Resultados a Longo Prazo de Crosslinking Transepitelial Acelerado em Doentes com Queratocone Progressivo
DOI:
https://doi.org/10.48560/rspo.33250Palavras-chave:
Crosslinking Corneano, Progressão da Doença, Queratocone, Reagentes de Crosslinking, Topografia da CórneaResumo
INTRODUÇÃO: Avaliação sistematizada da efetividade a longo prazo do crosslinking transepitelial acelerado (TE-ACXL) no tratamento de olhos com queratocone (KC) progressivo, ao longo de um período de 4 anos.
MÉTODOS: Foram incluídos olhos com KC progressivo submetidos a TE-ACXL (6 mW/cm2 durante 15 minutos), com seguimento de 48 meses. Foram avaliados os seguintes parâmetros: melhor acuidade visual para longe corrigida (CDVA), parâmetros queratométricos (queratometria máxima (Kmax), queratometria media (Kmean) e astigmatismo corneano (Astg)), espessura corneana mínima (PachyMin), índices topográficos e tomográficos (nomeadamente o raio de curvatura posterior dos 3 mm centrados no ponto mais fino da córnea (PRC) e o índice D). Estes parâmetros foram analisados pré-operatoriamente e a cada 12 meses após o TE-ACXL, até 48 meses após a cirurgia.
RESULTADOS: Foram incluídos 41 olhos de 30 doentes. A idade média pré-operatória foi 20,90±4,69 anos. Foram excluídos 11 olhos da comparação entre os resultados aos 48 meses e os resultados pré-TE-ACXL, visto que estes olhos foram submetidos a outros procedimentos 36 meses após a cirurgia inicial (nomeadamente, crosslinking com remoção do epitélio (n=6), segmentos de anel intracorneanos (n=4) ou queratoplastia penetrante (n=1). Registou-se um aumento significativo da Kmean (+0,64±1,04 D, p<0,001; +0,98 ± 1,49 D, p<0,001; +1,27±2,01 D, p<0,001; +1,13±2,00 D, p=0,006) e do índice D (+0,51±1,03 unidades, p=0,007; +0,69±1,25 unidades, p=0,002; +1,02±1,72 unidades, p=0,002; +1,15±1,64 unidades, p<0,001) ao longo do seguimento. O PRC diminuiu significativamente ao longo dos 48 meses (-0,12±0,22 mm, p=0,002; -0,15±0,24 mm, p<0,001; -0,17±0,43 mm, p=0,021; -0,16±0,43 mm, p=0,027). A PachyMin diminuiu significativamente aos 36 e aos 48 meses (-8,50±15,93 μm, p=0,004; -7,82±18,37, p=0,033). A CDVA melhorou significativamente aos 12 e aos 48 meses (-0,10±0,29 unidades logMAR, p=0,045; -0,17±0,33 unidades logMAR, p=0,013), mas não aos 24 meses ou aos 36 meses. A cirurgia e o seguimento dos doentes decorreram sem intercorrências em todos os doentes incluídos.
CONCLUSÃO: O TE-ACXL é um tratamento seguro para o KC progressivo. Contudo, pode ocorrer uma variação significativa dos parâmetros topográficos, tomográficos e paquimétricos nestes olhos, num período de 4 anos após o procedimento. Assim, podem ser necessários outros procedimentos para abrandar a progressão da doença.
Downloads
Referências
Mas Tur V, MacGregor C, Jayaswal R, O’Brart D, Maycock N. A review of keratoconus: Diagnosis, pathophysiology, and genetics. Surv Ophthalmol. 2017;62:770-83. doi:10.1016/j.survophthal.2017.06.009
Davidson AE, Hayes S, Hardcastle AJ, Tuft SJ. The pathogenesis of keratoconus. Eye. 2014;28:189-95. doi:10.1038/eye.2013.278
Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297-319.
