. Multiplication comes by conca-
tenation as explained above: β · α = βα, while α · β = 0. This algebra is in
fact isomorphic to the algebra of 3× 3 lower triangular matrices over K.

We will be looking at two categories associated to Λ.

• Mod(Λ): the category of left Λ-modules;

• mod(Λ): the category of finite-dimensional left Λ-modules.

If two finite-dimensional algebras have equivalent categories of modules,
they are indistinguishable from a representation-theoretic standpoint. Alge-
bras related in this way are said to be Morita equivalent. We will recall
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that any finite-dimensional algebra Λ is Morita equivalent to a quotient of a
path algebra. As a consequence, the category of modules over Λ is equivalent
to the category of bound representations of a quiver.

A representation of a quiver Q over K is the assignment of a vector
space to each vertex of Q and a (compatibly chosen) linear map to each
arrow of Q. A representation of Q is bound by an ideal I of KQ if the
linear maps chosen for the arrows of the quiver compose and add up to the
zero map when following a linear combination of paths contained in I. We
denote by Rep(Q, I) the category of representations of Q bound by I (where
morphisms between representations are given by linear maps at every vertex
making the obvious diagrams commute). We refer to [4, Corollary I.6.10 and
Theorem II.3.7] for the following theorem.

Theorem 2.2. Let Λ be a finite-dimensional K-algebra. Then there is a qui-
ver Q and an ideal I of KQ such that Mod(Λ) ∼= Mod(KQ/I) ∼= Rep(Q, I).

The equivalence above restricts to an equivalence between finite-
dimensional Λ-modules and finite-dimensional representations of Q bound
by I. In essence, the theorem indicates that the study of modules over any
finite-dimensional K-algebra is an upgrade of classical linear algebra over K.

Remark 2.3. The classical linear algebra theorem on Jordan normal forms
can be regarded as a classification of the isomorphism classes of finite-
dimensional representations over a quiver Q with one vertex and one loop.
Indeed, any square matrix n × n corresponds to an endomorphism of Kn,
and any conjugation by invertible matrices corresponds to an isomorphism
between the associated representations of Q. Moreover, Jordan blocks of a
given matrix correspond to the indecomposable summands of the associated
representation (see Section 3 for the notion of indecomposability). Since KQ
is isomorphic to the polynomial algebra K[X], much of classical linear alge-
bra can be regarded as the study of finite-dimensional K[X]-representations.

3 Finite representation type
It is not very surprising that over a finite-dimensiona K-algebra Λ, the struc-
ture of the category of finite-dimensional modules, mod(Λ), is much better
understood than the structure of the category of all modules Mod(Λ). In
fact, as stated in the following theorem (see for example [4, Theorem I.4.10]),
objects in the category mod(Λ) can be completely described by a set of
fundamental blocks: the finite-dimensional indecomposable modules. A Λ-
module M is said to be indecomposable if, whenever M ∼= M1⊕M2, then
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either M1 or M2 must be zero. In other words, a module is indecomposable
if it admits no nontrivial direct summands.

Theorem 3.1 (Krull-Remak-Schmidt). Every finite-dimensional Λ-module
M is a direct sum of indecomposable Λ-modules, which are uniquely deter-
mined by M up to isomorphism.

The same statement, however, does not hold in general for infinite-
dimensional Λ-modules. In fact, infinite-dimensional modules may exhibit a
striking pathological property: not having any indecomposable direct sum-
mands! Such modules are called superdecomposable (see Example 3.3).

Let us consider the following four dream properties for the representation
theory of a finite-dimensional algebra Λ.

(RF1) Every Λ-module is a direct sum of indecomposable Λ-modules.

(RF2) Every indecomposable Λ-module is finite-dimensional.

(RF3) There are only finitely many indecomposable finite-dimensional Λ-
modules up to isomorphism.

(RF4) There are only finitely many indecomposable Λ-modules up to iso-
morphism.

The property (RF1) is called pure semisimplicity and the property
(RF3) is called representation-finiteness. While (RF1) gives structural
information on the category Mod(Λ), one can consider (RF2) a property
regarding size and both (RF3) and (RF4) properties regarding quantity.
We will establish a connection between all of these very soon.

