The Role of Corneal Biomechanics as a Predictor of Choroidal Neovascular Membranes in Myopic Eyes

Authors

  • Pedro Manuel Baptista Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal https://orcid.org/0000-0001-8285-1084
  • João Heitor Marques Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal https://orcid.org/0000-0001-6487-7950
  • Paulo Sousa Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
  • Saul Pires Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal
  • Maria João Furtado Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal https://orcid.org/0000-0003-2319-105X
  • Miguel Ribeiro Lume Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal https://orcid.org/0000-0002-8629-1288
  • Angelina Meireles Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal https://orcid.org/0000-0001-9148-2786
  • Renato Ambrósio Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil; Department of Cornea and Refractive Surgery, Instituto de Olhos Renato Ambrósio, Rio de Janeiro, Brazil; Department of Opthalmology, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Federal University of São Paulo (UNIFESP), São Paulo, Brazil; Brazilian Study Group of Artificial Intelligence and Corneal Analysis - BrAIN, Rio de Janeiro & Maceió, Brazil https://orcid.org/0000-0001-6919-4606
  • Pedro Menéres Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal https://orcid.org/0000-0002-1989-3465
  • João Melo Beirão Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; Serviço de Oftalmologia, Centro Hospitalar Universitário do Porto, Porto, Portugal https://orcid.org/0000-0001-8642-7010

DOI:

https://doi.org/10.48560/rspo.28312

Keywords:

Biomechanical Phenomena, Bruch Membrane, Choroidal Neovascularization, Cornea, Myopia, Vascular Endothelial Growth Factor

Abstract

INTRODUCTION: Myopic maculopathy in the form of choroidal neovascularization (mCNV) may display a significant impact in visual function, frequently in active young patients. The present work was aimed to describe corneal biomechanics in myopic eyes with history of mCNV treated with intravitreal anti-vascular endothelial growth factor (VEGF) and compare it with the fellow eyes. Secondary purposes were to make subgroup analysis within the group of mCNV eyes and to address predictors of disease and treatment response.
METHODS: Single center observational cross-sectional case-control study including individuals above 18 years old with myopia and history of mCNV treated with intravitreal anti-VEGF in one eye in Centro Hospitalar e Universitário do Porto. Data from clinical records was taken regarding treatment-related information. A questionnaire including personal demographic, biometric and lifestyle related data was performed. Biomechanical assessment was made by means of Scheimpflug camera, through Corvis ST® (OCULUS). Ocular biometric parameters were addressed by Anterion® (Heidelberg). Data from Macular anatomical assessments were performed through the OCT platform Spectralis® (Heidelberg).
RESULTS: Sixty four eyes from 32 patients were included, 87.5% females, with a mean age of 62.5+-13.3 years old. A tendency to lower HC-time was found in eyes with mCNV. Eyes with macular bruch membrane holes (MBMH) showed higher WEM Max time and TBI and belonged to individuals with more physical activity and more UV-light exposure. Several biomechanical parameters correlated with lifestyle habits. Membrane diameter was moderate-to-strongly correlated with softer biomechanical behavior, while number of intravitreal anti-VEGF injections associated without a consistent pattern. A pure biomechanical model was built to predict the presence of MBMH, including the WEM Max time and the TBI, with an AUROC of 0.808 and with no influence from AL or intraocular pressure.
CONCLUSION: To the authors knowledge, this is the first study evaluating in vivo ocular biomechanics in mCNV. Biomechanics showed promising results as a predictor of mCNV, more specifically of MBMH. It seems to be associated with lifestyle factors and future studies should be performed to confirm our findings, paving the way to the introduction of a dynamic paradigm in mCNV risk assessment of myopic eyes.

Downloads

Download data is not yet available.

References

Ruiz-Medrano J, Montero JA, Flores-Moreno I, Arias L, García-Layana A, Ruiz-Moreno JM. Myopic maculopathy: Current status and proposal for a new classification and grading system (ATN). Prog Retin Eye Res. 2019;69:80-115. doi: 10.1016/j.preteyeres.2018.10.005.

Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036-42. doi: 10.1016/j.ophtha.2016.01.006.

