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ABSTRACT - Delimitation of areas subject to flooding is crucial to understand water
dynamics and fluvial changes. This study analyzed the potential of C-band Synthetic Aper-
ture Radar (SAR) images acquired by the Sentinel-1 satellite in 2017, 2018, and 2019 to
delineate flooded areas in the Central Amazon. The images were processed by the Artificial
Neural Network Multi-Layer Perceptron (ANN-MLP) and two K-Nearest Neighbor (KNN-7
and KNN-11) machine learning (ML) classifiers. Pre-processing of Single Look Complex
(SLC) SAR images involved the following methodological steps: orbit-file application; radio-
metric calibration (0°); Range-Doppler terrain correction; speckle noise filtering; and con-
version of linear data to backscattering coefficients (units in dB). We applied the Lee filter,
with a window size of 3x3, for speckle filtering. A set of 6000 randomly distributed samples
for training (70%), validation (20%), and test (10%) was obtained based on visual interpre-
tation of Sentinel-2 optical satellite image acquired in the same years of SAR images. We
found the largest flooded areas in 2019 in the study area (municipality of Parintins and
Urucard, Amazonas River, Brazil): 6244km? by the ANN-MLP classifier; 6268km? by KNN-
7; and 6290km? by KNN-11, while the smallest flooded areas were found in 2018: 5364km?
by ANN-MLP; 5412km? by KNN-7; and 5535km?* by KNN-11. The three classifiers presen-
ted Kappa coefficients between 0.77 and 0.91. ANN-MLP showed the best accuracy. The
presence of shadow effects in the SAR images increased the commission errors.
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RESUMO - DELIMITAGAO DE AREAS INUNDADAS COM BASE EM DADOS
SAR SENTINEL-1 PROCESSADOS ATRAVES DE APRENDIZAGEM DE MAQUINA:
UM ESTUDO DE CASO NA AMAZONIA CENTRAL, BRASIL. A delimitagio de areas
sujeitas a inundagoes é crucial para entender a dindmica hidrica e as mudangas fluviais. Este
estudo analisou o potencial de imagens de radar de abertura sintética (SAR) adquiridas na
banda-C pelo satélite Sentinel-1 em 2017, 2018 e 2019 para delinear areas inundadas na
Amazoénia Central. As imagens foram processadas pela Rede Neural Artificial Multi-Layer
Perceptron (RNA-MLP) e dois classificadores de aprendizagem de méquina (ML) K-Nearest
Neighbor (KNN-7 e KNN-11). O pré-processamento de imagens SAR Single Look Complex
(SLC) envolveu as seguintes etapas metodologicas: aplicagdo do orbit-file; calibragao radio-
métrica (0°); corregdo de terreno Range-Doppler; filtragem de ruido speckle; e conversdo de
dados lineares para coeficientes de retroespalhamento (unidades em dB). O filtro de Lee
com tamanho de janela de 3x3 foi aplicado para filtragem do ruido speckle. Um conjunto de
6000 amostras distribuidas aleatoriamente para treino (70%), validagao (20%) e teste (10%)
foi obtido com base na interpretagdo visual da imagem do satélite 6ptico Sentinel-2 adqui-
ridas no mesmo ano das imagens de radar. As maiores dreas alagadas foram encontradas em
2019 na area de estudo (municipios de Parintins e Urucard, Rio Amazonas, Brasil): 6244km?
pelo classificador RNA-MLP; 6268km? pelo KNN-7; e 6290km? pelo KNN-11, enquanto as
menores areas alagadas foram encontradas em 2018: 5364km? pelo classificador RNA-MLP;
5412km? pelo KNN-7; e 5535km? pelo KNN-11. Os trés classificadores apresentaram coefi-
cientes Kappa entre 0,77 € 0,91. A RNA-MLP apresentou a melhor precisdo. A presenga de
efeitos de sombra nas imagens SAR aumentou os erros de comissao.

Palavras-chave: Detegao remota; recursos hidricos; classificadores de imagens;
inundagao.

RESUME - DELIMITATION DES ZONES INONDEES SUR LA BASE DES DON-
NEES SAR SENTINEL-1 TRAITEES PAR UAPPRENTISSAGE AUTOMATIQUE: UNE
ETUDE DE CAS EN AMAZONIE CENTRALE, AU BRESIL. La délimitation de zones
sujettes aux inondations est cruciale pour comprendre la dynamique hydrique et les change-
ments fluviaux. Cette étude a analysé le potentiel des images radar a ouverture de synthé-
tique (SAR) acquises en bande-C par le satellite Sentinel-1 en 2017, 2018 et 2019 pour déli-
miter les zones inondées en Amazonie Centrale. Les images ont été traitées par le Réseau de
Neurones Artificiels Multicouches Perceptron (ARN-MLP) et deux classificateurs d’apprentis-
sage automatique (ML) K-Nearest Neighbor (KNN-7 et KNN-11). Le prétraitement des
images SAR images complexes a visée simple (SLC) a impliqué les étapes méthodologiques
suivantes : application du fichier dorbite; calibration radiométrique (0°); correction de ter-
rain Range-Doppler; filtrage du bruit de chatoiement; et conversion des données linéaires en
coefficients de rétrodiffusion (unités en dB). Un filtre de Lee avec une taille de fenétre de 3x3
a été appliqué pour filtrer le bruit de chatoiement. Un ensemble de 6000 échantillons assi-
gnés au hasard pour la formation (70%), la validation (20%) et les tests (10%) a été obtenu a
partir de linterprétation visuelle de 'image satellite optique Sentinel-2 acquise pour la
méme année que les images radar. Les plus grandes zones inondées ont été trouvées en 2019
dans la zone détude (municipalité de Parintins et Urucard, la Riviére Amazonas, Brésil) :
6244km? selon le classificateur RNA-MLP; 6268km? pour KNN-7; et 6290km? pour KNN-
11, alors que les plus petites zones inondées ont été trouvées en 2018: 5364km? pour le
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classificateur RNA-MLP; 5412km?* pour KNN-7; et 5535km?* pour KNN-11. Les trois classi-
fieurs présentaient des coeflicients Kappa compris entre 0,77 et 0,91. CARN-MLP a montré
une meilleure précision. La présence deffets dombre dans les images SAR a augmenté les
erreurs de commission.

