Resultados a Longo Prazo de Crosslinking Transepitelial Acelerado em Doentes com Queratocone Progressivo

Autores

  • Rodrigo Vilares-Morgado Department of Ophthalmology, Centro Hospitalar de São João Hospital, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Porto University, Porto, Portugal https://orcid.org/0000-0003-3325-2194
  • Ana Margarida Ferreira Department of Ophthalmology, Centro Hospitalar de São João Hospital, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Porto University, Porto, Portugal
  • Ana Maria Cunha Department of Ophthalmology, Centro Hospitalar de São João Hospital, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Porto University, Porto, Portugal https://orcid.org/0000-0002-8519-8786
  • Raúl Moreira Department of Ophthalmology, Centro Hospitalar de São João Hospital, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Porto University, Porto, Portugal
  • Luís Torrão Department of Ophthalmology, Centro Hospitalar de São João Hospital, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Porto University, Porto, Portugal
  • Pedro Neves-Cardoso Department of Ophthalmology, Centro Hospitalar de São João Hospital, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Porto University, Porto, Portugal
  • João Pinheiro-Costa Department of Ophthalmology, Centro Hospitalar de São João Hospital, Porto, Portugal; Department of Surgery and Physiology, Faculty of Medicine of Porto University, Porto, Portugal; Department of Biomedicine, Faculty of Medicine of Porto University, Porto, Portugal https://orcid.org/0000-0002-7289-4045

DOI:

https://doi.org/10.48560/rspo.33250

Palavras-chave:

Crosslinking Corneano, Progressão da Doença, Queratocone, Reagentes de Crosslinking, Topografia da Córnea

Resumo

INTRODUÇÃO: Avaliação sistematizada da efetividade a longo prazo do crosslinking transepitelial acelerado (TE-ACXL) no tratamento de olhos com queratocone (KC) progressivo, ao longo de um período de 4 anos.

MÉTODOS: Foram incluídos olhos com KC progressivo submetidos a TE-ACXL (6 mW/cm2 durante 15 minutos), com seguimento de 48 meses. Foram avaliados os seguintes parâmetros: melhor acuidade visual para longe corrigida (CDVA), parâmetros queratométricos (queratometria máxima (Kmax), queratometria media (Kmean) e astigmatismo corneano (Astg)), espessura corneana mínima (PachyMin), índices topográficos e tomográficos (nomeadamente o raio de curvatura posterior dos 3 mm centrados no ponto mais fino da córnea (PRC) e o índice D). Estes parâmetros foram analisados pré-operatoriamente e a cada 12 meses após o TE-ACXL, até 48 meses após a cirurgia.

RESULTADOS: Foram incluídos 41 olhos de 30 doentes. A idade média pré-operatória foi 20,90±4,69 anos. Foram excluídos 11 olhos da comparação entre os resultados aos 48 meses e os resultados pré-TE-ACXL, visto que estes olhos foram submetidos a outros procedimentos 36 meses após a cirurgia inicial (nomeadamente, crosslinking com remoção do epitélio (n=6), segmentos de anel intracorneanos (n=4) ou queratoplastia penetrante (n=1). Registou-se um aumento significativo da Kmean (+0,64±1,04 D, p<0,001; +0,98 ± 1,49 D, p<0,001; +1,27±2,01 D, p<0,001; +1,13±2,00 D, p=0,006) e do índice D (+0,51±1,03 unidades, p=0,007; +0,69±1,25 unidades, p=0,002; +1,02±1,72 unidades, p=0,002; +1,15±1,64 unidades, p<0,001) ao longo do seguimento. O PRC diminuiu significativamente ao longo dos 48 meses (-0,12±0,22 mm, p=0,002; -0,15±0,24 mm, p<0,001; -0,17±0,43 mm, p=0,021; -0,16±0,43 mm, p=0,027). A PachyMin diminuiu significativamente aos 36 e aos 48 meses (-8,50±15,93 μm, p=0,004; -7,82±18,37, p=0,033). A CDVA melhorou significativamente aos 12 e aos 48 meses (-0,10±0,29 unidades logMAR, p=0,045; -0,17±0,33 unidades logMAR, p=0,013), mas não aos 24 meses ou aos 36 meses. A cirurgia e o seguimento dos doentes decorreram sem intercorrências em todos os doentes incluídos.

CONCLUSÃO: O TE-ACXL é um tratamento seguro para o KC progressivo. Contudo, pode ocorrer uma variação significativa dos parâmetros topográficos, tomográficos e paquimétricos nestes olhos, num período de 4 anos após o procedimento. Assim, podem ser necessários outros procedimentos para abrandar a progressão da doença.

Downloads

Não há dados estatísticos.