Example 3.2. The algebra Λ from Example 2.1 is representation-finite, i.e.
Λ satisfies (RF3). Up to isomorphism, there are precisely six indecomposable
finite-dimensional Λ-modules and there are no infinite-dimensional indecom-
posables (thus Λ satisfies also (RF2) and (RF4)). Using Theorem 2.2, we
can use quiver representations to describe these indecomposable modules:

P3 := ( 0 // 0 // K ) S2 := ( 0 // K // 0 )

S1 := ( K // 0 // 0 ) P2 := ( 0 // K 1 // K )

P1 := ( K 1 // K 1 // K ) I2 := ( K 1 // K // 0 ).

It can also be shown that every Λ-module is isomorphic to a direct sum of
copies of these six Λ-modules, thus proving that Λ also satisfies (RF1).
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Example 3.3. It is very easy to produce examples of finite-dimensional
algebras that do not satisfy (RF3) (and that, therefore, do not satisfy (RF4)
either). For example, if Λ is the path algebra over K of the quiver

Q : 1

α
**

γ 44

β // 2

we can produce infinitely many pairwise non-isomorphic indecomposable
finite-dimensional Λ-modules. Given λ in K, the representation of Q

Mλ : K

λ
++

1 33
0 // K

is indecomposable. Since K is infinite (it is algebraically closed), we im-
mediately get infinitely many indecomposable finite-dimensional Λ-modules.
Moreover, it is easy to check that Mλ is isomorphic to Mµ if and only if
λ = µ. We can also produce an indecomposable infinite-dimensional Λ-
module, showing that Λ does not satisfy (RF2). An explicit example is

G : K(X)

X ,,

1 22

0 // K(X)

where K(X) is the field of rational functions in one variable. This module
belongs to an important family of indecomposable infinite-dimensional modu-
les: the generic modules. These are indecomposable infinite-dimensional
modules that, as modules over their own endomorphism ring, have finite
length. They play an important role in controlling the overall representa-
tion theory of a finite-dimensional algebra. We refer to [14] and references
therein for further information on generic modules.

Finally, we produce a superdecomposable Λ-module, thus showing (in
a rather extreme way!) that (RF1) is not satisfied by Λ. This example
can be found in [14]. We need two nontrivial ingredients: the existence of
injective envelopes (see for example [4, Corollary I.5.14]) and the existence
of a particularly nice functor between two categories of modules (see below).

• First consider the free algebra K〈X,Y 〉 in two variables over K. Note
that this infinite-dimensional K-algebra is isomorphic to the path alge-
bra over K of the quiver with one vertex and two loops X and Y on that
vertex. Let I be the injective envelope of K〈X,Y 〉 in Mod(K〈X,Y 〉).
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We show that I is superdecomposable. If N 6= 0 is a summand of I,
then it intersects K〈X,Y 〉 nontrivially since I is an essential extension
of K〈X,Y 〉. Let a 6= 0 be an element in N ∩ K〈X,Y 〉 and consider
the injective envelope J of K〈X,Y 〉Xa. It follows that J is a nonzero
summand of N (by the injectivity of J). It remains to see that J 6= N ,
and this follows from the fact that the element Y a of N ∩ K〈X,Y 〉
cannot lie in J since K〈X,Y 〉Xa ∩ K〈X,Y 〉Y a = {0} and since J is
an essential extension of K〈X,Y 〉Xa. Thus N is not indecomposable.

• There is a functor F : Mod(K〈X,Y 〉) −→ Mod(Λ) sending a (left)
K〈X,Y 〉-module M to the representation of Q given by

F (M) : M

X
++

1 33

Y //M

where X and Y are the linear maps resulting from the left action of
X and Y on M . This functor is full and exact ([14]) and, as a con-
sequence, F (I) is a superdecomposable Λ-module.

