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Temporal clustering detection of disease in agricultural 
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A B S T R A C T

Information about temporal dynamics of plant diseases is of paramount importance for appropriate technologies 
development for diseases management in production systems. The major interest when studying a temporal point 
pattern is to detect temporal clustering of events. There are some methods available for events cluster detection over 
time. The majority of these methods has been developed to detect temporal clustering inhuman diseases. The temporal 
patterns analysisfor plant diseases are not very well described in the literature. In this study, we aimed to propose new 
methods, based on both empirical distribution function and Monte Carlo simulation, for testing the null hypothesis 
that a temporal point pattern is purely random. These methods are compared to the time K-function for detecting 
temporal clustering for incidence of citrus sudden death disease in orange trees. All methodologies were found to show 
good performance for analyzing temporal point patterns and they led to the detection of temporal clustering of the 
citrus sudden death disease in an orange trees planting.
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RESUMO
Informação sobre dinâmica temporal de doenças de plantas é de suma importância para o desenvolvimento de 
tecnologias apropriadas para o manejo de doenças em sistemas de produção. O principal interesse quando se estuda 
um padrão de ponto temporal é detectar agrupamento temporal de eventos. Existem alguns métodos disponíveis para a 
detecção de agrupamento de eventos ao longo do tempo. A maioria destes métodos tem sido desenvolvido para detectar 
agrupamento temporal de doenças em humanos. A análise de padrões temporais de doenças de plantas não é muito 
bem descrita na literatura. Neste estudo, objetivou-se propor novos métodos, com base tanto na função de distribuição 
empírica como na simulação de Monte Carlo, para testar a hipótese nula de que um padrão de ponto temporal é 
puramente aleatório. Estes métodos são comparados com a função K-tempo para a detecção de agrupamento temporal 
na incidência de morte súbita dos citros em árvores de laranja. Todas as metodologias revelarambom desempenho para 
a análise de padrões de pontos temporais e este estudo levou à detecção de agrupamento temporal da morte súbita dos 
citros numa plantação de laranjeiras.

Palavras-chave: Citrus sinensis, processo de contagem, propagação de doenças, processo pontual de Poisson homogêneo, 
teste de hipóteses.

INTRODUCTION

The citrus sudden death disease (CSD) has killed 
more than a million of orange trees in Brazil in the 
past few years and, thus, causing severe economical 
losses for the Brazilian citrus industry (Bassanezi 

and Laranjeira, 2007; Bassanezi and Yamamoto, 
2007). Symptomatic plants show a pale green 
coloration of the entire tree canopy, different levels 
of defoliation, and absence of new shoots and root 
system death. The disease is also characterized 
by the development of a strong yellow stain in to 
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the phloem of Rangpur lime and Volkamer lemon 
rootstocks (Bassanezi and Yamamoto, 2007). 

Two viruses similar to plants infected with 
CSD, the virus CTV (Citrus tristeza virus, family 
Closteroviridae) and a new type virus belonging to 
the family Tymoviridae, as well as their association 
with the disease has been studied (Coletta Filho et 
al., 2005; Maccheroni et al., 2005; Terencio et al., 2005). 
Up to now, the diagnostics of CSD is based on signs 
found in sick plants. There is still no diagnostic test 
by which it knows whether the plant shows CSD 
before it manifests typical signs of the disease. 
However, it is not yet fully proven that these viruses 
are, indeed, the causal agents of this disease.

The study about temporal dynamics of plant 
diseases, such as the CSD, may help researchers 
in describing the disease dynamics, to evaluate 
biological hypotheses on propagation mechanisms 
and, to guide the proposition of new methods for 
controlling the epidemy, focused on the presence 
of the disease and not on the vector (Bassanezi and 
Laranjeira, 2007).

The basic reference model used when studying 
a temporal point pattern, such as moments on 
which plants are infected by a disease, may be 
described as the homogeneous Poisson process 
with constant intensity, also named complete 
temporal randomness (CTR). By CTR we intuitively 
mean that events are independently random and 
uniformly distributed over time. This implies that 
there are no time periods where events are more 
(or less) likely to occur. In addition, the presence 
of an event does not modify the appearance 
probability of other events nearby. Thus, we may 
state that the homogeneous Poisson process serves 
as the null model in the statistical analysis for 
temporal events. The alternative hypothesis is 
that the temporal pattern tends to cluster, where a 
temporal clustering may be defined as an unusual 
aggregation of disease incidence occurring within 
a small temporal domain.

