Morphological Predictors of Short-Term Response to Intravitreal Bevacizumab in Macular Edema Due to Retinal Vein Occlusion

Authors

  • Carolina Madeira Department of Ophthalmology, Centro Hospitalar de Vila Nova de Gaia e Espinho, Espinho, Portugal
  • Ana Moleiro Department of Ophthalmology, Centro Hospitalar e Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
  • Gonçalo Godinho Department of Ophthalmology, Centro Hospitalar e Universitário de São João, Porto, Portugal
  • Susana Penas Department of Ophthalmology, Centro Hospitalar e Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
  • Catarina Pedrosa Department of Ophthalmology, Centro Hospitalar e Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
  • Manuel Falcão Department of Ophthalmology, Centro Hospitalar e Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
  • Elisete Brandão Department of Ophthalmology, Centro Hospitalar e Universitário de São João, Porto, Portugal
  • Fernando Falcão-Reis Department of Ophthalmology, Centro Hospitalar e Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal
  • João Beato Department of Ophthalmology, Centro Hospitalar e Universitário de São João, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal

DOI:

https://doi.org/10.48560/rspo.22578

Keywords:

Bevacizumab, Macular Edema, Retinal Vein Occlusion, Tomography, Optical Coherence

Abstract

INTRODUCTION: Our purpose was to identify morphological predictive factors of short-term macular functional and anatomical outcomes after monthly intravitreal bevacizumab for the treatment of macular edema (ME) due to central (CRVO) and branch retinal vein occlusion (BRVO).

METhODS: Retrospective study of patients with ME secondary to CRVO or BRVO under monthly treatment with intravitreal injections of bevacizumab. Only treatment naïve patients, with center-involved ME of ≥305 μm in women and ≥320 μm in men on baseline Spectral-domain OCT (SD-OCT) (Heidelberg Spectralis OCT; Heidelberg Engineering, Heidelberg, Germany) were included. Resolution of ME was defined as central macular thickness (CMT) less than 300 μm, no subretinal and no intraretinal fluid. Demographic and clinical parameters, best-corrected visual acuity (BCVA) in ETDRS logarithmic scale and SD-OCT images were reviewed at baseline and at 4 months. SD-OCT morphologic features in the central 1.0-mm diameter circle were checked for disorganization of the retinal inner layers (DRIL), ellipsoid zone (EZ) and external limiting membrane (ELM) disruption, presence and location of intraretinal hyperreflective foci (HRF) cysts, subretinal and intraretinal fluid, and vitreoretinal interface status.

RESULTS: The study enrolled 61 eyes of 61 patients, 29 (47.5%) with CRVO and 32 (52.5%) with BRVO. At 4 months, patients had received a mean number of 3.2±2.7 bevacizumab injections. Mean BCVA was 32±27 ETDRS letters at baseline and improved to 44±27 at 4 months (p<0.001). BCVA improvement was similar in CRVO and BRVO eyes (p=0.68). A greater BCVA improvement was correlated with a worse baseline value (r=-0.45, p<0.001). CMT reduced significantly from 592 ± 223 μm at baseline to 327 ±117 μm after loading dose (p<0.001) and twenty-three (37.7%) patients presented a complete resolution of ME at the 4th month timeline. The number of eyes with ME resolution were similar between those with CRVO and BRVO (p=0.590). The BCVA at the 4th-month follow-up was significantly lower in patients who presented at baseline with DRIL (39±27 vs 64±17 ETDRS letters, p=0.006), disrupted EZ (40±26 vs 64±21 ETDRS letters, p=0.016) and disrupted ELM (40±2 vs 64±20 6 ETDRS letters, p=0.016). Patients who presented DRIL at baseline have less 25.1 letters in BCVA at 4-months than patients who did not (95% confidence interval [CI] 8.1 – 42.3; p=0.004). Similarly, EZ and EML disruption predicted a decrease of 24.5 letters in final BCVA comparing to patients with integrity of these layers (EZ 95% CI 5.6 – 43.5; p=0.010 MLE 95% CI 5.6 – 43.5; p=0.010). None of the analyzed baseline morphological factors were predictive of ME resolution. However, absence of DRIL (p=0.003), presence of HRF in the inner retinal layers (p<0.001) and preserved EZ (p=0.030) and ELM (p=0.004) were significantly more frequent among those with ME resolution.

CONCLUSION: Intravitreal injection of bevacizumab for ME due to CRVO and BRVO resulted in a significant functional and anatomical improvement. In our study, patients with DRIL and disrupted EZ and ELM at baseline presented a significant lower BCVA at the end of the follow-up. Identification of baseline biomarkers for ME poor response to anti-VEGF will enable disease stratification and prognosis and improve treatment decisions.

Downloads

Download data is not yet available.