These examples suggest that the properties (RF1)-(RF4) come in a single
package and cannot be satisfied separately. The following fundamental the-
orem in the representation theory of finite-dimensional algebras states that,
indeed, these properties are equivalent. In other words, a finite-dimensional
algebra has very few (= finitely many) indecomposables up to isomorphism
if and only if all indecomposables are small (= finite-dimensional).

Theorem 3.4. [5, 6, 11, 15] For a finite-dimensional K-algebra Λ, the
conditions (RF1), (RF2), (RF3) and (RF4) are equivalent.

4 Torsion pairs
Sometimes it is useful to have a birds’ eye view of a category of modules and,
rather than analysing the category module by module, organise collections
of modules which share certain properties into certain classes.

Example 4.1. Every abelian group has a subgroup given by the elements
that have finite order. This is called the torsion subgroup. The quotient of
an abelian group by its torsion subgroup yields an abelian group where no
element has finite order. We may therefore say that the classes of torsion
abelian groups and torsionfree abelian groups give us some valuable infor-
mation on the category of abelian groups.
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The following definition is an abstraction of the example above to an
arbitrary abelian category.

Definition 4.2. A pair (T ,F) of full subcategories of an abelian category
A is a torsion pair if

1. HomA(T, F ) = 0 for any T in T and any F in F .

2. For any X in A, there are objects t(X) and f(X) in T and F respec-
tively, and a short exact sequence of the form

0 −→ t(X) −→ X −→ f(X) −→ 0

Given a torsion pair (T ,F) in A, we say that T is a torsion class and F
a torsionfree class.

It follows from the definition that the torsion class determines the torsi-
onfree class. For a subcategory X of Mod(Λ), denote by X⊥ the full subcate-
gory of Mod(Λ) whose objects are the modules Y for which HomΛ(X,Y ) = 0
for all X in X . Dually, one may also define ⊥X . Given a torsion pair (T ,F),
we have F = T ⊥ and T = ⊥F . It can also be shown that in the category
Mod(Λ), a full subcategory X is a torsion class if and only if it is closed
under coproducts (i.e. for any family of objects in X , its coproduct lies
also in X ), quotients (i.e. any quotient of a module in X also lies in X )
and extensions (i.e. in any short exact sequence with outer terms in X , the
middle term must also belong to X ). Dually, torsionfree classes are those
full subcategories closed under products, submodules and extensions.

Example 4.3. Consider Mod(Z), the category of abelian groups. Let T be
the class of abelian groups for which every element has finite order and F
the class of abelian groups that have no elements of finite order. It is easy
to check the axioms listed above showing that (T ,F) is a torsion pair. It
can, furthermore be shown that F is the subcategory of abelian groups which
are subgroups of a product of a (possibly infinite) number of copies of Q and
that T = ⊥Q. We then say that this torsion pair is cogenerated by Q.

Example 4.4. Let Λ be the algebra from Example 2.1. Since every module
in Mod(Λ) is isomorphic to a direct sum of the indecomposable Λ-modules
listed in Example 3.2, and since torsion classes are closed under coproducts
and summands, every torsion class is determined by the set of indecomposa-
ble modules lying in it. Hence, every torsion class in Mod(Λ) is the closure
under coproducts and their direct summands of some set of indecomposa-
ble Λ-modules X that is closed under quotients and extensions. We denote
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this additive closure by Add(X ), and the complete list of torsion classes in
Mod(Λ) (excluding {0} and Mod(Λ)) is

T1 := Add({S2}) T2 := Add({P3}) T3 := Add({S1})

T4 := Add({P2, S2}) T5 := Add({I2, S1}) T6 := Add({P3, S1})

T7 := Add({P3, P2, S2}) T8 := Add({S2, I2, S1}) T9 := Add({P1, I2, S1})

T10 := Add({S2, P1, I2, S1}) T11 := Add({P3, P1, I2, S1})

T12 := Add({P2, P1, S2, I2, S1})

We can order these classes by inclusion, obtaining the following Hasse qui-
ver, where an arrow A → B denotes a strict inclusion A ) B with no
element C such that A ) C ) B. The arrows in the Hasse diagram are lin-
ked to a process called mutation (see, for example, [1]). While we will not
discuss this process, it plays an important role in the proof of Theorem 5.4.