Mots clés: Télédétection; ressources en eau; classificateurs d’images; inondation.

RESUMEN - DELIMITACION DE AREAS INUNDADAS BASADA EN DATOS SAR
SENTINEL-1 PROCESADOS MEDIANTE APRENDIZAJE AUTOMATICO: UN ESTU-
DIO DE CASO DE AMAZONIA CENTRAL, BRASIL. La delimitacién de areas sujetas a
inundaciones es crucial para comprender la dinamica del agua y los cambios fluviales. Este
estudio analizo el potencial de las imégenes de radar de apertura sintética (SAR) adquiridas
en la banda-C por el satélite Sentinel-1 en 2017, 2018 y 2019 para delinear dreas inundadas
en la Amazonia Central. Las imégenes fueron procesadas por la Red Neuronal Artificial de
Perceptron Multicapa (RNA-MLP) y dos clasificadores de aprendizaje automatico (ML)
K-Nearest Neighbor (KNN-7 y KNN-11). El preprocesamiento de imagenes SAR complejas
de una sola mirada (SLC) involucré los siguientes pasos metodoldgicos: aplicacion del
archivo de drbita; calibracién radiométrica (°); correccion del terreno Range-Doppler; fil-
trado de ruido moteado; y conversion de datos lineales en coeficientes de retrodispersion
(unidades en dB). Se aplico El filtro Lee con un tamario de ventana de 3x3 para filtrar el
ruido moteado. Se obtuvo un conjunto de 6000 muestras asignadas aleatoriamente para
entrenamiento (70%), validacion (20%) y prueba (10%) en base a la interpretacion visual de
la imagen del satélite dptico Sentinel-2 adquirida el mismo afo que las imdgenes de radar.
Los humedales mds grandes se encontraron en 2019 en el area de estudio (municipio de
Parintins y Urucara, Ri6 Amazonas, Brasil): 6244km? por el clasificador RNA-MLP; 6268km?*
por KNN-7; y, 6290km? por KNN-11, mientras que, los humedales mds pequenos se encon-
traron en 2018: 5364km? por el clasificador RNA-MLP; 5412km? por KNN-7; y 5535km? por
KNN-11. Los tres clasificadores presentaron coeficientes Kappa entre 0,77 y 0,91. RNA-
-MLP mostré la mejor precision. La presencia de efectos de sombra en las imédgenes SAR
aumento los errores de comision.

Palabras clave: Sensores remotos; recursos hidricos; clasificadores de imagenes;
inundacion.

I. INTRODUCTION

In the Brazilian Amazon region, rivers and their tributaries contain an extensive
floodplain that corresponds to approximately 12% of the humid area of the Amazon
basin. These floodplains present enormous terrestrial and aquatic biodiversity (Melack &
Hess, 2010). Accurate flood monitoring not only in the Brazilian Amazon but also other
regions of the world is important for increasing the security of local inhabitants and for
reducing infrastructure damages and income losses. Besides, the frequency and magni-
tude of flood events are expected to increase due to climate change.

Flood monitoring can be conducted based on satellite observations, because of their
ability to cover large areas, at high repetition and low costs. Inundation detection has
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been addressed based on several optical satellites (e.g., Landsat, Sentinel-2, and Moderate
Resolution Imaging Spectroradiometer onboard Terra and Aqua platforms) operating
at different spatial, spectral, and temporal resolutions. They exploit the high level of
absorption of radiation incident into the water bodies in the near-infrared and shortwave
infrared spectra relative to the visible spectrum. However, the Amazon tropical region
faces persistent cloud cover conditions most of the year, making the use of optical remote
sensing data limited.

Synthetic Aperture Radar (SAR) remote sensing can be an important source of infor-
mation for mapping flooded areas in the Brazilian Amazon because of its ability to
acquire images under cloud-covered conditions. SAR sensors can identify inundation
because of the typically lower backscattering returns from water bodies relative to other
features. Basically, flooded areas in single SAR images are discriminated from non-
flooded areas by thresholding backscatter values at different polarizations (Matgen et al.,
2011), subtracting backscattering coeflicients between two images (Schlaffer et al., 2015),
or calculating variance in time series (DeVries et al., 2020).