Temporal clustering may be informally detected 
by plotting the temporal point pattern as a time 
series and, by observing whether the points 
are or not more clustered than expected in a 
complete random point pattern. Although, visual 
techniques may describe what we need to know, to 
deep examine the CTR hypothesis, in an objective 
and precise manner, remains necessary the use of 
formal statistical methods.

There are several methods available in the 
literature for testing the CTR null hypothesis 
in point patterns and they have been applied in 
many fields of science, especially in epidemiology. 
The tests are the considered traditional among 
others: Ederer–Myers–Mantel’s test (Ederer et al., 
1964), the Naus’ scan test (Naus, 1965), the Tango’s 
test (Tango, 1984) and, the time scan statistic test 
(Kulldorff, 1997). In the current level of knowledge, 
these tests have not been used for temporal 
analysis of agricultural diseases. The majority of 
the temporal, specifically for CSD, are used for 
analyzing the disease behavior progression over 
time by estimating monthly rates (Batista et al., 
2008) or by using spatial and temporal analyses 
(Bassanezi et al., 2005), models of cellular automata 
(Peixoto et al., 2008) and, autologistic models 
(Krainskiet al., 2008), rather than testing against 
the CTR hypothesis.

The purpose of this paper was to propose novel 
methods, based on both empirical distribution 
function and Monte Carlo simulation, for detecting 
temporal disease clustering. The performance of 
these new methods was compared to tests based on 
the time K-function (Diggle et al., 1995) by applying 
them to detect temporal pattern in the occurrence of 
CSD cases in a Brazilian orange trees planting.

MATERIALS AND METHODS

The CSD incidence data were obtained from a plot 
of sweet orange trees [Citrus sinensis (L.) Osbeck], 
“Natal” variety, planted in 1990, which is in a farm 
located in the municipality of Comendador Gomes, 
State of Minas Gerais, Brazil. The geographical 
coordinates are the following 19o38’ south and 
48o58’ west. These data were obtained as part of a 
data set collected by the Fundecitrus and they are 
available at the Rcitrus library (Krainski and Ribeiro 
Jr., 2007) in the R statistical software (R Core Team, 
2014).

The plot consisted of 20 rows with 48 plants each, 
with spacing pattern of 7.5m x 4m. Evaluations 
for detecting the time of diagnosis of cases of the 
disease in the orange trees were performed from 
November 2001 to July 2003. The disease incidence 
was recorded with score one for those plants 
showing symptoms and; zero for those without 
symptoms.
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The null hypothesis is that the observed temporal 
point pattern is a realization of a homogeneous 
Poisson process with a constant intensity λ, while 
the alternative hypothesis is that the observed 
point pattern is a realization of a clustering 
temporal point process.

T1, T2,…,Tk denotes the sequence observed events 
occurring over a period of time T, so that we can 
explore the existing dependence between temporal 
events in T in many different ways. Thus, we may 
specifically consider nearest neighbor distances 
(the distance from each point to its nearest 
neighbor) and use the cumulative distribution 
function of these distances (G-function) for the 
point pattern characterization (Ripley, 1976). We 
may also consider pair wise distances (the distances 
between all distinct pair of points) and use the time 
K-function for characterization of the second order 
properties of the temporal point pattern (Ripley, 
1976; Diggle et al., 1995). If we consider the number 
of points in arbitrary windows moving, we can use 
the scan statistic for the same purpose (Naus, 1965; 
Kuldorff, 1997). 

In this work, we are suggesting the use of another 
counting process based method. According to Daley 
and Vere-Jones (2003) any nonnegative, integer-
valued stochastic process {N(t); t≥0} is named 
counting process, if N(t) represents the total number 
of events occurred in an (0, t) interval such that 
N(s)≤N(t) whenever s ≤t. If N(t) is a homogeneous 
temporal Poisson point process with intensity λ>0, 
then

 E[N(t)] =V[N(t)] =λt.                (1)

The cumulative frequency of the observed 
sequence of events occurring over time, , can be 
used as a natural estimator of E[N(t)], that is,

     (2)

Where I is an indicator functionhaving the value 
1 when the condition [.] is valid and the value 0 
when the condition [.] is not satisfied.

