The emerging landscape of SGLT2 inhibitors in pediatric populations with kidney diseases: A comprehensive literature review

Authors

  • Joana Freitas Department of Nephrology, Unidade Local de Saúde de Santo António https://orcid.org/0000-0001-5343-6797
  • Sara Nogueira Machado Department of Pediatrics, Unidade Local de Saúde Alto Ave https://orcid.org/0000-0001-8650-3706
  • Beatriz Vieira Department of Pediatrics, Unidade Local de Saúde Póvoa de Varzim/Vila do Conde
  • Sara Monteiro Pediatric Nephrology Unit, Department of Pediatrics, Centro Materno-Infantil do Norte, Unidade Local de Saúde de Santo António https://orcid.org/0000-0003-3662-9444
  • Sameiro Faria Pediatric Nephrology Unit, Department of Pediatrics, Centro Materno-Infantil do Norte, Unidade Local de Saúde de Santo António; Faculty of Medicine of the University of Porto. UCIBIO - Applied Molecular Biosciences Unit
  • Teresa Costa Pediatric Nephrology Unit, Department of Pediatrics, Centro Materno-Infantil do Norte, Unidade Local de Saúde de Santo António
  • Conceição Mota Pediatric Nephrology Unit, Department of Pediatrics, Centro Materno-Infantil do Norte, Unidade Local de Saúde de Santo António

DOI:

https://doi.org/10.25753/BirthGrowthMJ.v33.i2.34096

Keywords:

cardiovascular disease, chronic kidney disease, diabetes mellitus, gliflozin, pediatrics, sodium-glucose co-transporter 2 inhibitor

Abstract

Sodium-glucose cotransporter 2 inhibitors (SGLT2i), originally developed as innovative antihyperglycemic agents, have demonstrated significant benefits in improving metabolic markers and protecting the kidneys and heart in patients with or without type 2 diabetes mellitus. The mechanisms behind these unexpected cardiorenal benefits cannot be attributed solely to improved glycemic control. Recent data suggest that metabolic reprogramming plays a role in the development of cardiorenal metabolic disease.
Despite the effectiveness of SGLT2i in the management of chronic kidney disease (CKD)-related comorbidities in adults, their use in the pediatric population remains to be validated. The challenge in pediatric CKD lies in the imbalance between the metabolic needs of a growing child and the declining functional capacity of a failing kidney. Developing strategies to address modifiable factors in the progression of kidney disease is critical given the extended lifespan of the pediatric population.
SGLT2i have emerged as innovative candidates for the treatment of CKD in children. By improving renal hemodynamic adaptation and mitigating overall CKD complications, these agents have the potential to be a novel therapeutic option for pediatric patients. This review will focus on the current understanding of how  SGLT2i may provide cardiorenal protection. 

Downloads

Download data is not yet available.

References

Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011). 2022;12(1):7-11. doi: 10.1016/j.kisu.2021.11.003. Epub 2022 Mar 18. PMID: 35529086; PMCID: PMC9073222.

Kidney Disease: Improving Global Outcomes Work Group. KDIGO Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2012;2013(3):1–150.

Centers for Disease Control and Prevention. Chronic kidney disease in the United States, 2021. https://www.cdc.gov/kidneydisease/publications-resources/ckd-national-facts.html.

Mende CW. Chronic Kidney Disease and SGLT2 Inhibitors: A Review of the Evolving Treatment Landscape. Adv Ther. 2022;39(1):148-64. doi: https://doi.org/10.1007/s12325-021-01994-2. Epub 2021 Nov 30. PMID: 34846711; PMCID: PMC8799531.

Di Costanzo A, Esposito G, Indolfi C, Spaccarotella CAM. SGLT2 Inhibitors: A New Therapeutical Strategy to Improve Clinical Outcomes in Patients with Chronic Kidney Diseases. Int. J. Mol. Sci. 2023, 24, 8732. https://doi.org/10.3390/ijms24108732.

Zinman B, Wanner C, Lachin J M, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015; 373: 2117–28.

McMurray J J V, Solomon S D, Inzucchi S E, Køber L, Kosiborod M N, Martinez F A, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 2019;381: 1995–2008.

Packer M, Anker S D, Butler J, Filippatos G, Pocock S J, Carson P, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N. Engl. J. Med. 2020; 383: 1413–24.