More recently, machine learning (ML) and deep learning (DL) classifiers are becom-
ing quite popular in the field of remote sensing image classification. Although there is an
overall agreement that DL is more powerful than ML, it requires bigger computational
capabilities and so it may not be operational for studies involving large areas such as the
Brazilian Amazon. ML-based image classification can be divided into supervised, unsu-
pervised, and reinforcement learning categories. The two most used supervised ML clas-
sifiers are the Random Forest (RF) and Support Vector Machine (SVM) because they usu-
ally provide high accuracies in different types of land use and land cover classifications,
including flooded and non-flooded classes (Banks et al., 2019; Millard & Richardson,
2013; Mohammadimanesh et al., 2018). The other popular supervised algorithms include
naive Bayes and neural networks (Acharya et al., 2019; Boateng et al., 2020; Nemni et al.,
2020). Several authors have reported that divergences in the classification results can be
substantial due to the differences in sensor systems, timing, and data processing algo-
rithms (e.g., Aires ef al., 2013; Pham-Duc et al., 2017; Rosenqyvist et al., 2020).

This study aims to evaluate the potential of the Artificial Neural Network Multi-Layer
Perceptron (ANN-MLP) and two k-Nearest Neighbor (KNNs) algorithms to delineate
flooded areas in a stretch of the Amazonas River in Central Amazon using Sentinel-1
SAR time series from 2017, 2018, and 2019. To our best knowledge, there is no study
evaluating these ML classifiers to identify flooded areas in the Brazilian Amazon, espe-
cially using Sentinel-1 SAR data sets. Among the 29 studies listed recently by Fleischmann
et al. (2022) involving inundation mapping by remote sensing over the Brazilian Ama-
zon, nine relied on SAR data, all acquired by the ALOS/PALSAR mission. Currently, the
only SAR data freely available on the internet are the ones acquired by the European
Space Agency (ESA) Sentinel-1 satellite (Torres et al., 2012). We addressed the following
research question in this study: what are the performances of the ANN-MLP and KNN-
based ML algorithms to map flooded areas in tropical rainforests based on Sentinel-1
satellite data?
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II. MATERIALS AND METHODS
1. Study area

The study area is located between the municipalities of Urucara and Parintins in the
Amazonas State, Brazil, comprising part of the Amazonas River. It is located between the
following coordinates: 22°30'48.84% and 22°37'59.16° of south latitude; and 44°31'35.68>
and 44°43'25.94” of west longitude (fig. 1). The typical climate is classified as Af, that is,
tropical rainforest climate without dry season, in the Koppen classification system, with
average annual precipitation ranging from 1355mm to 2839mm (Alvares et al., 2014).
The average annual temperature varies from 25.6°C to 27.6°C. The flooding period occurs
mostly between May and July.

Urucara, AM
£

A s 58° W 57° W 56° W

a 0 160 km
L |

World Geodetic System - WGS - 84,
Projection: Universal Transveorse Mercator - UTM,
Central Meridian: -57°, Zone: 21 K

Fig. 1 - Location of the study area in the Central Amazon. The image at right acquired in 2019 by the
Sentinel-1 SAR, at the VV polarization. Colour figure available online.

Fig. 1 - Localizagdo da drea de estudo na Amazonia Central. A imagem a direita foi captada em 2019
pelo satélite Sentinel-1 SAR, na polarizagdo VV. Figura a cores disponivel online.

2. Remote sensing data sets

This research used three Sentinel-1 SAR images acquired in the VV and VH polariza-
tions during the following flooding periods: 23 June 2017; 18 June 2018; and 7 July 2019.
The images were obtained in descending, Interferometric Wide (IW) mode, and processed
at Level-1, which includes pre-processing and data calibration (table I).



92 Magalhaes, I. A. L., de Carvalho Junior, O. A, Sano, E. E. Finisterra, LVIII(123), 2023, pp. 87-109

Table I - Sentinel-1 SAR image acquisition modes.

Quadro I - Modos de aquisi¢io das imagens Sentinel-1 SAR.

Swath Width

Incident Spatial (km) Polarization

Angle (°) Resolution

20° - 45 HH or VV or (HH and HV) or (VV and VH)

HHor VV

* SM = StripMap; IW = Interferometric Wide; EW = Extra Wide; and WV = Wave.
Source: ESA (2017)

We also selected Sentinel-2 MultiSpectral Instrument (MSI) images acquired near the
Sentinell SAR overpasses (2 July 2017; 22 June 2018; and 29 July 2019). In this study, the
Sentinel2 was used to collect sampling data for training, validation, and testing. The Sen-
tinel-2 MSI images were radiometrically corrected. They have the potential for mapping
flooded areas at regional scales, as they are acquired under the spatial resolutions of 10m
to 60m and temporal resolution of 10-days (Du et al., 2018) (table II).

Table II - Sentinel-2 MSI image acquisition modes.

Quadro IT - Modos de aquisi¢do dos dados da imagem Sentinel-2 MSL

Spatial Resolution (m) Band Spectral Bands Wavelength (nm)
B2 Blue 490
B3 Green 560
10
B4 Red 665
B8 Near Infrared 842

Source: ESA (2017)
3. Methodological approach

Figure 2 shows the main steps of the methodological approach used in this study. We
conducted the following pre-processing steps: correction by the orbit file; terrain correc-
tion; radiometric calibration; conversion of the data to decibels; and spatial filtering. The
images were pre-processed by the image orbit file, containing accurate information on
the satellite’s position, trajectory and speed during the image capture process (ESA,
2017). The terrain correction was based on the digital elevation model (DEM) acquired
by the Shuttle Radar Topographic Mission (SRTM) at ~3 arc sec. The radiometric cali-
bration was performed using the Sigma Look-Up Table (LUT) file to generate images
converted into backscattering coefficients (0°).

