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A B S T R A C T

Given the importance of soil organic carbon (SOC) for sustainability, policymakers and researchers are particularly 
concerned with identifying the conditions that promote carbon storage in the soil. These assessments provide relevant 
support for the design of policy instruments aimed at increasing soil quality and its carbon sequestration capacity. 
The new technologies associated with the digital transition can bring relevant added value, namely through artificial 
intelligence methodologies, where machine learning approaches are important. In this context, this research aims to 
analyse the several interrelationships of SOC in the specific Portuguese context, with a focus on highlighting its main 
predictors and providing proposals for stakeholders (including policymakers). To achieve these objectives, statistics 
from the INFOSOLO database were considered and evaluated using machine learning algorithms to select the most 
important SOC predictors and identify accurate models. These interrelationships were quantified with cross‑sectional 
regressions and optimisation models. The results obtained provide relevant information for the design of adjusted 
policy measures that promote sustainable practices and increase soil quality. Generally, Portuguese soils have low 
organic carbon content due to soil features, climate circumstances and land management. Adjusted management of 
agroforestry activities is possibly the easiest part to deal with in this context. 

Keywords: INFOSOLO Database; Artificial Intelligence; Cross‑Sectional Regressions; Optimisation Approaches.
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INTRODUCTION

The levels of soil organic carbon (SOC) are fun‑
damental to improve the quality of the soils 
(Emamgholizadeh et al., 2018), sustainability (Red‑
dy & Shwetha, 2024) and mitigating the threats 
created by anthropogenic activities. In some cases, 
the SOC contributes to reduce the levels of pollut‑
ants in the groundwater (Alam et al., 2025). SOC is 
also considered an important predictor of soil 
macronutrients (Zolfaghari et  al., 2020). The new 
challenges arising from the dynamics associated 
with climate change require adjusted agricultural 
practices (Birru et  al., 2024). The cation exchange 
capacity (CEC) is another important variable to as‑
sess soil quality and also clay, silt, sand, pH, and 
SOC are, in some cases, used in modelling process‑
es (Mishra et al., 2022). The potentially mineralisa‑
ble nitrogen is also considered an important indi‑
cator of soil quality (Pacci et al., 2024).

The new technologies associated with the digital 
transition offer better conditions for the researchers 
(Pavlovic et al., 2024) and may bring relevant con‑
tributions to the assessments related to soil charac‑
teristics (Alqadhi et al., 2023), dynamics (Chen et al., 
2024a), functions (Ramcharan et al., 2017) and mon‑
itoring (Vahedi, 2017). Several efforts have been 
made to improve the methodologies for predicting 
soil characteristics (Minasny et  al., 2024) and this 
provides valuable insights to better support the 
farmers’ decisions (Banger et  al., 2019). Informa‑
tion and adjusted methods are crucial to promote 
a more sustainable development (Jiang et al., 2019), 
and effective agricultural planning (Romero et al., 
2012). Better assessment conditions may support 
the farmers in the crop selection process, taking 
into account the specific soil particularities (Bhat 
et al., 2023), and provide relevant insights to related 
institutions (Samarinas et  al., 2024), policymakers 
(Samarinas et al., 2023) and managers (Seydi et al., 
2024). This is important for the design of adjust‑
ed policies and to promote eco‑friendly strategies 
(Sanderman et al., 2018).

Considering artificial intelligence approaches, for 
Australian contexts, the most important predictors 
of SOC are soil depth, pH and geomorphological 
characteristics (Benke et al., 2020). In other frame‑
works, agricultural management practices, such as 

the adoption of grassland production systems and 
conservation agriculture, showed improved levels 
of SOC  (Dal Ferro et  al., 2018). The same positive 
effects on the organic carbon (OC) were obtained 
using no‑tillage strategies (Rai et al., 2022). For Bra‑
zilian soils, the most relevant predictors are soil 
class, monthly mean temperature, precipitation, 
slope and vegetation indexes (Gomes et  al., 2019). 
In other studies, biotic, hydrological and pedolog‑
ical features appear as relevant explanatory varia‑
bles for soil carbon (Keskin et al., 2019), as well as 
earth observation factors (Le  et  al., 2021), vegeta‑
tion, soil water (Xiong et  al., 2014), and Sentinel‑1 
and Sentinel‑2 information (Zhang et al., 2023).