Referências

Mas Tur V, MacGregor C, Jayaswal R, O’Brart D, Maycock N. A review of keratoconus: Diagnosis, pathophysiology, and genetics. Surv Ophthalmol. 2017;62:770-83. doi:10.1016/j.survophthal.2017.06.009

Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ. The pathogenesis of keratoconus. Eye. 2014;28:189-95. doi:10.1038/eye.2013.278

Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297-319.

Romero-Jimenez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33:157-66; quiz 205. doi:10.1016/j.clae.2010.04.006

Godefrooij DA, de Wit GA, Uiterwaal CS, Imhof SM, Wisse RP. Age-specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. Am J Ophthalmol. 2017;175:169-72. doi:10.1016/j.ajo.2016.12.015

Torres Netto EA, Al-Otaibi WM, Hafezi NL, Kling S, Al-Farhan HM, Randleman JB, et al. Prevalence of keratoconus in paediatric patients in Riyadh, Saudi Arabia. Br J Ophthalmol. 2018;102:1436-41. doi:10.1136/bjophthalmol-2017-311391

Ambrosio R Jr, Lopes BT, Faria-Correia F, Salomão MO, Bühren I, Roberts CJ, et al. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33:434-43. doi:10.3928/1081597X-20170426-02

Duncan JK, Belin MW, Borgstrom M. Assessing progression of keratoconus: novel tomographic determinants. Eye Vis. 2016;3:6. doi:10.1186/s40662-016-0038-6

Jay JM, Akilesh G, Hans RV, Charles NJ. Progression of keratoconus in children and adolescents. Br J Ophthalmol. 2023;107:176-180. doi:10.1136/bjophthalmol-2020-316481

Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrosio R Jr, Guell JL, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34:359-69. doi:10.1097/ICO.0000000000000408

Ribeiro M, Barbosa C, Correia P, Torrão L, Neves Cardoso P, Moreira R, et al. Best fit sphere back and adjusted maximum elevation of corneal back surface as novel predictors of keratoconus progression. Clin Ophthalmol. 2022;16:429-48. doi:10.2147/OPTH.S386614

Cunha AM, Correia PJ, Alves H, Torrão L, Moreira R, Falcão-Reis F, et al. Keratoconus enlargement as a predictor of keratoconus progression. Sci Rep. 2021;11:21079. doi:10.1038/s41598-021-00649-0

Jiménez-García M, Kreps EO, SND, Koppen C, Rozema JJ. Determining the most suitable tomography-based parameters to describe progression in keratoconus, the retrospective digital computer analysis of keratoconus evolution project. Eye Contact Lens. 2021;47:486-93. doi:10.1097/ICL.0000000000000800

Gustafsson I, Bergström A, Cardiakides A, Ivarsen A, Hjortdal J. The Interday Repeatability of Parameters for the Assessment of Progressive Disease in Subjects With Less Advanced Keratoconus. Am J Ophthalmol. 2021;225:38-46. doi:10.1016/j.ajo.2020.12.028

Martinez-Abad A, Piñero DP. New perspectives on the detection and progression of keratoconus. J Cataract Refract Surg. 2017;43:1213-27. doi:10.1016/j.jcrs.2017.07.021

Shajari M, Steinwender G, Herrmann K, Kubiak KB, Pavlovic I, Plawetcki E, et al. Evaluation of keratoconus progression. Br J Ophthalmol. 2019;103:551-7. doi:10.1136/bjophthalmol-2017-311651

Deshmukh R, Ong ZZ, Rampat R, Alió Del Barrio JL, Barua A, Ang M, et al. Management of keratoconus: an updated review. Front Med. 2023;10:1212314. doi:10.3389/fmed.2023.1212314

Valera-Cornejo DA, Vega-Estrada A, Alió JL. Invasive pharmacology outcomes with different corneal cross-linking protocols: a review. J Ocul Pharmacol Ther. 2019;35:475-90. doi:10.1089/jop.2018.0144

Subasinghe SK, Ogbuehi KC, Dias GJ. Current perspectives on corneal collagen crosslinking (CXL). Graefes Arch Clin Exp Ophthalmol. 2018;256:1363-84. doi:10.1007/s00417-018-3966-0

Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620-7. doi:10.1016/s0002-9394(02)02220-1

Heikal MA, Soliman TT, Fayed A, Hamed AM. Efficacy of transepithelial corneal collagen crosslinking for keratoconus: 12-month follow-up. Clin Ophthalmol. 2017;11:767-71. doi:10.2147/OPTH.S129037

Beckman KA, Gupta PK, Farid M, Berdahl JP, Yeu E, Ayres B, et al. Corneal crosslinking: Current protocols and clinical approach. J Cataract Refract Surg. 2019;45:1670-9. doi:10.1016/j.jcrs.2019.06.027