Mod(Λ)

��

��

""

T12

��

��
T10

�� ##

T11

~~

��

T7

��

��

T8

##

��

T9

��
T4

��

T5

  

T6

��uuT1

##

T2

��

T3

vv{0}

Note also that this Hasse quiver depicts a well-known object: the three-
dimensional associahedron. For further details on the combinatorics of tor-
sion pairs of path algebras of quivers we refer to [12].
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Example 4.5. For a Λ-module M , the subcategory M⊥ of Mod(Λ) is closed
under products, submodules and extensions and, thus, M⊥ is a torsionfree
class. The corresponding torsion class is then necessarily given by ⊥(M⊥),
and it is clear that M lies in ⊥(M⊥). In general it is not easy to describe
which modules lie in ⊥(M⊥). However, if M is, for example, a projective
Λ-module, then one can show that ⊥(M⊥) coincides with the subcategory
Gen(M) formed by all Λ-modules which are quotients of some coproduct of
copies of M . In Section 5 we describe the torsion pairs that are of the form
(Gen(M),M⊥) for a finite-dimensional Λ-module M .

5 Torsion-finiteness
In this section we will discuss categories of modules that have only finitely
many torsion classes. Let us first look at torsion classes of Mod(Λ), for
a finite-dimensional K-algebra Λ, which are of the form Gen(M) for some
Λ-module M . They satisfy the following useful property.

Lemma 5.1. [10, Lemma 3.10] Suppose that T = Gen(M) is a torsion
class. Suppose that there is an ascending sequence of torsion classes

T1 ⊆ T2 ⊆ T3 ⊆ · · · ⊆ Tn ⊆ Tn+1 ⊆ · · ·

such that
⋃
i≥1
Ti = T . Then the sequence stabilises.

Proof. Given n ≥ 1 such that M lies in the torsion class Tn, all coproducts
of copies of M and their quotients must lie in Tn, proving that Tn = T .

In the category mod(Λ) of finite-dimensional modules, quotients of finite
coproducts of a finite-dimensional module M sometimes also form a torsion
class. Such a subcategory is denoted by gen(M). Clearly such subcategories
also satisfy the property of Lemma 5.1. Torsion pairs in mod(Λ) and torsion
pairs in Mod(Λ) are related by the following theorem. Given a subcategory
X of mod(Λ), denote by lim−→X the subcategory of Mod(Λ) whose objects are
direct limits of direct systems with terms in X . Note that, since a direct
limit of a direct system is a quotient of the coproduct of the terms in that
system, torsion classes in Mod(Λ) are closed under direct limits.

Theorem 5.2. [7, Lemma 4.4] If (U ,V) is a torsion pair in mod(Λ), then
(lim−→U , lim−→V) is a torsion pair in Mod(Λ), and

(lim−→U , lim−→V) = (Gen(U),U⊥).
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This assignment is injective since

(U ,V) = ((lim−→U) ∩mod(Λ), (lim−→V) ∩mod(Λ)),

and a torsion pair (T ,F) in Mod(Λ) arises in this way if and only if F is
closed under direct limits in Mod(Λ).

The theorem above establishes a close relation between torsion classes of
the form gen(M) and Gen(M) in mod(Λ) and in Mod(Λ) respectively, for a
finite-dimensional Λ-module M . In fact, it follows that gen(M) is a torsion
class in mod(Λ) if and only if Gen(M) is a torsion class in Mod(Λ), in which
case Gen(M) = lim−→ gen(M). The following result characterises the torsion
pairs that are of the form (Gen(M),M⊥). Recall that a pure submodule
Y of a Λ-module X is a submodule such that for any right Λ-module Z, we
have that Z ⊗Λ Y is still a submodule of Z ⊗Λ X. For example, it is easy to
check that if X/Y is a flat module, then Y is a pure submodule of X.

Proposition 5.3. Let Λ be a finite dimensional K-algebra and let (T ,F)
be a torsion pair in Mod(Λ). The following statements are equivalent.