Romero-Jimenez M, Santodomingo-Rubido J, Wolffsohn JS. Keratoconus: a review. Cont Lens Anterior Eye. 2010;33:157-66; quiz 205. doi:10.1016/j.clae.2010.04.006
Godefrooij DA, de Wit GA, Uiterwaal CS, Imhof SM, Wisse RP. Age-specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study. Am J Ophthalmol. 2017;175:169-72. doi:10.1016/j.ajo.2016.12.015
Torres Netto EA, Al-Otaibi WM, Hafezi NL, Kling S, Al-Farhan HM, Randleman JB, et al. Prevalence of keratoconus in paediatric patients in Riyadh, Saudi Arabia. Br J Ophthalmol. 2018;102:1436-41. doi:10.1136/bjophthalmol-2017-311391
Ambrosio R Jr, Lopes BT, Faria-Correia F, Salomão MO, Bühren I, Roberts CJ, et al. Integration of scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33:434-43. doi:10.3928/1081597X-20170426-02
Duncan JK, Belin MW, Borgstrom M. Assessing progression of keratoconus: novel tomographic determinants. Eye Vis. 2016;3:6. doi:10.1186/s40662-016-0038-6
Jay JM, Akilesh G, Hans RV, Charles NJ. Progression of keratoconus in children and adolescents. Br J Ophthalmol. 2023;107:176-180. doi:10.1136/bjophthalmol-2020-316481
Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrosio R Jr, Guell JL, et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34:359-69. doi:10.1097/ICO.0000000000000408
Ribeiro M, Barbosa C, Correia P, Torrão L, Neves Cardoso P, Moreira R, et al. Best fit sphere back and adjusted maximum elevation of corneal back surface as novel predictors of keratoconus progression. Clin Ophthalmol. 2022;16:429-48. doi:10.2147/OPTH.S386614
Cunha AM, Correia PJ, Alves H, Torrão L, Moreira R, Falcão-Reis F, et al. Keratoconus enlargement as a predictor of keratoconus progression. Sci Rep. 2021;11:21079. doi:10.1038/s41598-021-00649-0
Jiménez-García M, Kreps EO, SND, Koppen C, Rozema JJ. Determining the most suitable tomography-based parameters to describe progression in keratoconus, the retrospective digital computer analysis of keratoconus evolution project. Eye Contact Lens. 2021;47:486-93. doi:10.1097/ICL.0000000000000800
Gustafsson I, Bergström A, Cardiakides A, Ivarsen A, Hjortdal J. The Interday Repeatability of Parameters for the Assessment of Progressive Disease in Subjects With Less Advanced Keratoconus. Am J Ophthalmol. 2021;225:38-46. doi:10.1016/j.ajo.2020.12.028
Martinez-Abad A, Piñero DP. New perspectives on the detection and progression of keratoconus. J Cataract Refract Surg. 2017;43:1213-27. doi:10.1016/j.jcrs.2017.07.021
Shajari M, Steinwender G, Herrmann K, Kubiak KB, Pavlovic I, Plawetcki E, et al. Evaluation of keratoconus progression. Br J Ophthalmol. 2019;103:551-7. doi:10.1136/bjophthalmol-2017-311651
Deshmukh R, Ong ZZ, Rampat R, Alió Del Barrio JL, Barua A, Ang M, et al. Management of keratoconus: an updated review. Front Med. 2023;10:1212314. doi:10.3389/fmed.2023.1212314
Valera-Cornejo DA, Vega-Estrada A, Alió JL. Invasive pharmacology outcomes with different corneal cross-linking protocols: a review. J Ocul Pharmacol Ther. 2019;35:475-90. doi:10.1089/jop.2018.0144
Subasinghe SK, Ogbuehi KC, Dias GJ. Current perspectives on corneal collagen crosslinking (CXL). Graefes Arch Clin Exp Ophthalmol. 2018;256:1363-84. doi:10.1007/s00417-018-3966-0
Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135:620-7. doi:10.1016/s0002-9394(02)02220-1
Heikal MA, Soliman TT, Fayed A, Hamed AM. Efficacy of transepithelial corneal collagen crosslinking for keratoconus: 12-month follow-up. Clin Ophthalmol. 2017;11:767-71. doi:10.2147/OPTH.S129037
Beckman KA, Gupta PK, Farid M, Berdahl JP, Yeu E, Ayres B, et al. Corneal crosslinking: Current protocols and clinical approach. J Cataract Refract Surg. 2019;45:1670-9. doi:10.1016/j.jcrs.2019.06.027
O'Brart DP. Corneal collagen crosslinking for corneal ectasias: a review. Eur J Ophthalmol. 2017;27:253-69. doi:10.5301/ejo.5000916