O'Brart DP. Corneal collagen crosslinking for corneal ectasias: a review. Eur J Ophthalmol. 2017;27:253-69. doi:10.5301/ejo.5000916

Medeiros CS, Giacomin NT, Bueno RL, Ghanem RC, Moraes HV Jr, Santhiago MR. Accelerated corneal collagen crosslinking: Technique, efficacy, safety, and applications. J Cataract Refract Surg. 2016;42:1826-35. doi:10.1016/j.jcrs.2016.11.028

Cunha AM, Sardinha T, Torrão L, Moreira R, Falcão-Reis F, Pinheiro-Costa J. Transepithelial accelerated corneal collagen cross-linking: two-year results. Clin Ophthalmol. 2020;14:3299-307. doi:10.2147/OPTH.S252940

Li W, Wang B. Efficacy and safety of transepithelial corneal collagen crosslinking surgery versus standard corneal collagen crosslinking surgery for keratoconus: a meta-analysis of randomized controlled trials. BMC Ophthalmol. 2017;17:262. doi:10.1186/s12886-017-0657-2

Ng AL, Chan TC, Lai JS, Cheng AC. Comparison of the central and peripheral corneal stromal demarcation line depth in conventional versus accelerated collagen cross-linking. Cornea. 2015;34:1432-6. doi:10.1097/ICO.0000000000000626

Shalchi Z, Wang X, Nanavaty MA. Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye. 2015;29:15-29. doi:10.1038/eye.2014.230

D'Orla F, Palazón A, Alió JL. Corneal collagen cross-linking epithelium on vs. epithelium-off: a systematic review and meta-analysis. Eye Vis. 2021;8:34. doi:10.1186/s40662-021-00256-0

Cifariello F, Minicucci M, Di Renzo F, Di Taranto D, Codispoti G, Zaccaria S, et al. Epi-Off versus Epi-On corneal collagen cross-linking in keratoconus patients: a comparative study through 2-year follow-up. J Ophthalmol. 2018;2018:4947983. doi:10.1155/2018/4947983

Wu D, Lim DK, Lim BRH, Wong N, Hafezi F, Manotosh R, et al. Corneal Cross-Linking: The Evolution of Treatment for Corneal Diseases. Front Pharmacol. 2021;12:686630. doi:10.3389/fphar.2021.686630

Mastropasqua L, Nubile M, Calienno R, Mattei PA, Pedrotti E, Salgari N, et al. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol. 2014;157:623-30.e1. doi:10.1016/j.ajo.2013.11.018

Hill J, Liu C, Deardorff P, Tavakol B, Eddington W, Thompson V, et al. Optimization of Oxygen Dynamics, UV-A Delivery, and Drug Formulation for Accelerated Epi-On Corneal Crosslinking. Curr Eye Res. 2020;45:450-8. doi:10.1080/02713683.2019.1669663

Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The Biomechanical Effect of Corneal Collagen Cross-Linking (CXL) With Riboflavin and UV-A is Oxygen Dependent. Transl Vis Sci Technol. 2013;2:6. doi:10.1167/tvst.2.7.6

Podskochy A. Protective role of corneal epithelium against ultraviolet radiation damage. Acta Ophthalmol Scand. 2004;82:714-7. doi:10.1111/j.1600-0420.2004.00369.x

Bilgihan K, Yesilirmak N, Altay Y, Yuvarlak A, Ozdemir HB. Conventional corneal collagen cross-linking versus transepithelial diluted alcohol and iontophoresis-assisted corneal cross-linking in progressive keratoconus. Cornea. 2017;36:1492-7. doi:10.1097/ICO.0000000000001383

Mazzotta C, Bagaglia SA, Sborgia A, Di Maggio A, Fruschelli M, Romani A, et al. Iontophoresis Corneal Cross-linking With Enhanced Fluence and Pulsed UV-A Light: 3-Year Clinical Results. J Refract Surg. 2020;36:286-92. doi:10.3928/1081597X-20200406-02

Hersh PS, Stulting RD, Muller D, Durrie DS, Rajpal RK. United States Multicenter Clinical Trial of Corneal Collagen Crosslinking for Keratoconus Treatment. Ophthalmology. 2017;124:1259-70. doi:10.1016/j.ophtha.2017.03.052

Gordon MO, Steger-May K, Szczotka-Flynn L, Riley C, Joslin CE, Weissman BA, et al. Baseline factors predictive of incident penetrating keratoplasty in keratoconus. Am J Ophthalmol. 2006;142:923-30. doi:10.1016/j.ajo.2006.07.026

Matthaei M, Sandhaeger H, Hermel M, Adler W, Jun AS, Cursiefen C, et al. Changing indications in penetrating keratoplasty: a systematic review of 34 years of global reporting. 2017;101:1387-99. doi:10.1097/TP.0000000000001281