The advantages of artificial intelligence methodol‑
ogies relative to the traditional approaches are not 
unanimous and, in some circumstances, is sug‑
gested a combination of both methods to overcome 
the weaknesses of each technique (Bernardini 
et al., 2024). Additionally, the results obtained de‑
pend on the assumptions made (Szatmári & Pász‑
tor, 2019). In any case, the added value of artificial 
intelligence for agricultural management has been 
highlighted in the scientific literature (Bhatt et al., 
2024). 

The preservation of soil and water quality is a con‑
cern for the international organisations and the 
European Union (EU) institutions. These concerns 
are present in the agenda of the United Nations, as 
well as in the policy instruments and measures of 
the Common Agricultural Policy (CAP) (Bancheri 
et  al., 2024). This is particularly important, when 
the agricultural sector contributes significantly to 
greenhouse gas (GHG) emissions (Guan et al., 2023). 
Adjusted farming decisions may increase the po‑
tential of soil carbon sequestration. Assessing the 
soil‑related dynamics involves multidisciplinary 
researchers (Tziolas et al., 2021) and is fundamen‑
tal for a better knowledge of the soil potentialities 
(Tziolas et al., 2024). 

Considering these current needs, this study aims 
to provide deeper insights into the assessment of 
SOC within the Portuguese context. These insights 
can be considered as support to improve soil pol‑
icy instruments and measures, particularly those 
developed by Portuguese and EU institutions.
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MACHINE LEARNING APPLICATIONS  
IN IDENTIFYING SOIL ORGANIC  
CARBON PREDICTORS:  
A REVIEW OF PUBLISHED STUDIES

The discussions about the real contributions of each 
land use and land cover for the GHG emissions are 
not unanimous, showing that the soil capacity to 
store carbon depends on decisions made during 
all productive processes, including in forest lands 
where the planting phase is decisive to prevent 
significant soil disruptions (Baggio‑Compagnucci 
et al., 2022). Another related issue that has generat‑
ed discussion is the use of the most adjusted meth‑
odologies to predict soil characteristics (Ma et al., 
2021). These contexts highlight the importance of 
adjusted assessments about the impacts of the dif‑
ferent land use, land cover and soil characteristics 
on the soil capacity to sequester carbon. The ma‑
chine learning approaches, for example, may bring 
relevant added value to these evaluations, specif‑
ically supporting the identification of important 
predictors and accurate models. In  any case, the 
accuracy of the results obtained with these meth‑
odologies may be affected by the presence of some 
factors, such as the existence of iron (Dai et al., 2024), 
the consideration of nutrient and soil structural 
stability indicators (Delahaie et al., 2024), soil water 
content (Lin et al., 2021) and management practices 
(Karunaratne et al., 2024). An understanding of the 
interrelationships between the different soil char‑
acteristics and its dynamics is crucial for effective 
soil management (Fang et al., 2024) and assessment. 
Soil is the biggest terrestrial pool of OC (Georgiou 
et  al., 2022) and the levels of SOC  along with the 
amounts of nitrogen are crucial for the vegetation 
dynamics (Peng et  al., 2024). The preservation of 
soil quality (defined as the capacity of the soil to 
function (Taghipour et al., 2022)) is crucial to avoid 
soil degradation (Fathizad et  al., 2020), promote a 
more sustainable development (Hou et  al., 2020), 
mitigate climate change impacts (Hu  et  al., 2024), 
specifically in critical regions (Liang et  al., 2024) 
and vulnerable conditions (Wang et al., 2021), and 
enhance the crop productivity (Sirsat et al., 2018).

The following machine learning methods and 
approaches are some of the methodologies con‑
sidered by the scientific literature to assess the 
SOC  content: random forest (Gholizadeh et  al., 
2020), extreme gradient boosting, support vector 

machine (Chen et  al., 2024b) and artificial neural 
network (Sun et al., 2023). The random forest mod‑
el has also been considered in other studies along 
with correlation analysis (Ma et al., 2024) and struc‑
tural equation modelling (Wang et al., 2024). Other 
research has used partial least squares regression, 
artificial neural networks, support vector regres‑
sion and random forest (Thabit et al., 2024).