Anker S D, Butler J, Filippatos G, Ferreira J P, Bocchi E, Böhm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N. Engl. J. Med. 2021; 385: 1451–61.

Vasilakou D, Karagiannis T, Athanasiadou E, Mainou M, Liakos A, Bekiari E, et al. Sodium–glucose cotransporter 2 inhibitors for type 2 diabetes: A systematic review and meta-analysis. Ann. Intern. Med. 2013;159:262–274.

DeFronzo R A, Norton L, Abdul-Ghani M. Renal, metabolic and cardiovascular considerations of SGLT2 inhibition. Nat. Rev. Nephrol. 2017;13:11–26.

Škrtić M, Cherney D Z. Sodium–glucose cotransporter-2 inhibition and the potential for renal protection in diabetic nephropathy. Curr. Opin. Nephrol. Hypertens. 2015;24:96–103.

Alshnbari AS, Millar SA, O’sullivan SE, Idris I. Effect of Sodium-Glucose Cotransporter-2 Inhibitors on Endothelial Function: A Systematic Review of Preclinical Studies. Diabetes Ther. 2020; 11:1947–1964.

Lee T M, Chang N C, Lin S Z. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free. Radic. Biol. Med. 2017;104:298–310.

Takagi S, Li J, Takagaki Y, Kitada M, Nitta K, Takasu T, et al. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J. Diabetes Investig. 2018; 9: 1025–1032.

Alicic R Z, Rooney M T, Tuttle K R. Diabetic kidney disease: challenges, progress, and possibilities. CJASN. 2017;12:2032–2045.

Vistisen D, Andersen G S, Hulman A, Persson F, Rossing P, Jørgensen M E. Progressive decline in estimated glomerular filtration rate in patients with diabetes after moderate loss in kidney function—even without albuminuria. Diabetes Care. 2019;42:1886–1894.

Gheith O, Farouk N, Nampoory N, Halim MA, Al-Otaibi T. Diabetic kidney disease: world wide difference of prevalence and risk factors. J Nephropharmacol. 2016;5:49–56.

Jitraknatee J, Ruengorn C, Nochaiwong S. Prevalence and risk factors of chronic kidney disease among type 2 diabetes patients: a cross-sectional study in primary care practice. Sci Rep. 2020;10:6205.

Jabbour S A, Frías J P, Hardy E, Ahmed A, Wang H, Öhman P, et al. Safety and Efficacy of Exenatide Once Weekly Plus Dapagliflozin Once Daily Versus Exenatide or Dapagliflozin Alone in Patients With Type 2 Diabetes Inadequately Controlled With Metformin Monotherapy: 52-Week Results of the DURATION-8 Randomized Controlled Trial. Diabetes Care. 2018 Oct;41(10):2136-2146. doi: https://doi.org/10.2337/dc18-0680. Epub 2018 Aug 6. PMID: 30082326; PMCID: PMC6150435.

McCrimmon R J, Catarig A M, Frias J P, Lausvig N L, le Roux C W, Thielke D, et al. Effects of once-weekly semaglutide vs once-daily canagliflozin on body composition in type 2 diabetes: a substudy of the SUSTAIN 8 randomised controlled clinical trial. Diabetologia. 2020 Mar;63(3):473-485. doi: https://doi.org/10.1007/s00125-019-05065-8. Epub 2020 Jan 2. PMID: 31897524; PMCID: PMC6997246.

Rodbard H W, Rosenstock J, Canani L H, Deerochanawong C, Gumprecht J, Lindberg SØ, et al. PIONEER 2 Investigators. Oral Semaglutide Versus Empagliflozin in Patients With Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial. Diabetes Care. 2019 Dec;42(12):2272-2281. doi: https://doi.org/10.2337/dc19-0883. Epub 2019 Sep 17. PMID: 31530666.

Zinman B, Wanner C, Lachin J M, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373:2117–2128.

Wanner C, Inzucchi S E, Lachin J M, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016; 375:323–334.

Wiviott S D, Raz I, Bonaca M P, Mosenzon O, Kato E T, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380:347–357.

Mosenzon O, Wiviott S D, Cahn A, Rozenberg A, Yanuv I, Goodrich E L, et al. Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial. Lancet Diabetes Endocrinol. 2019;7:606–617.