References

Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, et al. Guidelines for the Management of Retinal Vein Occlusion by the European Society of Retina Specialists (EURETINA). Ophthalmologic. 2019;242:123-62. doi: 10.1159/000502041.

Jaulim A, Ahmed B, Khanam T, Chatziralli IP. Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina. 2013;33:901-10. doi: 10.1097/ IAE.0b013e3182870c15.

Ophthalmologists. TRCo. Retinal Vein Occlusion (RVO) Guidelines. 2015. [Accessed November 2019]. Available from: https://www.rcophth.ac.uk/wp-content/uploads/2015/07/Ret- inal-Vein-Occlusion-RVO-Guidelines-July-2015.pdf.

Spaide RF. Retinal vascular cystoid macular edema: Review and New Theory. Retina. 2016;36:1823-42. doi: 10.1097/ IAE.0000000000001158.

Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, Sellam A, et al. Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res. 2018;63:20-68. doi: 10.1016/j.pre- teyeres.2017.10.006.

Ehlers JP, Kim SJ, Yeh S, Thorne JE, Mruthyunjaya P, Schoenberger SD, et al. Therapies for Macular Edema Associated with Branch Retinal Vein Occlusion: A Report by the American Academy of Ophthalmology. Ophthalmology. 2017;124:1412-23. doi: 10.1016/j.ophtha.2017.03.060.

Sangroongruangsri S, Ratanapakorn T, Wu O, Anothaisintawee T, Chaikledkaew U. Comparative efficacy of bevacizumab, ranibizumab, and aflibercept for treatment of macular edema secondary to retinal vein occlusion: a systematic review and network meta-analysis. Expert Rev Clin Pharmacol. 2018;11:903-16. doi: 10.1080/17512433.2018.1507735.

Brown DM, Heier JS, Clark WL, Boyer DS, Vitti R, Berliner AJ, et al. Intravitreal aflibercept injection for macular edema secondary to central retinal vein occlusion: 1-year results from the phase 3 COPERNICUS study. Am J Ophthalmol. 2013;155:429-437.e427. doi: 10.1016/j.ajo.2012.09.026.

Korobelnik JF, Holz FG, Roider J, Ogura Y, Simader C, Schmidt-Erfurth U, et al. Intravitreal Aflibercept Injection for Macular Edema Resulting from Central Retinal Vein Occlusion: One-Year Results of the Phase 3 GALILEO Study. Ophthalmology. 2014;121:202-8. doi: 10.1016/j.ophtha.2013.08.012.

Campochiaro PA, Brown DM, Awh CC, Lee SY, Gray S, Sa- roj N, et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmol. 2011;118:2041-9. doi: 10.1016/j.ophtha.2011.02.038.

Campochiaro PA, Wykoff CC, Singer M, Johnson R, Marcus D, Yau L, et al. Monthly versus as-needed ranibizumab injections in patients with retinal vein occlusion: the SHORE study. Ophthalmology. 2014;121:2432-42. doi: 10.1016/j.ophtha.2014.06.011.

Scott IU, VanVeldhuisen PC, Oden NL, Ip MS, Blodi BA, Jumper JM, et al. SCORE Study report 1: baseline associations between central retinal thickness and visual acuity in patients with retinal vein occlusion. Ophthalmology. 2009;116:504-12. doi: 10.1016/j.ophtha.2008.10.017.

Campochiaro PA, Clark WL, Boyer DS, Heier JS, Brown DM, Vitti R, et al. Intravitreal aflibercept for macular edema following branch retinal vein occlusion: the 24-week results of the VIBRANT study. Ophthalmology. 2015;122:538-44. doi: 10.1016/j.ophtha.2014.08.031.

Lashay A, Riazi-Esfahani H, Mirghorbani M, Yaseri M. Intra- vitreal Medications for Retinal Vein Occlusion: Systematic Review and Meta-analysis. J Ophthalmic Vis Res. 2019;14:336-66. doi: 10.18502/jovr.v14i3.4791.

Ko J, Kwon OW, Byeon SH. Optical coherence tomography predicts visual outcome in acute central retinal vein occlusion. Retina. 2014;34:1132-41. doi: 10.1097/IAE.0000000000000054.

Brynskov T, Kemp H, Sørensen TL. Intravitreal ranibizumab for retinal vein occlusion through 1 year in clinical practice. Retina. 2014;34:1637-43.

Iftikhar M, Mir TA, Hafiz G, Zimmer-Galler I, Scott AW, Solomon SD, et al. Loss of Peak Vision in Retinal Vein Occlusion Patients Treated for Macular Edema. Am J Ophthalmol. 2019;205:17-26. doi: 10.1016/j.ajo.2019.03.029.