The data availability is fundamental to carrying 
out an adjusted analysis of the SOC. Usually, the 
following data sources are considered by the re‑
lated researches: remote sensing technologies, 
and socio‑economic, soil texture and topographic 
databases (Chen et  al., 2024b); digital camera and 
Sentinel‑2 remote sensor (Gholizadeh et  al., 2020); 
large‑scale field observation and published deep 
permafrost SOC data (Wei et al., 2022); Landsat‑8, 
Sentinel‑2 and Sentinel‑3 (Zhou et  al., 2021); lega‑
cy soil databases such as INFOSOLO (Ramos et al., 
2017). 

Between the variables considered to explain the 
levels of SOC appear the following: elevation and 
clay (Chen et al., 2024b); climate factors, clay, sand 
and silt (Hosseinpour‑Zarnaq et  al., 2024); soil or‑
ganic matter (SOM) and climate factors (Kaushal 
& Baishya, 2024); annual precipitation (Li  et  al., 
2024); mean annual temperature (Ma  et  al., 2024); 
cropping system, climate, soil characteristics and 
vegetation index (Ou et al., 2024); climate variables, 
pH, coarse fragments and land cover (Rial et  al., 
2017); soil depth, surface temperature and eleva‑
tion (Sothe et al., 2022); vegetation and topography 
(Wadoux et  al., 2023); mean annual air tempera‑
ture and Normalized Difference Vegetation Index 
(Wu  et  al., 2022). Soil bulk density is another ex‑
ample of a soil variable interrelated with OC (Shi 
et al., 2023). Additionally, the age of the vegetation 
and mean annual precipitation were identified as 
important explanatory variables of the SOC in the 
recovery of soils affected by mining activities (Zhu 
et al., 2024).

The soil’s potential to store carbon varies depend‑
ing on the specifics of each location. In  the Chi‑
nese context, the mountain areas with forests have 
higher levels of OC than the coastal and plain re‑
gions with crops (Chen et  al., 2024b). The expect‑
ed rise of the sea level in Australian regions may 
contribute to increase the of blue carbon with the 
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migration of some ecosystems for the lands (Du‑
arte de Paula Costa et  al., 2021). In  the Moroccan 
forest, the level of SOC varies with the soil char‑
acteristics and the species considered (El Mderssa 
et  al., 2024). The potential of the soil to sequester 
carbon is region‑specific (Padarian et al., 2022) and 
is crucial to maintain the soil quality (Song et al., 
2020). The levels of SOM and pH are also relevant 
indicators of soil quality (Suleymanov et al., 2023). 

MATERIAL AND METHODS

To  provide insights into the assessment of soil 
organic carbon (SOC) within the Portuguese con‑
text, the INFOSOLO  database was used. INFOS‑
OLO provide a compilation of soil data relevant to 
Portugal. The database aggregates information de‑
rived from soil surveys, research studies, and var‑
ious projects, offering an extensive dataset encom‑
passing thousands of soil horizons/layers, and soil 
profiles (Ramos et al., 2017). This database has the 
added value of providing information that can be 
used as support by researchers, policymakers and 
organisations related to soil management. How‑
ever, some limitations are acknowledged, which 
have to do with the absence of specific variables in 
certain soil horizons/layers.

The soil data available in this database was ana‑
lysed through machine learning approaches, spe‑
cifically to identify the most important predictors 
of the SOC and the most accurate models, following 
the IBM SPSS Modeler software (IBM SPSS Mod‑
eler, 2025) procedures. In  this software, the accu‑
racy levels of each model are evaluated using the 
relative error. Through cross‑section regression 
methodologies (with robust standard error, for 
standard error type), the relationships between 
the most important covariates and the SOC were 
quantified, following the suggestions presented by 
the Stata software (Stata, 2025; StataCorp, 2023a, 
2023b). To find optimised results, linear program‑
ming models were considered and the procedures 
proposed by the LINGO  software (LINGO, 2025) 
were taken into account. For the data analysis and 
results interpretation about the soil characteristics 
and dynamics, the World Reference Base (WRB) 
for Soil Resources document was also consulted 
(IUSS Working Group WRB, 2022).

RESULTS AND DISCUSSION 

This section is organised into two subsections, one 
for data analysis and the other for modelling.