1. T ∩mod(Λ) = gen(M) for a finite dimensional Λ-module M ;

2. (T ,F) = (Gen(M),M⊥) for a finite dimensional Λ-module M ;

3. T is closed under products and F is closed under direct limits.

Proof. Let (T ,F) be a torsion pair in Mod(Λ).

(1) ⇒ (2): Suppose that T ∩ mod(Λ) = gen(M). Since T ∩ mod(Λ) is
a torsion class in mod(Λ) it follows that, as seen above, Gen(M) = lim−→(T ∩
mod(Λ)) is a torsion class, and that Gen(M) ⊆ T . To prove that T ⊆
Gen(M) we need the following facts.

(P1) [8, 2.2, Example 3] Every Λ-module is a pure submodule of the product
of its finite-dimensional quotients.

(P2) [7, Theorem 4.2] For a torsion class U in mod(Λ), lim−→U is always closed
under pure submodules and, moreover, it is closed under products if
and only if U = gen(N) for a finite-dimensional Λ-module N .

If X is a module in T then, by (P1), X is a pure submodule of its finite-
dimensional quotients, all of which lie in T ∩mod(Λ) = gen(M). Since, by
(P2), Gen(M) = lim−→ gen(M) is closed under products and pure submodules,
X lies in Gen(M).
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(2) ⇒ (3): Since M is finite-dimensional, the functor HomΛ(M,−) com-
mutes with direct limits and, thus, F = M⊥ is closed under direct limits.
Moreover, since Gen(M) ∩mod(Λ) = gen(M), it follows from the statement
(P2) that Gen(M) is closed under products.

(3) ⇒ (1): If F is closed under direct limits then, by Theorem 5.2,

(T ,F) = (lim−→(T ∩mod(Λ)), lim−→(F ∩mod(Λ))).

By the fact (P2) cited above, it then follows that there is a finite-dimensional
Λ-module M such that T ∩mod(Λ) = gen(M).

If one wishes to classify all torsion pairs in Mod(Λ), the following four
dream properties could be of help, just like in Section 3.

(TF1) Every torsion pair in Mod(Λ) is of the form (lim−→U , lim−→V) for a torsion
pair (U ,V) in mod(Λ);

(TF2) Every torsion class in Mod(Λ) is of the form Gen(M) for a finite-
dimensional Λ-module M ;

(TF3) There are only finitely many torsion classes in mod(Λ);

(TF4) There are only finitely many torsion classes in Mod(Λ).

Note that, once again, (TF1) is a property concerning the structure of
torsion pairs in the category of Λ-modules, while (TF2) can be seen as a me-
asure of size and (TF3) and (TF4) as measures of quantity. Just like in the
previous section, it turns out that these properties (TF1)–(TF4) are equiva-
lent to each other. In other words, a finite-dimensional algebra admits very
few (= finitely many) torsion classes in its category of (finite-dimensional)
modules if and only if all torsion classes in its module category are ge-
nerated by small (= finite-dimensional) modules. The following theorem
is essentially proved in [3], using the language of support τ -tilting modu-
les ([1]) and silting modules ([2]). The proof we present here purposefully
avoids mentioning these modules, re-working the existing arguments from a
torsion-theoretic point of view.

Theorem 5.4. [3, Theorem 4.8] For a finite-dimensional K-algebra Λ, the
conditions (TF1), (TF2), (TF3) and (TF4) are equivalent.

Proof. In order to prove this theorem we need the following additional fact.
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(P3) [10, Proposition 3.8] There are only finitely many torsion classes in
mod(Λ) if and only if every torsion class in mod(Λ) is of the form
gen(M) for a finite-dimensional Λ-module M .

This fact partially relies on the combinatorial technique mentioned in the
previous section: mutation. Indeed, if there are either infinitely many tor-
sion classes in mod(Λ) or if there is a torsion class which is not of the form
gen(M), one can build a non-stabilising ascending chain of torsion classes

T1 ( T2 ( T3 ( · · · ( Tn ( Tn+1 ( · · ·

which, with the help of Lemma 5.1, guarantees the other condition. We
refer the reader to [1] and [10] for further details.

