Biomechanical Predictors of Rhegmatogenous Retinal Detachment in Myopic Patients

Authors

  • João Heitor Marques Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal https://orcid.org/0000-0001-6487-7950
  • Pedro Manuel Baptista Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
  • Ana Marta Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
  • Paulo Sousa Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
  • Saul Pires Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
  • Angelina Meireles Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
  • Renato Ambrósio Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, RJ, Brazil; Department of Cornea and Refractive Surgery, Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil; Department of Opthalmology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Federal University of São Paulo (UNIFESP), São Paulo, Brazil; Brazilian Study Group of Artificial Intelligence and Corneal Analysis - BrAIN, Rio de Janeiro & Maceió, Brazil
  • Pedro Menéres Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
  • João Melo Beirão Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal

DOI:

https://doi.org/10.48560/rspo.28261

Keywords:

Biomechanical Phenomena, Myopia, Retinal Detachment, Treatment Outcome, Vitreous Body

Abstract

INTRODUCTION: The prevalence of myopia is expected to increase significantly in the following decades. Moreover, axial myopia is associated with rhegmatogenous retinal detachment (RRD), a major cause of visual impairment in these patients. RRD develops after the dynamic interaction between the vitreous and the retina. Axial length (AL) is a well-described risk factor, but alone is insufficient to predict RRD. The main aim of this study was to analyze, dynamically and in vivo, ocular biomechanics in high myopic patients with RRD. Our secondary outcome was to address demographic, biometric and biomechanical predictors of RRD.
METHODS: Observational cross-sectional case-control study, set in the Surgical Retina Clinic, Ophthalmology Department, Centro Hospitalar e Universitário do Porto, Portugal, that included subjects with myopia and history of RRD in one eye (RRD group), together with a control group of age and AL-matched subjects with no history of retinal tear or RRD in any eye. In the RRD group, only the fellow non-RRD non-operated eye was included for analysis. Biomechanical assessment was performed with Corvis Scheimpflung Technology® (Oculus, Germany) and AL was measured with Anterion® (Heidelberg, Germany).
RESULTS: This study included for analysis 34 subjects (17 eyes of 17 patients in each group). Age (p=0.959), AL (p=0.879) and intraocular pressure (p=0.489) were well matched between groups. A multivariable logistic regression confirmed an independent effect of A1 Deflection Amplitude (standardized coefficient = -1.096, Wald test p-value=0.027), HC time (-1.207, p=0.030), and height (1.554, p=0.030) on RRD, with an area under the curve in the ROC analysis for this model of 0.897. We found no association between biometric or biomechanical parameters and the characteristics of RRD or final best-corrected visual acuity.
CONCLUSION: To our knowledge, this is the first study evaluating in vivo ocular biomechanics in the development of RRD. We observed that the eyes of patients with RRD have stiffer measured biomechanics when compared to controls. The different biomechanical behavior between the vitreous and the sclera (to which the retina is ultimately attached) results in higher shear stress at the vitreoretinal interface. We hypothesize that RRD develops in cases where this balance is disrupted by a stiff sclera on one side and a compact vitreous on the other. The association between body height and RRD may also relate to systemic genetically determined biomechanics.

Downloads

Download data is not yet available.

References

Ruiz-Medrano J, Montero JA, Flores-Moreno I, Arias L, García-Layana A, Ruiz-Moreno JM. Myopic maculopathy: Current status and proposal for a new classification and grading system (ATN). Prog Retin Eye Res. 2019;69:80-115. doi: 10.1016/j.preteyeres.2018.10.005.

Ohno-Matsui K, Lai TY, Lai CC, Cheung CM. Updates of pathologic myopia. Prog Retin Eye Res. 2016;52:156-87. doi: 10.1016/j.preteyeres.2015.12.001.

Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology. 2016;123:1036-42. doi: 10.1016/j.ophtha.2016.01.006.

Xu L, Cui T, Yang H, Hu A, Ma K, Zheng Y, et al. Prevalence of visual impairment among adults in China: the Beijing Eye Study. Am J Ophthalmol. 2006;141:591-3. doi: 10.1016/j.ajo.2005.10.018.