INFOSOLO SOC data

Histosols (soils with relevant organic layers), 
Umbrisols (soils with great accumulation of or‑
ganic matter in the topsoil), Leptosols (shallow 
soils with limitations for the vegetation growth 
and with great quantity of coarse sediments), 
Anthrosols (with strong anthropogenic impact 
namely through agricultural practices) and So‑
lonchaks (presence of great quantities of soluble 
salts) (IUSS  Working Group WRB, 2022) are the 
soil groups with the highest organic soil content 
(Table 1). This information highlights the influence 
of soil characteristics on the SOC levels. It should 
be noted that all the information available in the 
database for all horizons was used together for the 
analyses carried out in this study.

The qualifiers (considered for a more detailed ex‑
planation of soils within each soil group) with the 

Table 1 - Top 20 Reference Soil Groups with the highest per‑
centage of OC content

Reference Soil 
Groups

Organic carbon 
content mean (%)

Organic carbon content count 
(number of observations)

Histosols 8.20 8
Umbrisols 2.67 176
Leptosols 2.65 200
Anthrosols 2.16 1110
Solonchaks 1.95 11
Regosols 1.73 1265
Fluvisols 1.54 677
Cambisols 1.52 1674
Acrisols 1.22 148
Ferralsols 1.17 37
Alisols 0.81 69
Podzols 0.72 90
Gleysols 0.68 58
Calcisols 0.67 281
Vertisols 0.61 320
Luvisols 0.50 1025
Arenosols 0.45 227
Planosols 0.44 77
Solonetz 0.32 39
Plinthosols 0.28 11
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highest percentage of OC content are presented in 
Tables 2, 3 and 4. In  general, the top 5 qualifiers 
are those exhibited following: Anthric (has anthro‑
pogenic impacts); Hyperhumic (with more than 
5% of SOC); Umbric (surface horizon rich in OC); 
Epieutric (≥ 50% of base saturation in superficial 
horizons); Hypersalic (very salty salic horizon); 
Humic (with more than 1% of SOC); Aric (with a 
superficial horizon showing disturbance, usual‑
ly by ploughing); Escalic (terraces with truncat‑
ed or transported soil); Hyperdystric (soils with 
too much exchangeable Al); Siltic (silt or silt loam 
texture); Dystric (low base saturation); and Sodic 
(having a subsurface horizon high in exchangea‑
ble sodium and magnesium) (IUSS Working Group 
WRB, 2022). 

Generally, the forest and grasslands are the land 
uses with the largest levels of OC content, howev‑
er, Table 5 reveals that it is not easy to identify a 
clear pattern for the different types of agroforest‑
ry activities (forestry, arable crops, horticulture, 
permanent crops, grassland, etc). These findings 

Table 2 - Top 20 qualifiers 1 with the highest percentage of 
OC content

Qualifier1 Organic carbon 
content mean 

(%)

Organic carbon content count 
(number of observations)

Anthric 5.62 5
Hyperhumic 5.56 119
Umbric 4.28 50
Epieutric 3.41 9
Hypersalic 2.81 7
Leptic 2.30 128
Lithic 2.22 21
Plaggic 2.20 1060
Humic 2.03 1892
Colluvic 2.02 156
Hyposalic 1.92 31
Epileptic 1.77 113
Escalic 1.52 28
Alumic 1.41 19
Endoleptic 1.30 221
Hortic 1.19 4
Vetic 1.17 37
Sodic 0.98 24
Aric 0.88 50
Epidystric 0.83 68

Table 3 - Top 20 qualifiers 2 with the highest percentage of 
OC content

Qualifier2 Organic carbon 
content mean 

(%)

Organic carbon content count 
(number of observations)

Hyperhumic 6.12 39
Aric 2.69 2
Humic 2.32 450
Hyperdystric 2.24 1724
Escalic 2.23 717
Episkeletic 1.88 4
Regic 1.76 55
Dystric 1.65 885
Gleyic 1.62 19
Plinthic 1.38 31
Endodystric 1.23 2
Leptic 1.17 2
Endoleptic 1.10 17
Tecnic 1.09 2
Alcalic 1.04 3
Endogleyic 1.03 17
Sodic 0.99 97
Endoarenic 0.86 7
Hyperdystic 0.86 2
Eutric 0.76 320