We can thus compare  with the value of λt obtained 
by plugging in the estimated intensity (average 
number of events per unit of time) ˆ k

T
λ = . Thus, if 

( )F̂ t  moves away from the tλ , for any t, it provides 
indication to reject the CTR null hypothesis.

For example, considering the observing events 
occurring over a period of 5 units of time given 
by the vector [1,2,2,2,2,2,3,3,4,5,5]. It was recorded 
one event at the time 1, 5 events at the time two 
and so on. The cumulative frequency is given by 
 ( ) F t =[0,1,6,8,9,11]. The estimated intensity is given 
by ˆ 11

5
λ = = 2.2 and, therefore,

E[N(t)] =[0, 2.2, 4.4, 6.6, 8.8, 11].

The compatibility with CTR of the observed 
temporal point pattern can be assessed by plotting 
the cumulative frequency ( )F̂ t  and the theoretical 
expectation E[N(t)] against time t as shown in 
Figure 1.

However, it is not easy to assess how far the 
curve ( )F̂ t   should move away from the line ˆtλ
to provide indication for rejecting the CTR null 
hypothesis (Figure 1). Thus, alternatives methods 
are needed to this plot for a statistical CTR 
assessment. We advocate that these methods can 
be based on Monte Carlo simulations, including 
both the formal hypothesis test and envelopes.

For the formal hypothesis test approach, also 
named “cumulative test”, we follow the method 
suggested by Diggle (2003) for spatial point pattern 
analysis. First of all, it needs to define a measure 
that examines the degree of agreement betweenthe 
cumulative frequency ( )F̂ t  against the theoretical 
expectation E[N(t)] under CTR. Since we are 
working with cumulative frequency, a natural 
choice is the Kolmogorov-Smirnov distance 
measure given by

( ) ˆmaxi it
m F t tλ= − . (3)

 

Figure 1 - Cumulative frequency (light solid line) and theoretical expectation under the null 
hypothesis of CTR (dashed line). 

  

Figure 1 - Cumulative frequency (light solid line) and 
theoretical expectation under the null hypothesis 
of CTR (dashed line).

( ) [ ]ˆ
kF t I T tT t= ≤≤∑
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1̂F (t) is the cumulative frequency of an observed 
temporal pattern with n events as defined in (2) 
and F2(t),…, FS(t) are cumulative frequencies from s 
simulations of a homogeneous Poisson point 
process with intensity λ. Estimates the statistic mi 
for the observed and simulated patterns. Then, the 
estimate of m1 for the observed pattern is compared 
with estimates m2,…,ms  from the simulated 
patterns. If m1 ranks among the largest of m2,…,ms, 
it shows departure from CTR and, if m1 = mj for any
j s∈{ ,..., }1 then it rejects the CTR hypotheses if 

P s j
svalue =

+ −
≤

( )1 α . 

The cumulative test to the example was carried 
out by running 99 simulations. The estimatem1and 
the p-value for this data set were 1.5 and 0.84, 
respectively, what meaning that there is no 
significant statistically difference between 
the cumulative frequency and the theoretical 
expectation under CTR.

Ripley (1977) proposed the envelopes simulation 
approach in the context of spatial point pattern 
analysis. Then, we use the same idea considering 
the cumulative frequency and, thus, naming it 
“cumulative envelopes”. We firstly estimated 

1 2
ˆ ˆ ˆ( ), ( ),..., ( )SF F Ft t t  as described above. And, 

we obtained the point wise upper and lower 
envelopes of the simulated functions 2̂

ˆ( ),..., ( )SF Ft t        

( ) ( ){ }
( ) ( ){ }

ˆmax

m n ˆi

ii

ii

U t F t

L t F t

 =


=

   

(4)

We ploted the F1(t), U(t) and L(t) estimates on the 
same graphic against the distance t. For those 
situations F1(t) was inside the simulation envelopes 
[L(t), U(t)] we accepted the null hypothesis of 
complete temporal randomness, i.e, events do not 
interact each other, and the expected number of 
events per unit of time (intensity) is constant.