Neal B, Perkovic V, Mahaffey K W, de Zeeuw D, Fulcher G, Erondu N, et al. CANVAS Program Collaborative Group: canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl JMed. 2017;377:644–657.

Perkovic V, Jardine M J, Neal B, Bompoint S, Heerspink H J L, Charytan DM, et al. CREDENCE Trial Investigators: canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380:2295–2306.

Oshima M, Neuen B L, Li J W, Perkovic V, Charytan D M, de Zeeuw D, et al. Early change in albuminuria with canagliflozin predicts kidney and cardiovascular outcomes: a post hoc analysis from the CREDENCE trial. J Am Soc Nephrol. 2020;31:2925–2936.

Podestà M A, Sabiu G, Galassi A, Ciceri P, Cozzolino M. SGLT2 Inhibitors in Diabetic and Non-Diabetic Chronic Kidney Disease. Biomedicines. 2023 Jan 19;11(2):279. doi: https://doi.org/10.3390/biomedicines11020279. PMID: 36830815; PMCID: PMC9953060.

Gao Y M, Feng S T, Wen Y, Tang T T, Wang B, Liu B C. Cardiorenal Protection of SGLT2 Inhibitors—Perspectives from Metabolic Reprogramming. eBioMedicine. 2022;83:104215. doi: https://doi.org/10.1016/j.ebiom.2022.104215.

Palmer B F, Clegg D J. Kidney-Protective Effects of SGLT2 Inhibitors. Clin. J. Am. Soc. Nephrol. 2022 doi: https://doi.org/10.2215/CJN.09380822. online ahead of print .

Heerspink H J L, Stefánsson B V, Correa-Rotter R, Chertow G M, Greene T, Hou F F, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020;383:1436–1446. doi: https://doi.org/10.1056/NEJMoa2024816.

McMurray J J V, Solomon S D, Inzucchi S E, Køber L, Kosiborod M N, Martinez F A, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019;381:1995–2008. doi: https://doi.org/10.1056/NEJMoa1911303.

Jhund P S, Solomon S D, Docherty K F, Heerspink H J L, Anand I S, Böhm M, et al. Efficacy of Dapagliflozin on Renal Function and Outcomes in Patients with Heart Failure With Reduced Ejection Fraction. Circulation. 2021;143:298–309.doi: https://doi.org/10.1161/CIRCULATIONAHA.120.050391.

Packer M, Anker S D, Butler J, Filippatos G, Pocock S J, Carson P, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020;383:1413–1424. doi: https://doi.org/10.1056/NEJMoa2022190.

Packer M, Anker S D, Butler J, Filippatos G, Pocock S J, Carson P, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020;383:1413–1424. doi: https://doi.org/10.1056/NEJMoa2022190.

The EMPA-KIDNEY Collaborative Group Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2022;388:117–127. doi: https://doi.org/10.1056/NEJMoa2204233.

Choi H, Nguyen LA, Wan J, Milani H, McGill K, Park J. Adverse Events of Sodium-Glucose Cotransporter-2 Inhibitors in Chronic Kidney Disease: A Retrospective Chart Review. Perm J. 2021 May;25:20.242. doi: https://doi.org/10.7812/TPP/20.242. PMID: 33970086; PMCID: PMC8784046.

Bailey C J, Day C, Bellary S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr Diab Rep. 2022 Jan;22(1):39-52. doi: https://doi.org/10.1007/s11892-021-01442-z. Epub 2022 Feb 3. PMID: 35113333; PMCID: PMC8888485.

Talha K M, Anker S D, Butler J. SGLT-2 Inhibitors in Heart Failure: A Review of Current Evidence. Int J Heart Fail. 2023 Mar 13;5(2):82-90. doi: https://doi.org/10.36628/ijhf.2022.0030. PMID: 37180562; PMCID: PMC10172076.

Shivakumar O, Sattar N, Wheeler DC. Sodium-glucose cotransporter 2 inhibitor effects on cardiovascular outcomes in chronic kidney disease. Nephrol Dial Transplant. 2020 Jan 1;35(Suppl 1):i43-i47. doi: https://doi.org/10.1093/ndt/gfz292. PMID: 32003831; PMCID: PMC6993195.

Zaccardi F, Webb D R, Htike Z Z, Youssef D, Khunti K, Davies M J. Efficacy and safety of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes mellitus: systematic review and network meta-analysis. Diabetes Obes Metab. 2016;18:783–794.