Table 4 - Top 20 qualifiers 3 with the highest percentage of 
OC content

Qualifier3 Organic carbon 
content mean 

(%)

Organic carbon content count 
(number of observations)

Hyperdystric 2.52 885
Escalic 2.22 389
Siltic 1.88 138
Dystric 1.84 397
Sodic 1.74 14
Endoarenic 1.70 14
Endoskeletic 1.61 84
Skeletic 1.42 167
Chromic 1.39 756
Geoabruptic 1.34 9
Rhodic 1.11 39
Arenic 0.93 89
Novic 0.83 3
Clayic 0.74 136
Episkeletic 0.73 28
Epiarenic 0.62 4
Eutric 0.60 67
Hypereutric 0.51 171
Ochric 0.51 5
Pellic 0.50 70
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Table 5 - Land uses with the highest percentage of OC content

Land Use Organic carbon content mean (%) Organic carbon content count  (number of observations)
Floriculture and ornamental plants 6.89 1
Rocks and stones 5.41 6
Pine dominated mixed woodland 5.01 19
Mixed woodland 4.49 16
Shrubland without tree cover 4.25 76
Pine dominated coniferous woodland 3.69 66
Coniferous woodland 3.56 47
Shrubland with sparse tree cover 3.21 80
Durum wheat 2.89 2
Other fruit trees and berries 2.88 6
Mediterranean woodland 2.87 172
Permanent industrial crops 2.86 6
Broadleaved woodland 2.80 338
Other coniferous woodland 2.64 3
Apple fruit 2.46 4
Nuts trees 2.40 21
Pasture 2.29 514
Grassland without tree/shrub cover 2.26 132
Grassland with sparse tree/shrub cover 2.20 52
Maize 2.15 27
Other mixed woodland 2.14 1
Eucalypt forest 2.12 45
Non built-up linear features 2.12 5
Spontaneously vegetated surfaces 2.04 91
Irrigated crop 2.01 207
Bare land 1.88 8
Irrigated arable crop 1.84 1145
Horticulture 1.83 352
Other bare soil 1.83 12
Other fresh vegetables 1.83 4
Pine forest 1.78 380
Temporary grasslands 1.76 13
Oranges 1.73 3
Non built-up area features 1.71 3
Fallow 1.67 1141
Golf course 1.61 3
Other leguminous and mixtures for fodder 1.54 2
Mixed cereals for fodder 1.51 9
Olive groves 1.48 119
Rape and turnip rape 1.48 1
Arable crop 1.47 50
Triticale 1.45 1
Vineyard 1.32 368
Rice 1.25 22
Sunflower 1.22 12
Dry pulses 1.14 3
Common wheat 1.11 9
Rainfed crop 1.06 39
Barley 1.00 5
Oats 1.00 19
Potatoes 0.99 9
Vineyards 0.99 43
Fruit trees 0.98 109
Rainfed arable crop 0.96 1188
Chestnut forest 0.95 29
Rye 0.91 7
Olive grove 0.89 583
Pear fruit 0.85 6
Other cereals 0.84 2
Quercus forest 0.82 91
Other root crops 0.80 1
Mixed crops 0.73 16
Almond 0.69 31
Forest 0.69 418
Cherry fruit 0.62 2
Tomatoes 0.51 2
Cotton 0.48 9
Sugarbeet 0.48 47
Cedars 0.41 3
Melon 0.35 12
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confirm that the soil capacity to store carbon de‑
pends on a multiplicity of factors, with land use 
being one of the key influences. These outputs 
suggest, as shown in the literature review, that the 
variables with influence on the levels of SOC are 
local‑specific, where various factors are complexly 
interrelated.

In  any case, when we consider together the soil 
features and the land use types (Table 6), the soil 
groups highlighted in Table 1 and the qualifiers 
identified in Tables 2, 3 and 4, combined with fal‑
low and forest land, pasture and permanent crops 
emerge as the soil characteristics with the highest 
OC content.