SAR images present speckles that originate from destructive or additive interference
from the radar return signal for each pixel (Lee & Pottier, 2009). We used Lee filter with
a 3x3 window size for processing VV- and VH-polarized images. The Lee filter trans-
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forms the multiplicative model into an additive model by expanding the first-order Tay-
lor series around the average. This technique uses local statistics to minimize the mean
square error (MSE) through the Wiener filter. In this way, the Lee filter is an adaptive filter
that has the characteristics of preserving edges (SantAnna, 1995). Lee’s filter assumes that
the mean and variance of the pixel of interest are equal to the mean and variance of all
local pixels, which refer to the inside of the adopted window.

T ————————— - -, - -,

’ ~ s
’ = \ 4 o T \
| SAR data preparation J : ] | Training, validation, and test 1
1 ] ]
] Sentinel 1-SAR Processing: simple ratio : 1 :
: images from 2017, (VH/VV) and normalized |3 : 6000 water and no-water samples from Sentinel-2 |
1 2018, and 2019 difference (VH-VV/VH+VV) : : MSI images from 2017, 2018, and 2019 :
] >
: Preprocessing: orbit file, radiometric : : !
1 calibration, range-Doppler terrain 1 1 Training: Validation: 1200 Test: 600 I
1 correction, speckle filtering, and linear : 1‘ 4200 samples samples samples :
% conversion to backscattering (dB) 7 \
™ o o o \h—__-_-nn-———u a——_-n——ﬂ-a"
[
ORI
. < % ¥’ 1
! Machine Learning classification : f | Accuracy assessment 1
1 1
1 1
i — , i | [ overan Kappa !
1| Artificial neural K-Nearest Neighbors | = Accuracy index e 1
1| network (ANN) (KNN-7 and KNN-11) | | 1 cNemar
: : 1 statistics 1
1 1 { Omission Commission :
{ 'l 1 Ermror Error 1
\ ’ L3 ]

~

L S R L U N S g N ————— — — ———— — — —— - - - -

Fig. 2 - Methodological flowchart with the main steps for classifying flooding areas in the Central
Amazon in 2017, 2018, and 2019.

Fig. 2 - Fluxograma metodologico com as principais etapas para classificagdo de dreas inunddveis na
Amazonia Central em 2017, 2018 e 2019.

We used the following image processing software: SI1-Toolbox available in the Sentinel
Application Platform (SNAP) version 7.0.0; ArcGIS version 10.5; and Abilius, which uses
the OpenCV library of artificial intelligence algorithms in the C++ programming lan-
guage.

Sentinel-1 images converted into backscattering coefficients were normalized based
on their averages and standard deviations (eq. 1 and 2).

VvV -VV
Normalized VH = ——— =2
VVid (Eq 1)
VH - VH
Normalized VV = ——— =

VHstd (Eq 2)
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The normalized images were also processed to generate the simple ratio (SR) index
and normalized difference (ND) index involving VH and V'V polarizations (Hird et al.,
2017; Tsyganskaya et al., 2018) (eq. 3 and 4).

- VH
A% (Eq.3)

b VH-VV
~ VH+VV (Eq. 4)

As pointed out by Boateng et al. (2020), the most widely used nonparametric ML tech-
niques include ensembles of classification trees such as Random Forest (RF) (Breiman,
2001), Artificial Neural Networks (ANNs) (Brown et al., 2000), K-Nearest-Neighbors (KNN)
(Breiman & Ihaka, 1984), Support Vector Machines (SVMs) (Cortes & Vapnik, 1995). In this
study, we selected two classifiers, the ANN and two KNN (KNN-7 and KNN-11) algori-
thms to verify the performance of these techniques to classify flooded areas in the region of
interest. The widely used RF classifier was not selected because we are interested in only two
classes (water and non-water), making it impossible to develop a random forest, ensemble
architecture that is the basis of these algorithms. In this ensemble architecture, several
classification trees are trained based on subsets of the training data (Abdi, 2020). We did not
evaluate SVM either because, together with RE, it has been intensively assessed in literature
over several different environmental and terrain conditions.

The ANN adopted in this study was the Multilayer Perceptron (MLP) type with the
backpropagation learning algorithm with insertion of the momentum term, which
optimizes the network processing with a learning rate of 0.05 and a momentum factor
of 0.5. According to Atkinson and Tatnall (1997), there are several advantages of neural
networks, such as the efficient manipulation of large data sets and their use in the classi-
fication of remote sensing data without assuming a normal distribution. In the classifica-
tion by neural networks, we used the Abilius program developed by the University of
Brasilia, Brazil, which is based on the OpenCV library. We used the logistical activation
function in which the output result of the neuron, given a set of input signals, assumes
real values between zero and one to facilitate the network training process and to simplify
its structure (eq. 5):

g = 1+ebu (Eq.5)

where 5 = real constant associated with a slope level of the logistic function related to its
inflection point; and y = activation potential produced by the difference in value pro-
duced between the linear combination and activation threshold.