Wong YL, Sabanayagam C, Ding Y, Wong CW, Yeo AC, Cheung YB, et al. Prevalence, Risk Factors, and Impact of Myopic Macular Degeneration on Visual Impairment and Functioning Among Adults in Singapore. Invest Ophthalmol Vis Sci. 2018;59:4603-13. doi: 10.1167/iovs.18-24032.

Iwase A, Araie M, Tomidokoro A, Yamamoto T, Shimizu H, Kitazawa Y. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study. Ophthalmology. 2006;113:1354-62. doi: 10.1016/j.ophtha.2006.04.022.

Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch Ophthalmol. 1998;116:653-8. doi: 10.1001/archopht.116.5.653.

Cedrone C, Nucci C, Scuderi G, Ricci F, Cerulli A, Culasso F. Prevalence of blindness and low vision in an Italian population: a comparison with other European studies. Eye. 2006;20:661-7. doi: 10.1038/sj.eye.6701934.

Cotter SA, Varma R, Ying-Lai M, Azen SP, Klein R. Causes of low vision and blindness in adult Latinos: the Los Angeles Latino Eye Study. Ophthalmology. 2006;113:1574-82. doi: 10.1016/j.ophtha.2006.05.002.

Marques JH, Castro C, Malheiro L, Alves Correia N, Pessoa B, Melo Beirão J, et al. Dealing with rhegmatogenous retinal detachment in patients under 40 years old: a tertiary center results. Int Ophthalmol. 2021;41:475-82. doi: 10.1007/s10792-020-01597-w.

Risk factors for idiopathic rhegmatogenous retinal detachment. The Eye Disease Case-Control Study Group. Am J Epidemiol. 1993;137:749-57.

Meskauskas J, Repetto R, Siggers JH. Shape change of the vitreous chamber influences retinal detachment and reattachment processes: is mechanical stress during eye rotations a factor? Invest Ophthalmol Vis Sci. 2012;53:6271-81. doi: 10.1167/iovs.11-9390.

Parolini B, Palmieri M, Finzi A, Besozzi G, Frisina R. Myopic Traction Maculopathy: A New Perspective on Classification and Management. Asia Pac J Ophthalmol. 2021;10:49-59. doi: 10.1097/APO.0000000000000347.

Jr RA, Ramos I, Luz A, Faria FC, Steinmueller A, Krug M, et al. Avaliação Dinâmica com fotografia de Scheimpflug de alta velocidade para avaliar as propriedades biomecânicas da córnea. Rev Bras Oftalmol. 2013;72:99-102.

Koprowski R, Ambrósio R, Jr., Reisdorf S. Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement. J Biophotonics. 2015;8:968-78. doi: 10.1002/jbio.201400137.

Baptista PM, Ambrosio R, Oliveira L, Meneres P, Beirao JM. Corneal biomechanical assessment with ultra-high-speed scheimpflug imaging during non-contact tonometry: a prospective review. Clin Ophthalmol. 2021;15:1409-23. doi: 10.2147/OPTH.S301179.

Marques JH, Baptista PM, Coelho J, Menéres MJ, Meireles A, Melo Beirão J. O Papel do Vítreo na Biomecânica Ocular. Oftalmologia. 2022;46:215–22. doi: 10.48560/rspo.25884

Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res. 2020;74:100773. doi: 10.1016/j.preteyeres.2019.100773.

Nguyen BA, Roberts CJ, Reilly MA. Biomechanical Impact of the Sclera on Corneal Deformation Response to an Air-Puff: A Finite-Element Study. Front Bioeng Biotechnol. 2019;6:210. doi: 10.3389/fbioe.2018.00210

Bonfiglio A, Lagazzo A, Repetto R, Stocchino A. An experimental model of vitreous motion induced by eye rotations. Eye Vis. 2015;2:10. doi:10.1186/s40662-015-0020-8

Jonas JB, Xu L, Wei WB, Pan Z, Yang H, Holbach L, et al. Retinal Thickness and Axial Length. Invest Ophthalmol Vis Sci. 2016;57:1791-7. doi: 10.1167/iovs.15-18529.

