Intraocular Lens Power Calculations in Short Eyes

Authors

  • João Abreu Chaves Centro de Responsabilidade Integrado de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
  • Miguel Raimundo Centro de Responsabilidade Integrado de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
  • Conceição Lobo Centro de Responsabilidade Integrado de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
  • Joaquim Murta Centro de Responsabilidade Integrado de Oftalmologia, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal; Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal

DOI:

https://doi.org/10.48560/rspo.25953

Keywords:

Axial Length, Eye, Lenses, Intraocular

Abstract

INTRODUCTION: Our purpose was to comparatively evaluate the accuracy of newer intraocular lens (IOL) calculation formulas (Barrett Universal II, Kane and Hill-RBF 3.0) and common third-generation formulas with and without using a novel axial length (AL) adjustment in predicting refractive outcomes in eyes with short AL.

METhODS: Retrospective study including eyes with AL less than 22.0 mm submitted to uneventful cataract surgery and implantation of an AcrySof SN60AT IOL. All patients underwent optical biometry (Carl Zeiss IOLMaster 700) and the post-operative spherical equivalent for the same implanted IOL was estimated using SRK/T, Holladay 1, Hoffer Q, Haigis, Barrett Universal II, Kane and Hill-RBF 3.0 formulas. The Cooke-modified axial length (CMAL) method was used in the SRK/T, Holladay 1 and Hoffer Q formulas. Analysis was performed before and after lens constants optimization. Outcomes included the mean (ME) and median (MedE) prediction error, the mean absolute (MAE) and median absolute prediction error (MedAE) and the proportion of eyes within 0.50, 0.75 and 1.00 diopters (D) of the pre-operative prediction.

RESULTS: Sixty-four eyes with a mean axial-length of 21.54 ± 0.57 mm were included. Without adjustment the Hoffer Q was the only formula with a slightly myopic refractive prediction error –0.157D ± 0.60 and Hill-RBF 3.0 had the lowest standard deviation in the prediction error 0.031D ± 0.58. After optimization the mean absolute error in ascending order was Kane 0.43D, Hill-RBF 3.0 0.43D, Barrett 0.44D, Hoffer Q 0.45D, Haigis 0.45D, Holladay 1 0.48 and SRK/T 0.53D. The Kane formula, with the lowest MAE, yielded a prediction error within 0.50D, 0.75D and 1D in 71.9%, 84.4% and 90.6% of cases, respectively. Using CMAL did not improve predictions. The use of optional variables in the Kane (LT and CCT) and Barrett Universal II (LT and WTW) formulas changed theprediction error >0.1D in less than 30% of cases and most without further improvement.

CONCLUSION: Recent formulas like the Barrett Universal II, Kane, Hill-RBF v3.0 perform well, particularly after constant optimization. Without optimization the Hoffer Q is the only one with myopic prediction error which might explain its popularity in this subset of patients. The CMAL adjustment, originally developed for another optical biometer (OLCR device) did not improve outcomes. Also, the use of optional variables in the Kane and Barrett Universal II formulas did not further enhance predictions.

Downloads

Download data is not yet available.

References

Gökce SE, Zeiter JH, Weikert MP, Koch DD, Hill W, Wang L. Intraocular lens power calculations in short eyes using 7 formulas. J Cataract Refract Surg. 2017;43:892-7. doi: 10.1016/j. jcrs.2017.07.004.

Röggla V, Langenbucher A, Leydolt C, Schartmüller D, Schwarzenbacher L, Abela-Formanek C, Menapace R. Accuracy of common IOL power formulas in 611 eyes based on axial length and corneal power ranges. Br J Ophthalmol. 2020 ;2020-315882. doi: 10.1136/ bjophthalmol-2020-315882.

Melles RB, Kane JX, Olsen T, Chang WJ. Update on Intraocular Lens Calculation Formulas. Ophthalmology. 2019;126:1334-5. doi: 10.1016/j.ophtha.2019.04.011.

Voytsekhivskyy OV, Hoffer KJ, Savini G, Tutchenko LP, Hipólito-Fernandes D. Clinical Accuracy of 18 IOL Power Formulas in 241 Short Eyes. Curr Eye Res. 2021(in press). doi: 10.1080/02713683.2021.1933056.

Shrivastava AK, Behera P, Kumar B, Nanda S. Precision of intraocular lens power prediction in eyes shorter than 22 mm: An analysis of 6 formulas. J Cataract Refract Surg. 2018;44:1317-20. doi: 10.1016/j.jcrs.2018.07.023.

Cooke DL, Cooke TL. Approximating sum-of-segments axial length from a traditional optical low-coherence reflectometry measurement. J Cataract Refract Surg. 2019;45:351-4. doi: 10.1016/j.jcrs.2018.12.026. PMID: 30851808.