Modelling

The most important predictors of the OC  con‑
tent in the Portuguese context, identified using 
IBM SPSS Modeler software (IBM SPSS Modeler, 
2025) procedures, are the total nitrogen content, cat‑
ion exchange capacity, coarse sand, lower limit of 
soil horizon/layer, pH, upper limit of soil horizon/

layer and elevation (Table 7). Nitrogen has an im‑
portance of about 80%, assuming, in this way, the 
most relevant potential to predict the SOC in Por‑
tuguese soils. These results emphasise the impor‑
tance of SOC and nitrogen for soil quality and are 
in line with the findings identified in the literature 
review (Pacci et al., 2024). In fact, it is known the in‑
terdependency of soil organic carbon with nitrogen. 
When CO2 increases, it promotes net primary pro‑
ductivity, resulting in a higher C:N ratio and lower 
mineralisation rates, due to nitrogen fixation in the 
biomass and nitrogen depletion in the soil (Tashi 
et al., 2016). The importance of a balanced ratio of 
carbon/nitrogen to guarantee soil fertility and its 
capacity for carbon storage is also recognised.

The most accurate models are linear regressions, 
C&R (classification and regression) tree, linear XG‑
Boost (gradient boosting algorithm considering a 
linear model as the base), CHAID  (Chi‑squared 
Automatic Interaction Detection) and LSVM (line‑
ar support vector machine) (Table 8).

Table 6 - Top 20 soil characteristics and land uses with the highest percentage of OC content

Reference Soil 
Groups

Qualifier1 Qualifier2 Qualifier3 Parent Material Land Use Organic carbon 
content mean 

(%)

Organic carbon 
content count 

(number of 
observations)

Fluvisols Hyperhumic Hyperdystric Unconsolidated deposits Fallow 10.45 3
Histosols Epieutric Organic materials 9.54 3
Leptosols Hyperhumic Hyperdystric Metamorphic rocks Mediterranean woodland 9.11 2
Leptosols Lithic Hyperhumic Hyperdystric Metamorphic rocks Forest 9.06 1
Histosols Epidystric Organic materials 8.84 3
Umbrisols Epileptic Hyperhumic Hyperdystric Metamorphic rocks Mediterranean woodland 8.15 2
Cambisols Hyperhumic Eutric Chromic Metamorphic rocks Fallow 8.14 2
Leptosols Umbric Hyperdystric Igneous rocks Fallow 7.95 2
Leptosols Umbric Hyperhumic Hyperdystric Metamorphic rocks Pine forest 7.78 1
Umbrisols Endoleptic Hyperhumic Hyperdystric Igneous rocks Fallow 7.74 3
Leptosols Umbric Hyperdystric Metamorphic rocks Pine forest 7.40 2
Regosols Leptic Hyperhumic Hyperdystric Igneous rocks Pasture 7.24 1
Regosols Colluvic Hyperhumic Hyperdystric Unconsolidated deposits Pasture 7.18 4
Leptosols Umbric Hyperhumic Hyperdystric Metamorphic rocks Mediterranean woodland 7.08 1
Fluvisols Umbric Hyperdystric Unconsolidated deposits Pasture 7.00 3
Leptosols Hyperhumic Hyperdystric Igneous rocks Mediterranean woodland 6.98 3
Regosols Aric Hyperhumic Hyperdystric Metamorphic rocks Eucalypt forest 6.97 2
Regosols Hyperhumic Hyperdystric Igneous rocks Mediterranean woodland 6.92 8
Leptosols Lithic Hyperhumic Hyperdystric Metamorphic rocks Mediterranean woodland 6.88 2
Umbrisols Hyperhumic Hyperdystric Unconsolidated deposits Olive grove 6.86 4
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The SOC  content (%), in the Portuguese context 
and considering the statistical information from 
the INFOSOLO  database, has a positive and sta‑
tistically significant correlation with the follow‑
ing variables (Figure 1): Si  (Silt (0.020‑0.002 mm) 
– weak correlation); C  (Clay (<0.002 mm) – weak 
correlation); N  (Total nitrogen content – strong 
correlation); P  (Extractable phosphorus content 
– medium correlation); K  (Extractable potassium 
content – medium correlation); pH (Soil reaction – 
weak correlation); CaCO3 (Total carbonate content 
– weak correlation); Ca_ex (Exchangeable Ca2+ con‑
tent – weak correlation); K_ex (Exchangeable K+ 
content – weak correlation); CEC (Cation exchange 
capacity – weak correlation); Theta_FC (Soil water 
content at field capacity – weak correlation); and 
Theta_WP  (Soil water content at wilting point 
– weak correlation). The correlation is negative 
and statistically significant in the following cases 
(Figure 1): Hor_top (Upper limit of soil horizon/