Medeiros CS, Giacomin NT, Bueno RL, Ghanem RC, Moraes HV Jr, Santhiago MR. Accelerated corneal collagen crosslinking: Technique, efficacy, safety, and applications. J Cataract Refract Surg. 2016;42:1826-35. doi:10.1016/j.jcrs.2016.11.028
Cunha AM, Sardinha T, Torrão L, Moreira R, Falcão-Reis F, Pinheiro-Costa J. Transepithelial accelerated corneal collagen cross-linking: two-year results. Clin Ophthalmol. 2020;14:3299-307. doi:10.2147/OPTH.S252940
Li W, Wang B. Efficacy and safety of transepithelial corneal collagen crosslinking surgery versus standard corneal collagen crosslinking surgery for keratoconus: a meta-analysis of randomized controlled trials. BMC Ophthalmol. 2017;17:262. doi:10.1186/s12886-017-0657-2
Ng AL, Chan TC, Lai JS, Cheng AC. Comparison of the central and peripheral corneal stromal demarcation line depth in conventional versus accelerated collagen cross-linking. Cornea. 2015;34:1432-6. doi:10.1097/ICO.0000000000000626
Shalchi Z, Wang X, Nanavaty MA. Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye. 2015;29:15-29. doi:10.1038/eye.2014.230
D'Orla F, Palazón A, Alió JL. Corneal collagen cross-linking epithelium on vs. epithelium-off: a systematic review and meta-analysis. Eye Vis. 2021;8:34. doi:10.1186/s40662-021-00256-0
Cifariello F, Minicucci M, Di Renzo F, Di Taranto D, Codispoti G, Zaccaria S, et al. Epi-Off versus Epi-On corneal collagen cross-linking in keratoconus patients: a comparative study through 2-year follow-up. J Ophthalmol. 2018;2018:4947983. doi:10.1155/2018/4947983
Wu D, Lim DK, Lim BRH, Wong N, Hafezi F, Manotosh R, et al. Corneal Cross-Linking: The Evolution of Treatment for Corneal Diseases. Front Pharmacol. 2021;12:686630. doi:10.3389/fphar.2021.686630
Mastropasqua L, Nubile M, Calienno R, Mattei PA, Pedrotti E, Salgari N, et al. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques. Am J Ophthalmol. 2014;157:623-30.e1. doi:10.1016/j.ajo.2013.11.018
Hill J, Liu C, Deardorff P, Tavakol B, Eddington W, Thompson V, et al. Optimization of Oxygen Dynamics, UV-A Delivery, and Drug Formulation for Accelerated Epi-On Corneal Crosslinking. Curr Eye Res. 2020;45:450-8. doi:10.1080/02713683.2019.1669663
Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The Biomechanical Effect of Corneal Collagen Cross-Linking (CXL) With Riboflavin and UV-A is Oxygen Dependent. Transl Vis Sci Technol. 2013;2:6. doi:10.1167/tvst.2.7.6
Podskochy A. Protective role of corneal epithelium against ultraviolet radiation damage. Acta Ophthalmol Scand. 2004;82:714-7. doi:10.1111/j.1600-0420.2004.00369.x
Bilgihan K, Yesilirmak N, Altay Y, Yuvarlak A, Ozdemir HB. Conventional corneal collagen cross-linking versus transepithelial diluted alcohol and iontophoresis-assisted corneal cross-linking in progressive keratoconus. Cornea. 2017;36:1492-7. doi:10.1097/ICO.0000000000001383
Mazzotta C, Bagaglia SA, Sborgia A, Di Maggio A, Fruschelli M, Romani A, et al. Iontophoresis Corneal Cross-linking With Enhanced Fluence and Pulsed UV-A Light: 3-Year Clinical Results. J Refract Surg. 2020;36:286-92. doi:10.3928/1081597X-20200406-02
Hersh PS, Stulting RD, Muller D, Durrie DS, Rajpal RK. United States Multicenter Clinical Trial of Corneal Collagen Crosslinking for Keratoconus Treatment. Ophthalmology. 2017;124:1259-70. doi:10.1016/j.ophtha.2017.03.052
Gordon MO, Steger-May K, Szczotka-Flynn L, Riley C, Joslin CE, Weissman BA, et al. Baseline factors predictive of incident penetrating keratoplasty in keratoconus. Am J Ophthalmol. 2006;142:923-30. doi:10.1016/j.ajo.2006.07.026
Matthaei M, Sandhaeger H, Hermel M, Adler W, Jun AS, Cursiefen C, et al. Changing indications in penetrating keratoplasty: a systematic review of 34 years of global reporting. 2017;101:1387-99. doi:10.1097/TP.0000000000001281
Hersh PS, Lai MJ, Gelles JD, Lesniak SP. Transepithelial corneal crosslinking for keratoconus. J Cataract Refract Surg. 2018;44:313-22. doi:10.1016/j.jcrs.2017.12.022