The KNN classifier is a non-parametric method based on k-training samples closest
to the behavior of the analyzed data (Cover & Hart, 1967). The calculation of the nearest
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neighbor was performed using the Euclidean distance method. In this classification tech-
nique, the k-value refers to the number of neighbors to be used in determining the class
assigned by the values of most of the nearest pixels that must be assigned. There are sev-
eral studies in the literature with different values of k (Alves et al., 2013). The unknown
sample is assigned to the most common class of the k-training samples that are nearest in
the feature space to the unknown sample (Maxwell et al., 2018). In this study, we assigned
k-values of seven and eleven. These numbers are a compromise between too-low and too-
high k-values. Low k-values will produce complex decision boundaries while high k-values
will result in greater generalization (Maxwell et al., 2018).

The training, validation, and testing data set was produced by manual sample collec-
tion of 6000 pixels (denoized time signatures) containing two classes (water and non-wa-
ter), with equal distribution (3000 samples per class), showing well-distributed sampling
design (fig. 3). We considered a total of 4200-pixel samples for training (70%), 1200-pixel
samples for validation (20%) and 600-pixel samples for testing (10%), according to the
methodology defined by Kuhn and Johnson (2013) and Larose and Larose (2014). The
training of ANNs considered different architectures for VV, VH, SR, and ND images. The
number of neurons in the hidden layer was determined by the trial and error methods
(Hirose et al., 1991). The selected stopping criterion was the number of learning cycles,
defined as 10 000. At the end of the training process, 180 sets of independent samples
were collected to validate the classification results. The selection of the best classifier was
based on the lowest values of mean squared error (MSE).

The accuracy of the classification was analyzed using the confusion matrix, omission
and commission errors, overall accuracy, and Kappa index (Congalton & Green, 1993).
Overall accuracy (OA) and the Kappa index were calculated using equations 6 and 7:

i=1 (Eq. 6)

where 1, = diagonal elements of the confusion matrix; # = total number of observations;
and m = number of themes mapped.

Yixi - T (g + xH)

n? - YM (x; + x+i) (Eq.7)

Kappa =

where n = total number of observations; and x,and x+i are the sums in row and column.

Kappa is a coefficient that varies from zero to one, representing a general agreement
index. Kappa values are associated with the quality of the classification. Cell values were
considered for measuring omission and commission errors. The marginal cells in the
lines indicate the number of pixels that were not included in a particular category, that is,
express the error known by default. Cells on the diagonals represent the pixels that were
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not included in no category, expressing the error of commission (Congalton & Green,
1993). The omission error (OEi) and the commission error (CEj) were calculated for the
thematic classes of the classification (eq. 8 and 9):

OFi XX - X

2 X;; (Eq. 8)
CEj = XX - Xj

ZX; (Eq. 9)

where XX, - X, = sum of waste per line; £X, - X = sum of waste per column; and X, = row
or column marginal.

-58: w -57:’ w -56:’ w

-2° S r-2°S

-3° S+ F-3°S

16|0 km

World Geodetic System - WGS-84,
Projection: Universal Transverse Mercator - UTM
Central Meridian: -575 Zone: 21 K

58" W 57° W -56° W
Fig. 3 — Location of the samples for training (green circle), validation (brown square), and test
(yellow triangle). Colour figure available online.

Fig. 3 - Localizag¢do das amostras para treino (verde), validagio (marron) e teste (amarelo).
Figura a cores disponivel online.

We also conducted another validation strategy based on the Sentinel-2 MSI scenes
from June and July of 2019 and the McNemar chi-squared test (c?). The accuracy analysis
used 88 systematic samplings with a 10km diameter in regular grids of 17x17km? (fig. 4).
We disregarded the cloud-covered samples in the Sentinel-2 images.
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Fig. 4 - Location of systematic samples for validation of flooding maps produced by the machine
learning classifiers. Colour figure available online.

Fig. 4 - Localizagio das amostras sistemdticas para validagdo dos mapas de inundagio produzidos pelos
classificadores de aprendizagem de mdquina. Figura a cores disponivel online.

McNemar’s ¢* test was used considering a statistical level of significance of 0.05 and
one degree of freedom to analyze the differences in measured areas between visual inter-
pretation and classified images. According to McNemar (1947) and Leeuw et al. (2006),
McNemar’s analysis is a non-parametric statistical test to analyze pairs and has been
widely used in remote detection because it can use the same validation set (Eq. 10):

_ (fiz— f20)?
7= fiz + fa1 (Eq. 10)

where f,, = number of wrong classifications by Methodl, but correctly classified by
Method2; and f,, = number of correct classifications correct by Method1, but incorrectly
classified by Method2.

This precision comparison based on related samples is quite popular in the literature
(Abdi et al., 2020; Manandhar et al., 2009; Mayer et al., 2021; Wang et al., 2018). The
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McNemar statistical test was performed at the level of significance of 0.05 and one degree
of freedom between the image classifiers to analyze whether the classified images differ
statistically.

III. RESULTS
1. Backscattering values of flooded areas

Table III presents the statistical results for the backscatter coefficients of the three-
-year images in dual polarization from the Sentinel-1 SAR satellite before and after the
data normalization. The results of the normalization showed a slight increase in the mean
values compared to the non-normalized images. The value of variance and standard
deviation remained identical with the image before adjustment. Decreasing mean values
in the fitted images represents a greater concentration of the distribution data, compres-
sing the backscatter values for the image. In other words, the decrease in the mean and
standard deviation values indicates a low dispersion of the backscattered data. The cha-
racteristics and multi-temporal patterns of the backscatter values were similar to the VH
and VV polarizations, as well as to the SR and ND images for the three years.