The Figure 2 shows the cumulative envelopes of the 
temporal point pattern that we considered before. 
This point pattern is compatible with CTR because 
the cumulative frequency is within the envelopes.

The temporal K function is an extension of the 
spatial K function (Ripley, 1976, 1977). It is a way of 
measuring second-order properties of a temporal 
point process and, is described by Diggle et al. 
(1995) as ( )1K tλ−  = E(number of further events 
within the distance t of an arbitrary event), where 
E(.) is the expectancy, and λ is the intensity.

Diggle et al. (1995) show that the temporal K 
function for a homogeneous Poisson point process 
is described as

K(t) = 2t. (5)

An estimator that corrects the edge effects is given 
by the following equation:

( )
1 1

ˆ ( ) ,
( 1)

n n
t ij

i j ij

I uTK t
n n v= =

=
− ∑∑

 
(6)

where n is the number of events observed in the 
interval of time T,uij is the distance between events 
i and j(i ≠ j), It(uij) is an indicative function equal to 
1 when uij is less than a distance t and, otherwise, 
equal to 0 and vij is an edge correction factor which 
represents a segment of a line, centered in i passing 
through the event jwhich is found inside the total 
interval of time T (Diggle et al., 1995).

Althoughmany forms for testing the null 
hypothesis of complete randomness of a spatial 
point pattern using the K-function are found in 
the literature (Ripley, 1976, 1977; Diggle, 2003), we 
have not found similar analysis for the temporal 
case. This work states that the temporal K function 
can be used in the same way as the spatial K 
function, using formal hypotheses tests and 
envelopes simulation approaches, for testing the 
null hypothesis of complete temporal randomness.

 

Figure 2 - Cumulative frequency (solid line) with upper and lower simulation envelopes based 
on 99 simulations of CTR (dashed lines). 

  

Figure 2 - Cumulative frequency (solid line) with upper 
and lower simulation envelopes based on 99 
simulations of CTR (dashed lines).
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For the formal hypotheses tests approach, Diggle 
(2003) suggests the Cramer-VonMises distance 
measure to examine the degree of agreement 
between the observed and the theoretical K 
function under the hypotheses CTR, given by the 
following equation:

( ) ( )
0 2

0

ˆ
t

i ic K t K t dt = − ∫                                           (7)

where ( )ˆ
iK t  is the estimated temporal K function, 

given by equation (5) and K(t) is the theoretical 
temporal K function, given by equation (6).

( )ˆ
iK t  is the K-function of an observed temporal 

pattern with n events as defined in (2) and 
( )  ( )2 ,...,ˆ  sK t K t  are K-functions from s simulations 

of a homogeneous Poisson point process with 
intensity estimated by λ. Significance of the 
observed value of the test statistic can be computed 
by means of a Monte Carlo test.  

In addition, point wise simulation envelopes 
under CTR of the point pattern can be computed 
by repeatedly simulating a homogeneous Poisson 
point process with the same estimated intensity λ̂  
under study for time T. For those situations K1(t) 
was inside the envelopes, we accepted the null 
hypothesis of complete temporal randomness, i.e, 
events do not interact each other, and the expected 
number of events per unit of time (intensity) is 
constant. For situations K1(t) was below the lower 
simulation envelope, it indicates deficiency of 
small distances among events in the considered 
time scale and that is typical for regular patterns. 
Otherwise, when K1(t) was above the upper 
simulation envelope, the situation typifies an 
aggregate pattern, and indicates the excess of small 
distances among time events in the considered 
time scale.

We have applied K-function based methods and 
the proposed newtest on the example pattern 
and both showed that there are signs related to 
temporal clustering.

The new methods described in this work were run 
using functions developed using the R statistical 
software (R Core Team, 2014). Analyzes based 
on the temporal K function were carried out 
using functions available in the splancs library 
(Rowlingson and Diggle, 1993). Realizations of 
point patterns were generated using the spatstat 
library (Baddeley and Turner, 2005).