Yang L, Zhang L, He H, Zhang M, An Z. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in east Asians with type 2 diabetes: a systematic review and meta-analysis. Diabetes Ther. 2019;10:1921–1934.

Yang Y, Zhao C, Ye Y, Yu M, Qu X. Prospect of sodium–glucose co-transporter 2 inhibitors combined with insulin for the treatment of type 2 diabetes. Front Endocrinol. 2020;10:3389. doi: https://doi.org/10.3389/fendo.2020.00190.

Chen J, Fan F, Wang J Y Long Y, Gao C L, Stanton R C, Xu Y. The efficacy and safety of SGLT2 inhibitors for adjunctive treatment of type 1 diabetes: a systematic review and meta-analysis. Sci Rep. 2017;7:44128.

Taylor S I, Blau Jenny E, Rother K I. SGLT2 inhibitors may predispose to ketoacidosis. J Clin Endocrinol Metab. 2015;100:2849–52.

Laffel L M, Danne T, Klingensmith G J, Tamborlane W V, Willi S, Zeitler P, et al. DINAMO Study Group. Efficacy and safety of the SGLT2 inhibitor empagliflozin versus placebo and the DPP-4 inhibitor linagliptin versus placebo in young people with type 2 diabetes (DINAMO): a multicentre, randomised, double-blind, parallel group, phase 3 trial. Lancet Diabetes Endocrinol. 2023 Mar;11(3):169-181. doi: https://doi.org/10.1016/S2213-8587(22)00387-4. Epub 2023 Feb 1. PMID: 36738751.

Tamborlane W V, Laffel L M, Shehadeh N, Isganaitis E, Van Name M, Ratnayake J, et al. Efficacy and safety of dapagliflozin in children and young adults with type 2 diabetes: a prospective, multicentre, randomised, parallel group, phase 3 study. Lancet Diabetes Endocrinol. 2022 May;10(5):341-350. doi: https://doi.org/10.1016/S2213-8587(22)00052-3. Epub 2022 Apr 1. PMID: 35378069.

Liu J, Cui J, Fang X, Chen J, Yan W, Shen Q, et al. Efficacy and Safety of Dapagliflozin in Children With Inherited Proteinuric Kidney Disease: A Pilot Study. Kidney Int Rep. 2021 Dec 21;7(3):638-641. https://doi.org/doi: 10.1016/j.ekir.2021.12.019. PMID: 35257077; PMCID: PMC8897303.

Marinkovic-Radosevic J, Cigrovski Berkovic M, Kruezi E, Bilic-Curcic I, Mrzljak A. Exploring new treatment options for polycystic ovary syndrome: Review of a novel antidiabetic agent SGLT2 inhibitor. World J Diabetes. 2021 Jul 15;12(7):932-938. doi: https://doi.org/10.4239/wjd.v12.i7.932. PMID: 34326946; PMCID: PMC8311482.

Androutsakos T, Nasiri-Ansari N, Bakasis AD, Kyrou I, Efstathopoulos E, Randeva HS, et al. SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int J Mol Sci. 2022 Mar 13;23(6):3107. doi: https://doi.org/10.3390/ijms23063107. PMID: 35328527; PMCID: PMC8953901.

Butts R, Nandi D, Hong B, Lorts A, Spinner J. SGLT2 Inhibitor Use in Pediatric Heart Failure. The Journal of Heart and Lung Transplantation. 2023; 42(4):S479.

Cirillo L, Ravaglia F, Errichiello C, Anders HJ, Romagnani P, Becherucci F. Expectations in children with glomerular diseases from SGLT2 inhibitors. Pediatr Nephrol. 2022 Dec;37(12):2997-3008. doi: https://doi.org/10.1007/s00467-022-05504-6. Epub 2022 Mar 14. PMID: 35286452.

Downloads

Published

2024-06-27

How to Cite

1.
Freitas J, Machado SN, Vieira B, Monteiro S, Faria S, Costa T, Mota C. The emerging landscape of SGLT2 inhibitors in pediatric populations with kidney diseases: A comprehensive literature review. REVNEC [Internet]. 2024Jun.27 [cited 2025Jan.28];33(2):111-22. Available from: https://revistas.rcaap.pt/nascercrescer/article/view/34096

Issue

Section

Review Articles

Most read articles by the same author(s)

<< < 1 2