layer – medium correlation); Hor_bot (Lower lim‑
it of soil horizon/layer – medium correlation); 
CS (Coarse sand (2.0‑0.2 mm) – weak correlation); 
BD (Dry bulk density – medium correlation); and 
Na_ex (Exchangeable Na+ content – weak correla‑
tion). These results confirm the strong correlation 
between SOC and nitrogen, but also with the phos‑
phorus and potassium. 

Considering the results presented before in this 
section and the objectives proposed for this re‑
search, it was considered pertinent to include the 
variables presented in Table 10 (this table provides 
information on the number of observations and 
other statistics related to the variables considered) 
to carry out a linear regression with the OC con‑
tent as the dependent variable. Nonetheless, results 

for relevant statistical tests were obtained and pre‑
sented in Table 9. The VIF  shows the absence of 
relevant multicollinearity, but the Breusch–Pagan/
Cook–Weisberg test reveals the presence of heter‑
oscedasticity. To  deal with the heteroscedasticity, 
it was considered a linear regression with robust 

Table 7 - The most important variables to predict the OC 
content

Nodes Importance

N 0.776
CEC 0.073
CS 0.049
Land_Use 0.028
Hor_bot 0.019
pH 0.011
Hor_top 0.010
Qualifier 1 0.009
Qualifier 2 0.006
Z 0.006

 
N, Total nitrogen content (g/kg); CEC, Cation exchange capa‑
city (cmolc/kg); CS (%), Coarse sand (2.0-0.2 mm); Hor_bot, 
Lower limit of soil horizon/layer (cm); pH, Soil reaction; 
Hor_top, Upper limit of soil horizon/layer (cm); Z, Elevation.

Table 8 - The most accurate models to predict the OC content

Model Build Time 
(mins) Correlation Number 

Fields Used
Relative 

Error

Linear 2 0.871 28 0.241
C&R Tree 2 0.872 20 0.239
XGBoost Linear 2 0.880 32 0.227
CHAID 2 0.882 18 0.223
LSVM 2 0.897 32 0.195

Table 9 - Specification tests for linear regression

Specification tests Results

Mean VIF (variance inflation factor) 3.970
Breusch–Pagan/Cook–Weisberg test for heteroscedasticity 8513.360 

[0.000]

Table 10 - Summary statistics for variables related to soil 
characteristics and geographical features

Variable Observations Mean
Standard 
Deviation

Min Max

OC 9361 2 2 0 24
N 7213 1 1 0 13
CEC 9443 14 9 0 65
CS 11342 33 19 0 99
Hor_bot 11342 57 40 2 400
pH 11124 6 1 3 10
Hor_top 11342 31 35 0 270
Z 11342 245 228 0 1880
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Figure 1 - Spearman’s rank correlation matrix between variables related to soil characteristics and geographical features. 
Note: *, statistically significant at 5%; The meaning of the acronyms is in the text.
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standard error (for the standard error type) (Ta‑
ble 11). The findings from the Spearman’s rank cor‑
relation matrix (Spearman, 1904) and the creation 
of Tables 9, 10 and 11 were obtained following Stata 
software procedures (Stata, 2025; StataCorp, 2023a, 
2023b). 

The coefficients of the independent variables con‑
sidered reveal that these factors have a positive 
and statistically significant marginal impact on 
the SOC content in Portugal, with nitrogen having 
the strongest marginal effect. The exceptions are 
the lower limit of soil horizon/layer and pH with 
negative marginal impacts, and the upper limit of 
soil horizon/layer without statistical significance 
(Table 11).

Considering these results, the model obtained and 
presented in Table 11 was analysed through mod‑
els of optimisation, following LINGO  software 
(LINGO, 2025) suggestions. The results are those 

exhibited in Table 12. These findings reveal that in 
a hypothetical scenario, with the maximum values 
for the variables with positive marginal impacts 
and the minimum for those with negative effects, it 
could be possible to obtain 20% of OC content. This 
means that in the real world contexts, we should 
generally expect, values strongly below than this 
optimised result. 