RESULTS AND DISCUSSION

The focus of this study was the use of statistical 
methods to evaluate evidence of temporal clustering 
in an observed point pattern. We were specifically 
interested on the evaluation of cumulative test and 
cumulative envelopes for detecting evidence of 
time clustering.

Simulated temporal point patterns are show to 
describe the pattern of the cumulative test and 
cumulative envelopesunder typical temporal 
clustering cases. Data sets were simulated 
considering the occurrence of disease cases 
recorded for a year (365 days).We generated the 
Matérn cluster process, constructed by means of 
certain number of clusters (“offsprings”) obtained 
from the homogeneous Poisson point process, 
considered the intensity λ. Then, a random cluster 
of points replaces each cluster, and the number of 
points in each cluster has a Poisson (k) distribution. 
These points are distributed independently and 
uniformly on a line segment about 2×r, centered 
around the clusters (Diggle, 2003; Baddeley and 
Turner, 2005). We used λ=0.00003, for each cluster 
we established a Poisson with 200 offspring, and 
we found that as smaller was the estimate of r, 
the intensity of clusters was higher. Using those 
parameters, we were able to generate realizations 
of temporal point patterns with 600 disease cases 
distributed in approximately four clusters per year, 
with different cluster intensities. We carried out the 
analysis using 100 Monte Carlo simulations under 
the CTR null hypothesis.

The first case refers to a Matérn cluster process 
with small line segment of clusters (r = 5), i.e, 
we have a pattern with well-defined heavy 
clusters. The cumulative test showed that there 
were statistical evidences to reject the CTR null 
hypothesis (m1=157.6; p≤0.01). Figure 3-a shows 
that the average rate of occurrences, given by the 
positive inclination of the line, increased from 0 
to 40 days and from 320 to365 days, while it kept 
constant from 40 to 320 days. Thus, this plot shows 
a typical temporal pattern that displays clusters 
at both the beginning and the end of the period 
under study.

The second case refers to a Matérn cluster process 
with r = 75, where the temporal clustering occurs 
in the beginning of the period under study. The 
Figure 3-b shows that the cumulative function is 
located below the lower simulation envelopes, which 
represents the CTR null hypothesis for the period 
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under study. The cumulative test also shows that 
there are strong statistical evidences that led to the 
rejection of the CTR null hypothesis (m1=221.9; p≤ 
0.01). 

The third case describes the Matérn cluster process 
with r = 150, from which the temporal clustering 
occurs at the end of the period under study. The 
Figure 3-c shows that the cumulative function was 
above upper simulation envelopes for the period 
under study, which led to the rejection of the CTR 
null hypothesis. The cumulative test also led to 
the rejection of the null hypothesis of temporal 
randomness (m1=135.8; p≤0.01).

The fourth case describes the Matérn cluster process 
with r = 300, i.e, a realization of a temporal pattern 
very close to the random process. TheFigure 3-d 
shows that the cumulative function was between 
the simulation envelopes for the period under 
study, the reason why there was a strong statistical 
evidence that this point pattern shows complete 

temporal randomness.The hypothesis test led to 
the acceptance of the CTR null hypothesis (m1=26.0; 
p =0.28).

We carried out the same analysis for all four typical 
cases using the K-function and results (not shown 
here) led us to the same conclusions we found by 
using these methods. Results obtained with these 
typical cases of temporal patterns appear to show 
that both novel methods (cumulative test and 
cumulative envelopes) show good performance 
not only for rejecting the CTR null hypothesis 
in patterns that show clusters, but also for the 
acceptance of the CTR null hypothesis in simulated 
patterns that feature this pattern.

We also tested these novel methods in typical patterns 
that showed temporal regularity, i.e, patterns on 
which any of these two events were separated by a 
minimum interval of time (not shown here). In such 
patterns, these methods led to the acceptance of the 
CTR null hypothesis and, yet, they are not able to 

 

 

Figure 3 - Cumulative frequency (solid line) with upper and lower simulation envelopes based 
on 99 simulations of CTR (dashed lines).  

