Heart rate variability analysis in healthy subjects, patients suffering from congestive heart failure and heart transplanted patients
DOI:
https://doi.org/10.6063/motricidade.1139Abstract
This study aimed to find parameters to characterize heart rate variability (HRV) and discriminate healthy subjects and patients with heart diseases. The parameters used for discrimination characterize the different components of HRV memory (short and long) and are extracted from HRV recordings using parametric as well as non parametric methods. Thus, the parameters are: spectral components at low frequencies (LH) and high frequencies (HF) which are associated with the short memory of HRV and the long memory parameter (d) obtained from autoregressive fractionally integrated moving average (ARFIMA) models. In the non parametric context, short memory (α1) and long memory (α2) parameters are obtained from detrended fluctuation analysis (DFA). The sample used in this study contains 24-hour Holter HRV recordings of 30 subjects: 10 healthy individuals, 10 patients suffering from congestive heart failure and 10 heart transplanted patients from the Noltisalis database. It was found that short memory parameters present higher values for the healthy individuals whereas long memory parameters present higher values for the diseased individuals. Moreover, there is evidence that ARFIMA modeling allows the discrimination between the 3 groups under study, being advantageous over DFA.
Downloads
Published
Issue
Section
License
The authors of submitted manuscripts must transfer the full copyright to Journal Motricidade / Desafio Singular Editions. Granting copyright permission allows the publication and dissemination of the article in printed or electronic formats and copyrights start at the moment the manuscript is accepted for publication. It also allows Journal Motricidade to use and commercialize the article in terms of licensing, lending or selling its content to indexation/abstracts databases and other entities.
According to the terms of the Creative Commons licence, authors may reproduce a reasonable number of copies for personal or professional purpose but without any economic gains. SHERPA/RoMEO allows authors to post a final digital copy (post-printing version) of the article in their websites or on their institutions' scientific repository.