Meskauskas J, Repetto R, Siggers JH. Shape change of the vitreous chamber influences retinal detachment and reattachment processes: is mechanical stress during eye rotations a factor? Invest Ophthalmol Vis Sci. 2012;53:6271-81. doi: 10.1167/iovs.11-9390.

Pickett-Seltner RL, Doughty MJ, Pasternak JJ, Sivak JG. Proteins of the vitreous humor during experimentally induced myopia. Invest Ophthalmol Vis Sci. 1992;33:3424–9.

Byer NE. Lattice degeneration of the retina. Surv Ophthalmol. 1979;23:213-48. doi:10.1016/0039-6257(79)90048-1

Celorio JM, Pruett RC. Prevalence of lattice degeneration and its relation to axial length in severe myopia. Am J Ophthalmol. 1991;111:20-3. doi:10.1016/s0002-9394(14)76891-6

Go SL, Hoyng CB, Klaver CC. Genetic risk of rhegmatogenous retinal detachment: a familial aggregation study. Arch Ophthalmol. 2005;123:1237-41. doi:10.1001/archopht.123.9.1237

Boutin TS, Charteris DG, Chandra A, Campbell S, Hayward C, Campbell A, et al. Insights into the genetic basis of retinal detachment. Hum Mol Genet. 2020;29:689-702. doi:10.1093/hmg/ddz294

Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ, et al. A novel marker of tissue junctions, collagen XXII. J Biol Chem. 2004 May 21;279:22514-21. doi: 10.1074/jbc.M400536200.

McEvoy BP, Visscher PM. Genetics of human height. Econ Hum Biol. 2009;7:294-306. doi:10.1016/j.ehb.2009.09.005

Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641-9. doi: 10.1093/hmg/ddy271.

Dotrelova D, Karel I, Clupkova E. Retinal detachment in Marfan’s syndrome. Characteristics and surgical results. Retina. 1997;17:390-6. doi:10.1097/00006982-199709000-00006

Xuan Y, D’Souza SN, Wang Z, Pierre AS, Lawton JS, Ge L, et al. Patient-specific biomechanics in marfan ascending thoracic aortic aneurysms. Ann Thorac Surg. 2022;114:1367-75. doi:10.1016/j.athoracsur.2021.07.042

Erkula G, Jones KB, Sponseller PD, Dietz HC, Pyeritz RE. Growth and maturation in Marfan syndrome. Am J Med Genet. 2002;109:100-15. doi:10.1002/ajmg.10312

Beene LC, Traboulsi EI, Seven I, Ford MR, Sinha Roy A, Butler RS, et al. Corneal Deformation Response and Ocular Geometry: A Noninvasive Diagnostic Strategy in Marfan Syndrome. Am J Ophthalmol. 2016;161:56-64.e1. doi: 10.1016/j.ajo.2015.09.027.

Chen ZX, Chen TH, Zhang M, Chen JH, Lan LN, Deng M, et al. Correlation between FBN1 mutations and ocular features with ectopia lentis in the setting of Marfan syndrome and related fibrillinopathies. Hum Mutat. 2021;42:1637-47. doi:10.1002/humu.24283

Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407-11. doi: 10.1038/ng1116.

Jobling AI, Nguyen M, Gentle A, McBrien NA. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem. 2004;279:18121-6. doi: 10.1074/jbc.M400381200.

Girard MJ, Dupps WJ, Baskaran M, Scarcelli G, Yun SH, Quigley HA, et al. Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res. 2015;40:1-18. doi: 10.3109/02713683.2014.914543.

Lindstrom RL. Retinal detachment in axial myopia. Dev Ophthalmol. 1987;14:37-41. doi:10.1159/000414363

Downloads

Published

2023-12-29

How to Cite

Marques, J. H., Baptista, P. M., Marta, A., Sousa, P., Pires, S., Meireles, A., Ambrósio, R., Menéres, P., & Melo Beirão, J. (2023). Biomechanical Predictors of Rhegmatogenous Retinal Detachment in Myopic Patients. Revista Sociedade Portuguesa De Oftalmologia, 47(4), 273–280. https://doi.org/10.48560/rspo.28261

Issue

Section

Original Article