  

Figure 3 - Cumulative frequency (solid line) with upper and lower simulation envelopes based on 99 simulations of CTR 
(dashed lines).
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detect regularity. We thus realized that it would be 
necessary to carry out analysis of power and type 
I error for better evaluation of the performance of 
these methods for different types of patterns.

We applied both novel methods (cumulative test 
and the cumulative envelopes) and the K-function 
based methods for testing the null hypothesis 
that the occurrence of the CSD cases over time 
is a realization of a homogeneous Poisson point 
process with constant intensity. The cumulative 
test (m1=3091.86, p≤0.01) and the K-function test 
(c1=5.16, p≤ 0.01) led to an emphatic rejection of the 
CTR null hypothesis for CSD disease cases.

The Figure 4 (left) shows that there are strong 
statistical evidence that the CTR null hypothesis 
should be rejected in favor of the clustering 
alternative. In addition, clusters tend to occur in the 
beginning of the period under study. The Figure 
4 (right) shows that the observed K-function was 
above the simulation envelopes for the time under 
study. This is a strong evident that the occurrence 
of CSD casesshows temporal clustering.

We did not find papers in the literature addressing 
about the emphasis showed in this study to 
diagnose the presence of temporal clustering of 
agricultural disease cases, specifically for those 
related to CSD. In general, the temporal analysis 
appears as a byproduct of the spatial analysis 
(Bassanezi et al., 2003; Peixoto et al., 2008).

We found that if certain plant disease was caused 
by the pathogen spreading process from plant to 
plant, one would expect an aggregation (clustering) 
of infected plants in space and time. Studies have 

suggested an aggregated spatial structure of 
symptomatic plants with CSD (Bassanezi et al., 2003; 
Bassanezi and Laranjeira, 2007), and shown that the 
CSD annual rate increases during periods under 
study (Bassanezi et al., 2003; Batista et al., 2008). The 
present work shows strong evidence of temporal 
clustering for CSD, which is mainly characterized 
by temporal clustering in the beginning of the trial. 
Thus, the temporal clustering pattern of plants 
affected by CSD may suggest that this disease can 
be caused by a pathogen. Various researches have 
suggested the pathogen based theory. For example, 
Maccheroni et al. (2005) suggest that the pathogen 
could be a new strain of citrus tristeza or a new 
virus belonging to the family Tymoviridae (gender 
Marafivirus) and transmitted by insects.

The CSD was found to be a novel disease but 
sufficient temporal data are still not available so 
far; thus this important epidemic feature could not 
be thoroughly analysed.

These results show that both cumulative test 
and K-function test are able to test the CTR null 
hypothesis, but they cannot determine whether the 
rejection was due to the presence of clusters or due 
to the presence of cases that show regularity over 
time. Thus, if the most important in data analysis 
is not the rejection of the CTR null hypothesis , but 
the indication of the direction (regularity or cluster) 
that caused the rejection, the use of simulation 
envelopes becomes essential. It appears that the 
cumulative envelopes can detect only patterns 
with clusters. However, it is well known that the 
K-function simulation envelopes is able to detect 
patterns that exhibit both clusters and regularity 
(Ripley, 1976, 1977; Diggle et al., 1995). K-function 

 

Figure 4 - Cumulative frequency (solid line) with upper and lower simulation envelopes based 
on 99 simulations of CTR (dashed lines).  

 

Figure 4 - Cumulative frequency (solid line) with upper and lower simulation envelopes based on 99 simulations of CTR 
(dashed lines).
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envelopes are only able to detect clustering and 
regularity at different scales, what is not possible 
for cumulative envelopes, which may be used to 
detect the moments on which clusters occur (early 
or late). Therefore, cumulative and K-function 
based methods were found to be complementary 
to each other, not competitors.

CONCLUSIONS

The results shown that the cumulative test and the 
cumulative envelopes were able to detect temporal 
clustering in point patterns that have been 

generated by different stochastic mechanisms. The 
use of these novel methods along with the K-function 
based methods seems to provide a complete 
characterization of temporal clustering in disease 
of agricultural crops. In particular, these methods 
lead to an emphatically rejection of the hypothesis 
of complete temporal randomness in favor of the 
hypothesis of temporal clustering of CSD.
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