Role of the Vitreous in Ocular Biomechanics

Authors

  • João Heitor Marques Centro Hospitalar Universitário do Porto
  • Pedro Manuel Baptista Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
  • João Coelho Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
  • Maria João Menéres Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
  • Angelina Meireles Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
  • João Melo Beirão Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal

DOI:

https://doi.org/10.48560/rspo.25884

Keywords:

Posterior Eye Segment, Biomechanical Phenomena, Vitreous Body, Kinetics, posterior vitreous detachment

Abstract

INTRODUCTION: Characterization of ocular biomechanics is necessary to fully understand the development of vitreoretinal traction, retinal tears, and detachment. Few studies have tried to characterize the viscoelastic properties of the vitreous and all previous studies have used either ex vivo human eyes or in vivo animal eyes. Our objective was to analyze, in vivo, the role of the vitreous in ocular biomechanics.

MATERIAL AND METHODS: Prospective longitudinal study that included 24 patients submitted to unilateral pars plana vitrectomy (PPV) for vitreous opacities or epiretinal membrane. Ocular biomechanics were analyzed with Oculus Corvis ST® one week before and one month after surgery. The whole eye movement (WEM) was analyzed separately as a function of posterior segment compression. Posterior vitreous detachment (PVD) was access with 55o optical coherence tomography. The fellow non-operated eyes were used as control. Non-parametric tests were used, and the significance level was set at 5%.

RESULTS: After PPV, we observed changes in biomechanics towards a softer corneal behavior, namely a reduction in SP-A1 (p=0.009). However, intraocular pressure (IOP) was also lower (p=0.034). WEM distance decreased after vitrectomy (p=0.020). There were no significant differences in fellow non-operated eyes. A cross-sectional comparison before PPV showed that eyes with PVD at the macula also have a shorter WEM distance (p=0.047). There were no significant differences according to the reason for PPV (vitreous opacities in 16 eyes or epiretinal membrane in 8 eyes).

CONCLUSION: This study shows changes in response to an air pulse after PPV, which suggests a role of the vitreous in ocular biomechanics. Due to lower IOP after surgery, no definite conclusions may be drawn regarding corneal measurements and indexes. More importantly, we observed changes that relate to the posterior segment of the eye, namely the vitreous. A decrease in WEM distance conveys a reduction in anterior-posterior deflection and reduced compression of the posterior segment. Lower IOP alone would produce the opposite effect. Eyes with PVD may also have reduced WEM. Together these findings demonstrate, for the first time in vivo, that the attached vitreous exerts a centripetal force on the globe.

Downloads

Download data is not yet available.

References

Foulds WS. Is your vitreous really necessary? Eye. 1987;16:641–64.

Sebag J. Vitreous and Vision Degrading Myodesopsia. Prog Retin Eye Res. 2020;79:100847. doi: 10.1016/j.preteyeres.2020.100847.

Repetto R, Tatone A, Testa A, Colangeli E. Traction on the retina induced by saccadic eye movements in the presence of posterior vitreous detachment. Biomech Model Mechanobiol.

;10:191-202. doi: 10.1007/s10237-010-0226-6.

Liu X, Wang L, Wang C, Sun G, Liu S, Fan Y. Mechanism of traumatic retinal detachment in blunt impact: a finite element study. J Biomech. 2013;46:1321-7. doi: 10.1016/j.jbiomech.2013.02.006.

Sebag J, Balazs EA. Morphology and ultrastructure of human vitreous fibers. Investig. Ophthalmol Vis Sci. 1989;30:1867–71. 6. Bishop PN. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res. 2000;19:323-44. doi: 10.1016/s1350-9462(99)00016-6.

Comper WD, Laurent TC. Physiological function of connective tissue polysaccharides. Physiol Rev. 1978;58:255-315. doi: 10.1152/physrev.1978.58.1.255.

Silva AF, Alves MA, Oliveira MSN. Rheological behaviour of vitreous humour. Rheol Acta. 2017;56:377–86.

Sharif-Kashani P, Hubschman JP, Sassoon D, Kavehpour HP. Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties. J Biomech. 2011;44:419-

doi: 10.1016/j.jbiomech.2010.10.002.