Table ITI - Statistical results before and after normalization of Sentinel-1 SAR images from 2017 to 2019.

Quadro III - Resultados estatisticos antes e apos a normalizagdo das imagens Sentinel-1 SAR de 2017 a 2019.

Overpass Normalization Mean Mean Standard Standard Variance Variance

P VH VV  Deviation VH Deviation VV VH Vv

23 June 2017 Non-normalized -10.68 -7.08 8.77 7.14 76.91 50.97
Normalized -9.46 -6.09 8.77 7.14 76.91 50.97

12 July 2018  Non-normalized -9.96  -6.29 7.69 5.76 59.13 33.17
Normalized -8.67 -5.20 7.69 5.76 59.13 33.17

17 June 2019  Non-normalized -10.50 -6.63 7.86 5.93 61.77 35.16
Normalized -9.16  -5.52 7.86 5.93 61.77 35.16

Figure 5 shows the box plot in a range of grouped multi-temporal backscatter values,
measured in all scenes (VH, VV, SR, and ND). In comparison to the backscatter values of
water bodies in the time series, there was a considerable increase in the average backscat-
ter values in the following order: VH, VV, SR, and ND. The backscatter of water bodies in
the VH image was the lowest among the three scenes, with an average value of -25.8dB in
the upper limit and -20.0dB in the lower limit and with backscattering in the value of
-24.2dB in the first quartile. In contrast, the VV polarization presented the largest data
series between the lower and upper limits, with the upper limit lower value at -23.3dB
and the upper limit at -13.3dB, with 75% of its backscatter values being represented by
-15.8dB, as shown in quartile-3.
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Fig. 5 - VH, VV, SR and ND backscatter values over water bodies obtained by averaging the Sentinel-1
scenes from 2017, 2018, and 2019. Colour figure available online.

Fig. 5 - Valores médios de coeficientes de retroespalhamento para corpos de dgua nas polarizacées VH, V'V,
SR e ND relativos aos compésitos adquiridos em 2017, 2018 e 2019. Figura a cores disponivel online.

The VH polarization showed the lowest backscatter values for the water body due to
the record of the backscattered value of the return signal on the antenna occurring in the
horizontal direction. The backscatter values of the indices became more aggregated com-
pared to the scalar values of the polarizations VH and V'V, with median, quartiles, and
closest limits for the index images.

2. Best ANN model for flooded area detection

The ANN model with the combination of VV and VH polarizations as well as SR and
ND presented accurate results in the network learning and training tests, with: 91.3% and
91.9% of overall accuracies for the image acquired in 2017; 90.7% and 90.9% accuracies
for 2018; and 90.2% and 90.7% accuracies for 2019. The ANN architecture with the best
results was obtained using four neurons in the input layer, two hidden inner layers with
eight neurons, and two neurons in the output layer (4-8-8-2 model) (fig. 6).

In the learning phase of the three ANNS, the training errors were slightly higher
than the test errors. However, with the increasing number of trainings in some
moments, these errors were equalized. The errors stabilized with values of root mean
square error (RMSE) in 0.2. The maximum cycles did not exceed 10 000 iterations.
These values demonstrate that the maximum learning limit of ANN with 10 000 itera-
tions is sufficient for training, which results in high precision, accuracy, and lower
computational processing cost (fig. 7).
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Fig. 6 — The most appropriate artificial neural network model for classifying water bodies
in the study area (4-8-8-2). Colour figure available online.
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Fig. 6 — Arquitetura da rede neural artificial mais apropriada para classificar corpos dégua
na drea de estudo (4-8-8-2). Figura a cores disponivel online.
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Fig. 7 - Mean square error (MSE) values in relation to on the number of iterations in the training
of Artificial Neural Networks (ANN) for scenes acquired in 2017 (a), 2018 (b), and 2019 (c).
Colour figure available online.

Fig. 7 - Valores do erro quadrdtico médio (MSE) em relagio ao niimero de iteragdes no treino
de Redes Neurais Artificiais (ANN) para os compdsitos adquiridos em 2017 (a), 2018 (b) e 2019 (c).
Figura a cores disponivel online.

3. Classification results

Figure 8 shows the classification of the flooded areas in the Central Amazon region
using the ANN, KNN-7, and KNN-11 classifiers in the period of largest flood pulse
during the years 2017, 2018, and 2019. The blue-colored areas correspond to areas classi-
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fied as water bodies. The classifiers delimited precisely the main channel of the Amazon
River, as well as the flooded areas adjacent to the river channel. In general, the classifica-
tion through ANN generated products classified with slightly higher clarity when com-
pared to the KNN classifiers.

The noises classified as upper lands increased from KNN-7 to KNN-11, indicating
that the increase in the Euclidean distance from seven to eleven contributes to the increase
of confusion between the water body and the upper land. In addition, there was a mis-
classification of water bodies for all images. These areas are shown as random blue dots
mainly after the boundary of the tributaries of the Amazon River, as well as the presence
of random pixels scattered in various regions spread in the entire study area.

The largest presence of water bodies was found in the image acquired in 2019, with a
total area of 6244km?* (ANN), 6268km? (KNN-7), and 6290km? (KNN-11). In other
words, the KNN-7 and KNN11 algorithms presented the largest occurrences of water
bodies, as compared with the ANN classification.