(TF1)⇒ (TF2): Let (T ,F) be a torsion pair in Mod(Λ). By assumption,
T = lim−→U and F = lim−→V, where U = T ∩ mod(Λ) and V = F ∩ mod(Λ).
Let us first show that T = ⊥V. Indeed, it is easy to check that ⊥V is
a torsion class containing U and that the corresponding torsionfree class
(⊥V)⊥ contains V. Since every torsion class is closed under direct limits we
immediately conclude that T = lim−→U ⊆

⊥V. Since, by assumption, F is also
closed under direct limits, we have that F = lim−→V ⊆ (⊥V)⊥ and, therefore,
we can also conclude that T = ⊥F ⊇ ⊥((⊥V)⊥) = ⊥V. This proves that
T = ⊥V, as wanted.

Now, since V is a subcategory of finite-dimensional Λ-modules, ⊥V is
closed under products (see, for example, [9, Example 2.3]). Therefore, (TF2)
follows from Proposition 5.3.

(TF2)⇒ (TF3): If U is a torsion class in mod(Λ), then by Theorem 5.2,
lim−→U is a torsion class in Mod(Λ). From (TF2) we conclude that lim−→U =
Gen(M) for a finite-dimensional Λ-module M and, thus, U = Gen(M) ∩
mod(Λ) = gen(M). Finally, (TF3) follows (P3).

(TF3) ⇒ (TF1): This follows from (P3) and Proposition 5.3.

(TF4) ⇒ (TF3): This is a direct consequence of Theorem 5.2.

(TF2) ⇒ (TF4): (TF2) implies that the assignment in Theorem 5.2 is a
bijection (since M⊥ is closed under direct limits for any finite-dimensional
Λ-moduleM), i.e. there are as many torsion classes in mod(Λ) as in Mod(Λ).
Since (TF2) is proved to be equivalent to (TF3), we conclude that there are
finitely many torsion classes in Mod(Λ).
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Note that the properties (P1), (P2) and (P3) are fundamental to our
proof, and they depend heavily on the fact that we are working with finite-
dimensional algebras. We should, therefore, be very careful with any at-
tempts to naively generalise the result above to larger classes of rings. We
finish this survey with an example of a commutative noetherian (but not
artinian) ring where the philosophy of this last section fails.

Example 5.5. Let R be the (commutative, noetherian) ring of fractions of
Z obtained by inverting all odd integers, i.e.

R = {a
b
∈ Q : gcd(b, 2) = 1}.

This ring is a principal ideal domain, and its nontrivial ideals are just the
powers of the maximal ideal p generated by 2. Finitely generated modules
over a principal ideal domain are very well-understood. In our case, for
every finitely generated R-module there is an isomorphism

M ∼=
⊕
k≥0

(R/pk)nk(M),

where nk(M) 6= 0 for only finitely many k (and p0 = {0}).

• We first show that mod(R) has only two nontrivial torsion classes.
Let T 6= {0} be a torsion class in mod(R), the subcategory of finitely
generated R-modules. If there is a module M in T such that M is
faithful (i.e., such that n0(M) 6= 0), then since T is closed under direct
summands, R lies in T and T = mod(R). If, on the other hand, every
module in T has a nonzero annihilator, it is easy to show that R/p lies
in T (since it is a quotient of any nonzero module). Finally, observe
that since R/pn is an iterated extension of R/p, we get that

T = {M ∈ mod(R) : n0(M) = 0}.

• We now produce a torsion class in Mod(R) that is not generated by
a finitely generated R-module. Since R is a principal ideal domain,
an R-module is injective if and only if it is divisible. It can then be
shown that the injective R-modules are those in Gen(Q ⊕ Q/R), and
that they form a torsion class. Note additionally that Q is not a finitely
generated R-module. Finally, it can be shown that any other generator
of this same torsion class must contain Q as a summand.

In conclusion, mod(R) satisfies the analogous condition to (TF3) and, yet,
Mod(R) admits a torsion class that cannot be generated by a finitely gene-
rated R-module, therefore not satisfying the analogous condition to (TF2).