Chan EW, Eldeeb M, Sun V, Thomas D, Omar A, Kapusta MA, et al. Disorganization of Retinal Inner Layers and Ellipsoid Zone Disruption Predict Visual Outcomes in Central Retinal Vein Occlusion. Ophthalmol Retina. 2019;3:83-92. doi: 10.1016/j.oret.2018.07.008.

Berry D, Thomas AS, Fekrat S, Grewal DS. Association of Disorganization of Retinal Inner Layers with Ischemic Index and Visual Acuity in Central Retinal Vein Occlusion. Ophthalmol Retina. 2018;2:1125-32. doi: 10.1016/j.oret.2018.04.019.

Costa JV, Moura-Coelho N, Abreu AC, Neves P, Ornelas M, Furtado MJ. Macular edema secondary to retinal vein occlusion in a real-life setting: a multicenter, nationwide, 3-year fol- low-up study. Graef Arch Clin Exp Ophthalmol. 2021;259:343- 50. doi: 10.1007/s00417-020-04932-0.

Ota M, Tsujikawa A, Kita M, Miyamoto K, Sakamoto A, Yamaike N, et al. Integrity of foveal photoreceptor layer in central retinal vein occlusion. Retina. 2008;28:1502-8. doi: 10.1097/IAE.0b013e3181840b3c.

Shin HJ, Chung H, Kim HC. Association between integrity of foveal photoreceptor layer and visual outcome in retinal vein occlusion. Acta Ophthalmol. 2011;89:e35-40. doi: 10.1111/j.1755-3768.2010.02063.x.

Kang J-W, Lee H, Chung H, Kim HC. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2014;252:1413-21. doi: 10.1007/s00417-014-2595-5.

Mimouni M, Segev O, Dori D, Geffen N, Flores V, Segal O. Disorganization of the Retinal Inner Layers as a Predictor of Visual Acuity in Eyes With Macular Edema Secondary to Vein Occlusion. Am J Ophthalmol. 2017;182:160-7. doi: 10.1016/j.ajo.2017.08.005.

Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116:914-20.

Chatziralli IP, Sergentanis TN, Sivaprasad S. Hyperreflective foci as an independent visual outcome predictor in macular edema due to retinal vascular diseases treated with intravitreal dexamethasone or ranibizumab. Retina. 2016;36:2319-28. doi: 10.1097/IAE.0000000000001070.

Spooner K, Fraser-Bell S, Hong T, Chang A. Prospective study of aflibercept for the treatment of persistent macular oedema secondary to retinal vein occlusions in eyes not responsive to long-term treatment with bevacizumab or ranibizumab. Clin Exp Ophthalmol. 2020;48:53-60. doi: 10.1111/ceo.13636.

Yu JJ, Thomas AS, Berry D, Yoon S, Fekrat S, Grewal DS. As- sociation of Retinal Inner Layer Disorganization With UltraWidefield Fluorescein Angiographic Features and Visual Acuity in Branch Retinal Vein Occlusion. Ophthalmic Surg Lasers Imaging Retina. 2019;50:354-64. doi: 10.3928/23258160- 20190605-03.

J Jaissle GB, Szurman P, Feltgen N, Spitzer B, Pielen A, Rehak M, et al; Retinal Vein Occlusion Study Group. Predictive factors for functional improvement after intravitreal bevacizumab therapy for macular edema due to branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2011;249:183- 92. doi: 10.1007/s00417-010-1470-2.

Jaissle GB, Szurman P, Bartz-Schmidt KU; German Retina Society; German Society of Ophthalmology; German Professional Association of Ophthalmologists. Empfehlung für die Durchführung von intravitrealen Injektionen -- Stellungnahme der Retinologischen Gesellschaft, der Deutschen Ophthalmologischen Gesellschaft (DOG) und des Berufsverbands der Augenärzte Deutschland (BVA). Klin Monbl Augenheilkd. 2005;222:390-5. doi: 10.1055/s-2005-858231.

Vaz-Pereira S, Marques IP, Matias J, Mira F, Ribeiro L, Flores R. Real-World Outcomes of Anti-VEGF Treatment for Retinal Vein Occlusion in Portugal. Eur J Ophthalmol. 2017;27:756-61. doi: 10.5301/ejo.5000943.

Downloads

Published

2022-06-30

How to Cite

Madeira, C., Moleiro, A., Godinho, G., Penas, S. ., Pedrosa, C., Falcão, M., Brandão, E., Falcão-Reis, F., & Beato, J. (2022). Morphological Predictors of Short-Term Response to Intravitreal Bevacizumab in Macular Edema Due to Retinal Vein Occlusion. Revista Sociedade Portuguesa De Oftalmologia, 46(2), 85–93. https://doi.org/10.48560/rspo.22578

Issue

Section

Original Article