58° W 57°W 56° W
ANN  Flooded area: 5966 k' 2017

KNN-7 I':Iooded area: 6610 krn2 20I17 KNN-11 Flyooded area: 60é6 ki 201'7

3° Sk

ANN KNN-7  Flooded area: 5412kmi ~ 2018| | KNN-7  Flooded area: 5412 kmi 2018

[

ANN  Flooded area: 6244 ki 2019| | KNN-7  Flooded area: 6268 ki 2019| | KNN-11  Flooded area: 6200 knf 2019

0 50 km f:‘
-, .

Fig. 8 - Delineation of flooded areas in the Central Amazon region through the ANN, KNN-7,
and KNN-11 classifiers applied in the Sentinel-1 images acquired in 2017, 2018, and 2019.
Colour figure available online.

Fig. 8 - Delimitagdo de dreas inundadas na regido da Amazoénia Central através da aplicagdo dos
algoritmos ANN, KNN-7 e KNN-11 nos compésitos Sentinel-1 adquiridos em 2017, 2018 e 2019.
Figura a cores disponivel online.
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4. Accuracy analysis

The image classification by ML showed Kappa coefficient values from 0.77 to 0.91
(table IV). ANN showed higher accuracy for all Sentinel-1 scenes. Second in the classifi-
cation order, the KNN7 presented results close to the ANN. The KNN-11, on the other
hand, presented the highest differences in the accuracies among the three classifiers,
obtaining the lowest Kappa index (0.77) in the image acquired in 2018.

There was no discrepancy between Kappa indexes and the overall accuracies. The
classifications by ML showed high overall accuracy values, with ANN presenting the
highest values, with 97% in the image from 2019. The lowest value was presented by
KNN-11, with 92%, in the image acquired in 2018.

Table IV - Kappa coeficient, overall accuracy, and omission and commission errors
in the SAR images processed by the ANN, KNN-7, and KNN-11 classifiers.

Quadro IV - Coeficiente Kappa, precisio geral, erros de omissio e comissdo
nas imagens SAR obtidas pelos classificadores ANN, KNN-7 e KNN-11.

Satellite Overpass Kappa Overall Accuracy ~ Commission Error Omission Error
(%) (%) (%)
ANN
23 June 2017 0.87 96 8.99 2.99
12 July 2018 0.85 93 10.90 3.98
17 June 2019 0.91 97 6.99 1.99
KNN-7
23 June 2017 0.85 95 10.9 4.9
12 July 2018 0.82 95 12.9 59
17 June 2019 0.88 96 8.99 3.9
KNN-11
23 June 2017 0.83 94 17.9 8.9
12 July 2018 0.77 92 18.9 12.9
17 June 2019 0.85 95 11.5 5.7

The ANN classification technique obtained the lowest commission error, with 7.0%
and omission error of 1.9%, in the image from 2019. The largest commission and omis-
sion errors were measured in the image from 2018, classified by KNN-11, with a commis-
sion error of 18.9% and an omission of 12.9%. There was more commission error when
compared to the omission error in all products generated by the classifiers, proving that
the biggest classifier errors occurred in the definition of the drylands as the water body.

The image from 2018 was measured with the lowest presence of water bodies, which
was also the image that presented the largest errors and the worst statistical indices ana-
lyzed. Thus, it is inferred that due to the smaller grouping and the greater distance
between the pixels corresponding to the backscatter values of the water bodies was the
determining factor for obtaining the worst results obtained by the KNN classifier with
Euclidean distance of eleven.
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The classifiers produced an overall good performance in delineating water bodies,
especially the ANN and the KNN-7. They showed the lowest levels of noise in the images
(fig. 9). The results of the indexes showed that the ANN obtains the best performance in
comparison with the other classifiers. ANN and KNN-7 achieved similar levels of precision
in two of the three images, these images being classified with greater quantities of water
bodies. On the other hand, it was observed that the worst indices occurred in the KNN-11
classification and were obtained in the image with the least amount of water bodies.

Sentinel-2 R (4), G (3) and B (2) Sentinel-2 R (4), G (3) and B (2) Sentinel-2 R (4), G (3) and B (2)

Visual analysis: flooded area = 55.5%

Fig. 9 - Results of visual interpretation (Sentinel-2) and Machine Learning (ML) classification
(Sentinel-1) of three enlarged images acquired in 2019. Colour figure available online.

Fig. 9 - Resultados da interpretagdo visual (Sentinel-2) e classificagio pelo método
de Machine Learning (ML) (Sentinel-1) de trés imagens ampliadas que foram adquiridas em 2019.
Figura a cores disponivel online.



104 Magalhaes, I. A. L., de Carvalho Junior, O. A., Sano, E. E. Finisterra, LVIII(123), 2023, pp. 87-109

Table V shows the results of the McNemar test between the pairs of the three classifi-
cations, considering the different combinations of parameters. The ANN showed the best
results in the time series, despite obtaining the best values between the methods. The
ANN did not differ statistically from the KNN-7 classifier in the time-period. The KNN-11
classifier presented the highest value of x> with 4.37, in the image from 2018. This result
was statistically significant, rejecting the hypothesis of statistical equality between the
pairs of classifiers RNA x KNN-11 at the p-value of 0.05, since the calculated x* is higher
than the tabulated x> (3.84).