Hersh PS, Lai MJ, Gelles JD, Lesniak SP. Transepithelial corneal crosslinking for keratoconus. J Cataract Refract Surg. 2018;44:313-22. doi:10.1016/j.jcrs.2017.12.022

Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009;35:540-6. doi:10.1016/j.jcrs.2008.11.036

Lombardo M, Giannini D, Lombardo G, Serrao S. Randomized Controlled Trial Comparing Transepithelial Corneal Cross-linking Using Iontophoresis with the Dresden Protocol in Progressive Keratoconus. Ophthalmology. 2017;124:804-12. doi:10.1016/j.ophtha.2017.01.040

Lombardo M, Serrao S, Lombardo G, Schiano-Lomoriello D. Two-year outcomes of a randomized controlled trial of transepithelial corneal crosslinking with iontophoresis for keratoconus. J Cataract Refract Surg. 2019;45:992-1000. doi:10.1016/j.jcrs.2019.01.024

Sadoughi MM, Einollahi B, Baradaran-Rafii A, Roshandel D, Hasani H, Nazeri M. Accelerated versus conventional corneal collagen cross-linking in patients with keratoconus: an intra-patient comparative study. Int Ophthalmol. 2018;38:67-74. doi:10.1007/s10792-016-0423-0

Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40:1013-20. doi:10.1016/j.jcrs.2013.12.012

Shetty R, Pahuja NK, Nuijts RM, Ajani A, Jayadev C, Sharma C, et al. Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol. 2015;160:243-9. doi:10.1016/j.ajo.2015.05.019

Waszczykowska A, Jurowski P. Two-year accelerated corneal cross-linking outcome in patients with progressive keratoconus. Biomed Res Int. 2015;2015:325157. doi:10.1155/2015/325157

Spadea L, Tonti E, Vingolo EM. Corneal stromal demarcation line after collagen cross-linking in corneal ectatic diseases: a review of the literature. Clin Ophthalmol. 2016;10:1803-10. doi:10.2147/OPTH.S117372

D'Orla F, Puzo P, Incandela C, Sborgia A, Gigliola S, Boscia F, et al. Evaluation of demarcation line after epithelium-off iontophoresis corneal collagen cross-linking for progressive keratoconus. J Clin Med. 2021;10:3295. doi:10.3390/jcm10153295

Sun L, Li M, Zhang X, Tian M, Han T, Zhao J, et al. Transepithelial accelerated corneal collagen cross-linking with higher oxygen availability for keratoconus: 1-year results. Int Ophthalmol. 2018;38:2509-17. doi:10.1007/s10792-017-0762-5

Tian M, Jian W, Zhang X, Sun L, Zhou X. Three-year follow-up of accelerated transepithelial corneal cross-linking for progressive paediatric keratoconus. Br J Ophthalmol. 2020;104:1608-12. doi:10.1136/bjophthalmol-2019-315260

Madeira C, Vasques A, Beato J, Godinho G, Torrão L, Falcão M, et al. Transepithelial accelerated versus conventional corneal collagen crosslinking in patients with keratoconus: a comparative study. Clin Ophthalmol. 2019;13:445-52. doi:10.2147/OPTH.S189183

Al Fayez MF, Alfayez S, Alfayez Y. Transepithelial Versus Epithelium-Off Corneal Collagen Cross-Linking for Progressive Keratoconus: A Prospective Randomized Controlled Trial. Cornea. 2015;34:553-6. doi:10.1097/ICO.0000000000000547

Henriquez MA, Hernandez-Sahagun G, Camargo J, Izquierdo L Jr. Accelerated Epi-On Versus Standard Epi-Off Corneal Collagen Cross-Linking for Progressive Keratoconus in Pediatric Patients: Five Years of Follow-Up. Cornea. 2020;39:1493-8. doi:10.1097/ICO.0000000000002463

Gu S, Fan Z, Wang L, Tao X, Zhang Y, Mu G. Corneal collagen cross-linking with hypoosmolar riboflavin solution in keratoconic corneas. Biomed Res Int. 2014;2014:754182. doi:10.1155/2014/754182

Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009;35:621-4. doi:10.1016/j.jcrs.2008.10.060

Downloads

Publicado

2025-06-19

Como Citar

Vilares-Morgado, R., Ferreira, A. M., Cunha, A. M., Moreira, R., Torrão, L., Neves-Cardoso, P., & Pinheiro-Costa, J. (2025). Resultados a Longo Prazo de Crosslinking Transepitelial Acelerado em Doentes com Queratocone Progressivo. Revista Sociedade Portuguesa De Oftalmologia, 49(3), 177–185. https://doi.org/10.48560/rspo.33250

Edição

Secção

Artigos Originais