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 151-166



Jorge Vitória 165

References
[1] T. Adachi, O. Iyama, I. Reiten, τ -tilting theory, Compos. Math.

150 (2014), 415–452.

[2] L. Angeleri Hügel, F. Marks and J. Vitória, Silting modules,
Int. Math. Res. Not. IMRN 2016, no. 4 (2016), 1251–1284.

[3] L. Angeleri Hügel, F. Marks and J. Vitória, A characterisation
of τ -tilting finite algebras, in Model Theory of Modules, Algebras and
Categories, Contemp. Math. 730, Amer. Math. Soc. (2019), 75–89.

[4] I. Assem, D. Simson and A. Skowronski, Elements in the represen-
tation theory of associative algebras, Volume 1, London Mathematical
Society Student Texts (2006).

[5] M. Auslander, Representation theory of Artin algebras II, Comm. in
Algebra 1 (1974), 293–310.

[6] M. Auslander, Large modules over artin algebras, in Algebra, Topo-
logy and Category Theory: a collection of papers in honor of Samuel
Eilenberg; Academic Press (1976), 1–17.

[7] W. Crawley-Boevey, Locally finitely presented additive categories,
Comm. in Algebra 22, no. 5 (1994), 1641–1674.

[8] W. W. Crawley-Boevey, Infinite-dimensional modules in the repre-
sentation theory of finite-dimensional algebras, Algebras and modules,
I (Trondheim, 1996), CMS Conf. Proc. 23 Amer. Math. Soc. (1998),
29–54.

[9] S. Dean, Duality and contravariant functors in the representation the-
ory of Artin algebras, J. Algebra Appl. 18, no. 6 (2019), 27 pp.

[10] L. Demonet, O. Iyama and G. Jasso, τ -tilting finite algebras, bricks
and g-vectors, Int. Math. Res. Not. IMRN 2019 (2019), 852–892.

[11] K. Fuller and I. Reiten, Note on rings of finite representation type
and decompositions of modules, Proc. Amer. Math. Soc. 50 (1975), 39–
44.

[12] C. Ingalls and H. Thomas, Noncrossing partitions and representati-
ons of quivers, Compos. Math. 145, no. 6 (2009), 1533–1562.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 151-166



166 Quantity vs. size in representation theory

[13] R.S. Pierce, Associative algebras, Graduate Texts in Mathematics,
Springer (1982).

[14] C.M. Ringel Infinite length modules. Some examples as introduction,
Infinite Length Modules. Some Examples as Introduction. In: Krause
H., Ringel C.M. (eds) Infinite Length Modules. Trends in Mathematics.
Birkhäuser (2000), 1–74.

[15] C.M. Ringel and H. Tachikawa, QF-3 rings, J. Reine Ang. Math.
272 (1975), 49–72.

Boletim da SPM 77, Dezembro 2019, Matemáticos Portugueses pelo Mundo, pp. 151-166



Informações aos autores

O Boletim da SPM publica-se, em geral, duas vezes por ano.
O Boletim constitui um espaço diversificado de informação, promove a

circulação de ideias e de opiniões, bem como troca de experiências entre os
que ensinam, investigam ou aplicam a Matemática.

O Boletim não publica artigos de investigação especializada. Estes
trabalhos poderão ser submetidos à Portugaliæ Mathematica, revista de
prestígio internacional, também propriedade da SPM e editada pela European
Mathematical Society.

Os artigos dedicados a assuntos de natureza pré-universitária deverão,
de preferência, ser submetidos à Gazeta de Matemática.

As actividades da SPM, nomeadamente das suas Delegações Regionais e
Secções, são noticiadas com regularidade no Boletim.

As opiniões expressas pelos autores dos artigos publicados no Boletim
não representam necessariamente posições da SPM.

Os Editores das Secções são os únicos responsáveis pela aceitação de
artigos nas Secções que dirigem. A Secção Opinião — Cartas ao Director é da
exclusiva responsabilidade da Directora do Boletim. Todos os outros traba-
lhos serão enviados pelos editores a Referees especializados para aconselharem
sobre a respectiva publicação (com eventuais alterações).