In general, the biggest confusion for image classifiers was to distinguish the water class
from other non-water targets with similar backscatter values. In this way, the presence of
the shadow effects was observed in all images, indicating that this effect was the biggest
cause of misclassification, with less interference only in ANN classification (fig. 10).

Table V — McNemar test between visual interpretation and ANN, KNN-7, and KNN-11 classifiers
shown in terms of x* values.

Quadro V - Teste de McNemar entre interpretagio visual e classificadores ANN, KNN-7 e KNN-11,
apresentados em termos de valores de y°.

Sentinel-1 Visual x Visual x Visual x ANN x ANN x KNN-7 x

Overpass ANN KNN-7 KNN-11 KNN-7 KNN-11 KNN-11
23 June 2017 2.10 2.36 3.63 2.64 2.94 2.86
12 July 2018 2.30 3.61 4.28™ 2.98 4.37% 2.77
17 June 2019 2.68 3.55 4.46™ 2.12 2.53 2.36

(*) represents statistical significance, with the calculated value of X* greater than the tabulated value at a significance level of 5% (3.84).

Fig. 10 — Shadow effects in the ANN classification over an enlarged portion of Sentinel-1 image
acquired in 2019. Colour figure available online.

Fig. 10 - Efeitos de sombreamento de relevo na classificagdo de imagens SAR pelo algoritmo ANN numa
porgdo da imagem adquirida pelo satélite Sentinel-1, em 2019. Figura a cores disponivel online.

IV. DISCUSSION

The C-band backscattering coefficients of flooded areas in 2017, 2018, and 2019 var-
ied from 10.68dB to 9.96dB in the VH polarization and from -7.08dB to -6.29dB in the
VV polarization in the study area. These values are quite higher than those found by
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Magalhées et al. (2022) for open water bodies in the Amazon River: -19dB in the VH
polarization and -14dB in the VV polarization. Conde and Muiioz (2019) reported that
backscattering intensity values of permanent water bodies are below -20dB. Moharrami
et al. (2021) applied a threshold value of -14.9dB to the Sentinel-1 scenes to delineate
flooded areas. Our higher values are probably due to the contribution of sparse shrubs
and trees that we find in flooding areas in the surface backscattering process.

The accuracy assessment based on Kappa index, omission and commission errors showed
overall accuracies of detecting flooded areas close to one another and higher than 90% for
all three classifiers. These values are comparable to or higher than the accuracies obtained
by other scientists who used Sentinel-1 SAR data for classifying flooded areas around the
world. For example, Twele et al. (2016) used a processing chain approach to detect flood
conditions in two test sites at the border between Greece and Turkey. They showed encour-
aging overall accuracies between 94.0% and 96.1%. Liang and Liu (2020), in their water and
non-water delineation study using four different thresholding methods, reached overall
accuracies ranging from 97.9% to 98.9% for a study area located in Louisiana State, USA.
Siddique et al. (2022) evaluated RF and KNN algorithms applied to Sentinel-1 images from
North India and concluded that C-band SAR data can detect changes in flood patterns over
different land cover types with overall accuracies ranging from 80.8% to 89.8%.

The comparison between visual analysis and the selected ML classifiers based on
three enlarged images (fig. 9) showed an overall underestimation of flooded areas for the
ML classifiers. However, the NcNemar y* test showed that the results from visual interpre-
tation and ML classifiers were statistically equal from each other. The only exceptions
were found for the KNN-11 applied in the scenes acquired in 2018 and 2019. The McNe-
mar test also showed that ANN x KNN-7 and ANN x KNN11 did not differ statistically
each other. These results indicate the existence of site-specific spatial heterogeneity within
the study area. In other words, the overall statistical results found for the entire study area
may differ depending on the local landscape conditions within the study area.

Figure 10 showed the presence of shadowing effects in the flood delineation, leading to
higher commission errors. This effect has been reported widely in the literature (e.g., Chen
& Zhao, 2022), even sometimes its presence in SAR images is used as an indicator of some
targets, mainly deforestation (Bouvet et al., 2018). Shadowing effects occur in SAR images
because of their mandatory side-looking geometry. In other words, shadows in SAR images
are related to areas in the terrain that cannot be reached by emitted radar pulses. As Senti-
nel-1 scenes are acquired in an almost north-south orbit (98.2° of inclination), most of the
pixels classified as flooded in the upper lands are also oriented approximately north-south.

V. CONCLUSION

The Sentinel-1 SAR images classified by ML algorithms showed good potential to
map flooded areas in the Central Amazon. The three tested algorithms produced accura-
cies ranging from 92% to 97%. ANN and KNN-7 classifiers showed better potential than
the KNN-11. Shadow effects appearing in non-flooded areas surrounding the flooded
areas increased the commission errors.
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The methodological approach used in this study may be suitable to map flooding
areas in other regions of the Brazilian Amazon, but no broader generalizations can be
made as the performance of the methods varies according to the local environmental and
biophysical conditions.

As SAR images are quite sensitive to texture, the addition of textural attributes
derived, for example, from the Gray Level Co-occurrence Matrix (GLCM), such as the
angular second moment, dissimilarity, entropy, and variance in the classification pro-
cedure may improve the classification results. More recent studies have demonstrated
the high performance of DL algorithms so they also should be tested to map flooded
areas. U-Net and tensor flow are the ones that are becoming quite popular in the DL
group of classifiers.
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