Kane JX, Melles RB. Intraocular lens formula comparison in axial hyperopia with a high-power intraocular lens of 30 or more diopters. J Cataract Refract Surg. 2020;46:1236-9. doi: 10.1097/j.jcrs.0000000000000235.

Hoffer KJ, Savini G. IOL Power Calculation in Short and Long Eyes. Asia Pac J Ophthalmol. 2017;6:330-1. doi: 10.22608/ APO.2017338.

Cooke DL, Cooke TL. A comparison of two methods to calculate axial length. J Cataract Refract Surg. 2019;45:284-92. doi: 10.1016/j.jcrs.2018.10.039.

Wan KH, Lam TC, Yu MC, Chan TC. Accuracy and Precision of Intraocular Lens Calculations Using the New Hill-RBF Version 2.0 in Eyes With High Axial Myopia. Am J Ophthalmol. 2019;205:66-73. doi: 10.1016/j.ajo.2019.04.019.

Retzlaff JA, Sanders DR, Kraff MC. Development of the SRK/T intraocular lens implant power calculation formula. J Cataract Refract Surg. 1990;16:333–40;erratum: 528. doi:10.1016/ s0886- 3350(13)80705-5.

Haigis W, Lege B, Miller N, Schneider B. Comparison of immersion ultrasound biometry and partial coherence interferometry for IOL calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol. 2000;238:765–73. doi:10.1007/ s004170000188.

Hoffer KJ. The Hoffer Q formula: a comparison of theoretic and regression formulas. J Cataract Refract Surg. 1993;19:700–12; er- rata 1994; 20:677 and Zuberbuhler B, Morell AJ. Errata in print- ed Hoffer Q formula [letter]. J Cataract Refract Surg 2007; 33:2; reply by KJ Hoffer, 2-3. doi:10.1016/s0886-3350(13)80338-0.

Holladay JT, Prager TC, Chandler TY, Musgrove KH, Lewis JW, Ruiz RS. A three-part system for refining intraocular lens power calculations. J Cataract Refract Surg. 1988;14:17–24. doi:10.1016/s0886-3350(88)80059-2.

Hoffer KJ, Aramberri J, Haigis W, Olsen T, Savini G, Shammas HJ, et al. Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol. 2015;160:403-5.e1. doi:10.1016/j. ajo.2015.05.029

Karabela Y, Eliacik M, Kocabora MS, Erdur SK, Baybora H. Predicting the refractive outcome and accuracy of IOL power calculation after phacoemulsification using the SRK/T for- mula with ultrasound biometry in medium axial lengths. Clin Ophthalmol. 2017;11:1143-9. doi:10.2147/OPTH.S136882

Hoffer KJ. Clinical results using the Holladay 2 intraocular lens power formula. J Cataract Refract Surg. 2000; 26:1233–7.

Intraocular Lens Power Calculations in Short Eyes

Kane JX, Van Heeden A, Atik A, Petsoglou C. Intraocular lens power formula accuracy: comparison of 7 formulas. J Cataract Refract Surg. 2016; 42:1490–500.

Carifi G, Aiello F, Zygoura V, Kopsachilis N, Maurino V. Ac- curacy of the refractive prediction determined by multiple currently available intraocular lenspower calculation formu- las in small eyes. Am J Ophthalmol. 2015; 159:577–83.

Gavin EA, Hammond CJ. Intraocular lens power calculation in short eyes. Eye. 2008;22:935–38. doi:10.1038/sj.eye.6702774.

Eom Y, Kang SY, Song JS, Kim YY, Kim HM. Comparison of Hoffer Q and Haigis formulae for intraocular lens power calculation according to the anterior chamber depth in short eyes. Am J Ophthalmol. 2014;157:818-824.e2. doi: 10.1016/j.ajo.2013.12.017.

Melles RB, Holladay JT, Chang WJ. Accuracy of Intraocular Lens Calculation Formulas. Ophthalmology. 2018;125:169-78. doi: 10.1016/j.ophtha.2017.08.027.

Vega Y, Gershoni A, Achiron A, Tuuminen R, Weinberger Y, Livny E, et al. High Agreement between Barrett Universal II Calculations with and without Utilization of Optional Biometry Parameters. J Clin Med. 2021;10:542. doi:10.3390/ jcm10030542.

Koch DD, Hill W, Abulafia A, Wang L. Pursuing perfection in intraocular lens calculations: I. Logical approach for classifying IOL calculation formulas. J Cataract Refract Surg. 2017;43:717-8. doi: 10.1016/j.jcrs.2017.06.006.

Downloads

Published

2022-06-30

How to Cite

Chaves, J. A., Raimundo, M., Lobo, C. ., & Murta, J. (2022). Intraocular Lens Power Calculations in Short Eyes. Revista Sociedade Portuguesa De Oftalmologia, 46(2), 69–76. https://doi.org/10.48560/rspo.25953

Issue

Section

Original Article