Wollensak G, Iomdina E. Biomechanical and histological changes after corneal crosslinking with and without epithelial debridement. J Cataract Refract Surg. 2009;35:540-6. doi:10.1016/j.jcrs.2008.11.036
Lombardo M, Giannini D, Lombardo G, Serrao S. Randomized Controlled Trial Comparing Transepithelial Corneal Cross-linking Using Iontophoresis with the Dresden Protocol in Progressive Keratoconus. Ophthalmology. 2017;124:804-12. doi:10.1016/j.ophtha.2017.01.040
Lombardo M, Serrao S, Lombardo G, Schiano-Lomoriello D. Two-year outcomes of a randomized controlled trial of transepithelial corneal crosslinking with iontophoresis for keratoconus. J Cataract Refract Surg. 2019;45:992-1000. doi:10.1016/j.jcrs.2019.01.024
Sadoughi MM, Einollahi B, Baradaran-Rafii A, Roshandel D, Hasani H, Nazeri M. Accelerated versus conventional corneal collagen cross-linking in patients with keratoconus: an intra-patient comparative study. Int Ophthalmol. 2018;38:67-74. doi:10.1007/s10792-016-0423-0
Tomita M, Mita M, Huseynova T. Accelerated versus conventional corneal collagen crosslinking. J Cataract Refract Surg. 2014;40:1013-20. doi:10.1016/j.jcrs.2013.12.012
Shetty R, Pahuja NK, Nuijts RM, Ajani A, Jayadev C, Sharma C, et al. Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol. 2015;160:243-9. doi:10.1016/j.ajo.2015.05.019
Waszczykowska A, Jurowski P. Two-year accelerated corneal cross-linking outcome in patients with progressive keratoconus. Biomed Res Int. 2015;2015:325157. doi:10.1155/2015/325157
Spadea L, Tonti E, Vingolo EM. Corneal stromal demarcation line after collagen cross-linking in corneal ectatic diseases: a review of the literature. Clin Ophthalmol. 2016;10:1803-10. doi:10.2147/OPTH.S117372
D'Orla F, Puzo P, Incandela C, Sborgia A, Gigliola S, Boscia F, et al. Evaluation of demarcation line after epithelium-off iontophoresis corneal collagen cross-linking for progressive keratoconus. J Clin Med. 2021;10:3295. doi:10.3390/jcm10153295
Sun L, Li M, Zhang X, Tian M, Han T, Zhao J, et al. Transepithelial accelerated corneal collagen cross-linking with higher oxygen availability for keratoconus: 1-year results. Int Ophthalmol. 2018;38:2509-17. doi:10.1007/s10792-017-0762-5
Tian M, Jian W, Zhang X, Sun L, Zhou X. Three-year follow-up of accelerated transepithelial corneal cross-linking for progressive paediatric keratoconus. Br J Ophthalmol. 2020;104:1608-12. doi:10.1136/bjophthalmol-2019-315260
Madeira C, Vasques A, Beato J, Godinho G, Torrão L, Falcão M, et al. Transepithelial accelerated versus conventional corneal collagen crosslinking in patients with keratoconus: a comparative study. Clin Ophthalmol. 2019;13:445-52. doi:10.2147/OPTH.S189183
Al Fayez MF, Alfayez S, Alfayez Y. Transepithelial Versus Epithelium-Off Corneal Collagen Cross-Linking for Progressive Keratoconus: A Prospective Randomized Controlled Trial. Cornea. 2015;34:553-6. doi:10.1097/ICO.0000000000000547
Henriquez MA, Hernandez-Sahagun G, Camargo J, Izquierdo L Jr. Accelerated Epi-On Versus Standard Epi-Off Corneal Collagen Cross-Linking for Progressive Keratoconus in Pediatric Patients: Five Years of Follow-Up. Cornea. 2020;39:1493-8. doi:10.1097/ICO.0000000000002463
Gu S, Fan Z, Wang L, Tao X, Zhang Y, Mu G. Corneal collagen cross-linking with hypoosmolar riboflavin solution in keratoconic corneas. Biomed Res Int. 2014;2014:754182. doi:10.1155/2014/754182
Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009;35:621-4. doi:10.1016/j.jcrs.2008.10.060
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2025 Revista Sociedade Portuguesa de Oftalmologia

Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.
Não se esqueça de fazer o download do ficheiro da Declaração de Responsabilidade Autoral e Autorização para Publicação e de Conflito de Interesses
O artigo apenas poderá ser submetido com esse dois documentos.
Para obter o ficheiro da Declaração de Responsabilidade Autoral, clique aqui
Para obter o ficheiro de Conflito de Interesses, clique aqui