Figure 2, obtained through the IBM SPSS Model‑
er software, reveals that a random sample has an 
84% probability of belonging to node 1 (for lower 
values of total nitrogen content) with a predicted 
OC content of 1.016%. The terminal node 6 has the 
highest predicted OC content (8.482%) and a ran‑
dom sample has a 2% probability of belonging to 
this node. The samples belonging to this node have 
higher values of total nitrogen content. This mod‑
elling process is considered among the most accu‑
rate models to predict the OC content (Table 8).

Table 11 - Linear regression results with robust standard 
error (for standard error type) to deal with 
heteroscedasticity

OC Coefficient Robust Standard 
Error t P>t

N 1.355 0.024 56.530 0.000
CEC 0.023 0.002 12.480 0.000
CS 0.006 0.001 10.690 0.000
Hor_bot -0.002 0.001 -2.490 0.013
pH -0.067 0.012 -5.760 0.000
Hor_top 0.001 0.001 1.300 0.195
Z 0.000 0.000 5.140 0.000
_constant -0.249 0.087 -2.850 0.004

Table 12 - Results obtained through linear programming

Variable Value Reduced Cost

N 13 0
CEC 65 0
CS 99 0
Hor_bot 2 0
pH 3 0
Z 1880 0
Row Slack or Surplus Dual Price

1 20 1
2 0 1
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
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Figure 2 - Classification and regression (C&R) tree results with the OC content as the target.
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CONCLUSIONS

The literature survey highlighted the importance 
of the SOC  to preserve and improve soil quality, 
mitigating the impacts of human activities and ad‑
dressing the challenges created by climate change. 
Other variables are also considered important in‑
dicators for assessing soil quality, such as cation 
exchange capacity, clay, silt, sand and pH. The new 
technologies associated with the digital Era open 
interesting potentialities to evaluate and manage 
the soil frameworks, nonetheless, improvements 
in the datasets available and in the methodolo‑
gies adopted are still needed. The literature em‑
phasises accurate models, relevant sources of in‑
formation and the most important predictors of 
SOC. Depth, pH, agricultural practices, soil type, 
temperature, precipitation, slope and vegetation 
indexes are some of the relevant SOC  predictors. 
The agricultural sector contributes significantly to 
GHG  emissions, namely nitrous oxide (N2O) and 
methane (CH4), but multidisciplinary approaches 
and adjusted farming management may improve 
the soil’s capacity to store carbon. 

The data analysis reveals that the soil character‑
istics (identified by soil groups and qualifies) and 
the land use impact the levels of SOC in the Portu‑
guese context. However, when all these indicators 
are considered together it is difficult to identify a 
general pattern, suggesting that soil capacity for 
the carbon sequestration is site specific. In  any 
case, some soil groups (Histosols, Umbrisols, Lep‑
tosols, Anthrosols and Solonchaks) appear to be 
more prone to storage carbon. However, the lo‑
cation seems to be a decisive element as most of 
these soils are located in central and northern Por‑
tugal, where temperatures are lower, precipitation 
is higher, and in areas with florest and shrubland.

The results obtained with machine learning ap‑
proaches and econometric methodologies show 
that the total nitrogen content is the most important 

predictor of the SOC  in Portuguese soils. A  bal‑
anced relationship between carbon and nitrogen is 
required to maintain equilibrium among the soil 
fertility and its capacity to sequester carbon. The 
process of mineralisation of the SOM is needed to 
improve the soil fertility, but reduce the levels of 
SOC stored (Veloso et al., 2022).

In  terms of practical implications, referring that, 
in general, the soils in Portugal have a low level 
of OC  content because of the soil characteristics, 
climate conditions and the agroforestry practices. 
The management of agroforestry land is perhaps 
the easiest part of this problem to control. In terms 
of policy recommendation, it is suggested to re‑
inforce the national, European and international 
policy instruments that promote more sustainable 
farming practices, namely those that mitigate soil 
disruptions. It would also be relevant to improve 
the datasets available, enhance the national soil 
monitoring systems and involve the stakeholders 
in the process of carbon farming. For future re‑
search, it would be important to explore the IN‑
FOSOLO  database through other approaches to 
benchmark with the results identified here.
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