Bos KJ, Holmes DF, Meadows RS, Kadler KE, McLeod D, Bishop PN. Collagen fibril organisation in mammalian vitreous by freeze etch/rotary shadowing electron microscopy. Micron. 2001;32:301-6. doi: 10.1016/s0968-4328(00)00035-4.

Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJ. Scleral structure and biomechanics. Prog Retin Eye Res. 2020;74:100773. doi: 10.1016/j.preteyeres.2019.100773.

Eliasy A, Chen KJ, Vinciguerra R, Lopes BT, Abass A, Vinciguerra P, et al. Determination of Corneal Biomechanical Behavior in-vivo for Healthy Eyes Using CorVis ST Tonometry: Stress-Strain Index. Front Bioeng Biotechnol. 2019;7:105. doi: 10.3389/fbioe.2019.00105.

Bettelheim FA, Zigler JS. Regional mapping of molecular components of human liquid vitreous by dynamic light scattering. Exp. Eye Res. 2004;79:713–8.

Aoki S, Murata H, Matsuura M, Fujino Y, Nakakura S, Nakao Y, et al. The effect of air pulse-driven whole eye motion on the association between corneal hysteresis and glaucomatous visual field progression. Sci Rep. 2018;8:2969. doi: 10.1038/ s41598-018-21424-8.

Berman ER, Michaelson IC. The chemical composition of the human vitreous body as related to age and myopia. Exp Eye Res. 1964;3:9–15.

Favre M, Goldmann H. Zur Genese der hinteren Glaskörperabhebung. Ophthalmologica. 1956;132:87–97.

Cases O, Obry A, Ben-Yacoub S, Augustin S, Joseph A, Toutirais G, et al. Impaired vitreous composition and retinal pigment epithelium function in the FoxG1::LRP2 myopic mice. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1242-54. doi: 10.1016/j.bbadis.2017.03.022.

Vinciguerra R, Elsheikh A, Roberts CJ, Ambrósio R Jr, Kang DS, Lopes BT, et al. Influence of Pachymetry and Intraocular Pressure on Dynamic Corneal Response Parameters in Healthy Patients. J Refract Surg. 2016;32:550-61. doi: 10.3928/1081597X-20160524-01.

SS H, JB J. Posterior vitreous detachment: clinical correlations. Ophthalmologica. 2004;218:333–43.

Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. Magn Reson Med. 2008;59:365–73. doi: 10.1002/ mrm.21477.

Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY. Dynamic CT measurement of cerebral blood flow: a validation study. AJNR Am J Neuroradiol. 1999;20:63-73.

Laíns I, Wang JC, Cui Y, Katz R, Vingopoulos F, Staurenghi G, V et al. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Prog Retin Eye Res. 2021;84:100951. doi: 10.1016/j.preteyeres.2021.100951.

Kalkhoran MA, Vray D. Sparse sampling and reconstruction for an optoacoustic ultrasound volumetric hand-held probe. Biomed Opt Express. 2019;10:1545-56. doi: 10.1364/

BOE.10.001545.

Tram NK, Swindle-Reilly KE. Rheological properties and age-related changes of the human vitreous humor. Front Bioeng Biotechnol. 2018;6:1–12.

Fankhauser F 2nd. Analysis of diabetic vitreopathy with dynamic light scattering spectroscopy-problems and solutions related to photon correlation. Acta Ophthalmol. 2012;90:e173- 8. doi: 10.1111/j.1755-3768.2011.02308.x.

Misumi Y, Ando Y, Ueda M, Obayashi K, Jono H, Su Y, et al. Chain reaction of amyloid fibril formation with induction of basement membrane in familial amyloidotic polyneuropathy. J Pathol. 2009;219:481-90. doi: 10.1002/path.2618.

Downloads

Published

2022-12-30

How to Cite

Marques, J. H., Baptista, P. M., Coelho, J., Menéres, M. J., Meireles, A., & Melo Beirão, J. (2022). Role of the Vitreous in Ocular Biomechanics. Revista Sociedade Portuguesa De Oftalmologia, 46(4), 215–222. https://doi.org/10.48560/rspo.25884

Issue

Section

Original Article