Os manuscritos devem ser submetidos em http://revistas.rcaap.
pt/BoletimSPM ou enviados por correio electrónico para um dos editores.
Agradece-se o envio da versão pdf do texto. Os autores devem indicar as
respectivas instituições, bem como os seus endereços de correio electrónico.
Os trabalhos submetidos devem incluir um sumário em português e em inglês,
e uma lista de palavras-chave nestas duas línguas. Recomenda-se vivamente
que os trabalhos sejam preparados em LATEX. A bibliografia deve seguir o
padrão habitual no LATEX.

Endereço para correspondência:
Boletim da Sociedade Portuguesa de Matemática
Av. da República, 45–3o E, 1050–187 Lisboa

http://revistas.rcaap.pt/BoletimSPM
http://revistas.rcaap.pt/BoletimSPM


da Sociedade Portuguesa de Matemática

4 euros

77
77

Número

    dezeMbro 
2019

[semestral]

Universidade de Lisboa, 2017
Universidade do Porto, 2019

Matemáticos Portugueses pelo Mundo 


	Prologue
	Introduction
	Single-agent control problem
	A constrained minimization problem for N agents
	A variational problem
	Existence of a solution
	Uniqueness of solutions
	Price as a Lagrange Multiplier

	Introduction
	A brief history
	Family Floer theory

	Orbifold spheres
	Our example
	The Fukaya algebra

	The mirror
	Potential
	Closed mirror symmetry
	Open mirror symmetry

	Introduction
	The Navier–Stokes–Maxwell systems
	Coupling I
	Coupling II
	Coupling III
	Coupling IV

	A global existence result
	Endpoint parabolic estimates
	Introduction and general theory
	Big Cotangent Bundle
	Quotient singularities and local asymptotic Riemann-Roch for orbifold mX1

	Theorems
	Resolutions with big cotangent bundle
	Deformations of smooth hypersurfaces with big X1

	Introduction
	Knots and the Alexander polynomial
	Knots and links
	The Alexander polynomial
	A dynamical definition of the Alexander polynomial

	Some symplectic geometry
	Classical mechanics and symplectic geometry
	Pseudoholomorphic curves

	Symplectic knot invariants
	From knots to Lagrangians and Legendrians
	Knot contact homology
	Augmentations

	The Alexander polynomial from the augmentation polynomial
	From flow loops to pseudoholomorphic annuli
	Frompseudoholomorphicannulitoknotcontacthomology
	Outlook

	Introduction
	The modular method
	Elliptic curves
	Modular forms
	Modularity
	Galois representations
	Ribet's level lowering theorem
	The proof of Fermat's Last Theorem
	Some Historical Remarks


	Fermat's Last Theorem over Number Fields
	Historical background
	The asymptotic Fermat's conjecture

	The modular method over totally real fields
	The case of Q(2)
	The contradiction step
	Modularity and Irreducibility
	A refined level lowering

	Results over totally real fields
	S-unit equations
	The quadratic case
	FLT over Q(5)


	Introduction
	Calibrated Geometry and Holonomy
	Geometric Structures
	Stable Forms and Calibrations

	Calabi–Yau Manifolds
	G2-Manifolds
	Introduction
	Interval exchange transformations
	Translated cone exchange transformations
	Embedding interval exchange transformations into piecewise isometries
	Existence of invariant curves
	What is Symplectic Geometry?
	What are Hamiltonian Torus Symmetries?
	What are Symplectic Toric Manifolds?
	Epilogue – all the way from Archimedes
	Introduction
	Fourier restriction theory
	Sharp Fourier Restriction Theory
	A sharp L2–L4 result
	A sharp L2–L6 result

	Notation
	Outline

	Step 1: Calculus of variations
	Step 2: Symmetrization
	Step 3: Operator theory
	Step 4: Lie theory
	Step 5: Probability theory
	Proof of Theorem 1
	Extensions, generalizations, and open problems
	Other exponents.
	Higher dimensions
	C-valued maximizers
	Open problems

	Introduction
	Representations of finite-dimensional algebras
	Finite representation type
	Torsion pairs
	Torsion-finiteness