Xu L, Cui T, Yang H, Hu A, Ma K, Zheng Y, et al. Prevalence of visual impairment among adults in China: the Beijing Eye Study. Am J Ophthalmol. 2006;141:591-3. doi: 10.1016/j.ajo.2005.10.018.

Wong YL, Sabanayagam C, Ding Y, Wong CW, Yeo AC, Cheung YB, et al. Prevalence, risk factors, and impact of myopic macular degeneration on visual impairment and functioning among adults in Singapore. Invest Ophthalmol Vis Sci. 2018;59:4603-13. doi: 10.1167/iovs.18-24032.

Iwase A, Araie M, Tomidokoro A, Yamamoto T, Shimizu H, Kitazawa Y. Prevalence and causes of low vision and blindness in a Japanese adult population: the Tajimi Study. Ophthalmology. 2006;113:1354-62. doi: 10.1016/j.ophtha.2006.04.022.

Klaver CC, Wolfs RC, Vingerling JR, Hofman A, de Jong PT. Age-specific prevalence and causes of blindness and visual impairment in an older population: the Rotterdam Study. Arch Ophthalmol. 1998;116:653-8. doi: 10.1001/archopht.116.5.653.

Cedrone C, Nucci C, Scuderi G, Ricci F, Cerulli A, Culasso F. Prevalence of blindness and low vision in an Italian population: a comparison with other European studies. Eye. 2006;20:661-7. doi: 10.1038/sj.eye.6701934.

Cotter SA, Varma R, Ying-Lai M, Azen SP, Klein R. Causes of low vision and blindness in adult Latinos: the Los Angeles Latino Eye Study. Ophthalmology. 2006;113:1574-82. doi: 10.1016/j.ophtha.2006.05.002.

Cheung CMG, Arnold JJ, Holz FG, Park KH, Lai TYY, Larsen M, et al. Myopic Choroidal Neovascularization: Review, Guidance, and Consensus Statement on Management. Ophthalmology. 2017;124:1690-711. doi: 10.1016/j.ophtha.2017.04.028.

Fang Y, Yokoi T, Nagaoka N, Shinohara K, Onishi Y, Ishida T, et al. Progression of Myopic Maculopathy during 18-Year Follow-up. Ophthalmology. 2018;125:863-77. doi: 10.1016/j.ophtha.2017.12.005.

Ambrósio Jr R, Ramos I, Luz A, Faria FC, Steinmueller A, Krug M, Belin MW, et al. Avaliação Dinâmica com fotografia de Scheimpflug de alta velocidade para avaliar as propriedades biomecânicas da córnea. Rev Bras Oftalmol. 2013;72:99-102.

Koprowski R, Ambrósio R, Jr., Reisdorf S. Scheimpflug camera in the quantitative assessment of reproducibility of high-speed corneal deformation during intraocular pressure measurement. J Biophotonics. 2015;8:968-78. doi: 10.1002/jbio.201400137.

Baptista PM, Ambrosio R, Oliveira L, Meneres P, Beirao JM. Corneal Biomechanical Assessment with Ultra-High-Speed Scheimpflug Imaging During Non-Contact Tonometry: A Prospective Review. Clin Ophthalmol. 2021;15:1409-23. doi: 10.2147/opth.S301179.

Salomão MQ, Hofling-Lima AL, Gomes Esporcatte LP, Lopes B, Vinciguerra R, Vinciguerra P, et al. The Role of Corneal Biomechanics for the Evaluation of Ectasia Patients. Int J Environ Res Public Health. 2020;17:2113. doi: 10.3390/ijerph17062113.

Yu AY, Shao H, Pan A, Wang Q, Huang Z, Song B, et al. Corneal biomechanical properties in myopic eyes evaluated via Scheimpflug imaging. BMC Ophthalmol. 2020;20:279. doi: 10.1186/s12886-020-01530-w.

Wang X, McAlinden C, Zhang H, Yan J, Wang D, Wei W, et al. Assessment of corneal biomechanics, tonometry and pachymetry with the Corvis ST in myopia. Sci Rep.2021;11:3041. doi: 10.1038/s41598-020-80915-9.

Jędzierowska M, Koprowski R. Novel dynamic corneal response parameters in a practice use: a critical review. BioMed Eng Online 2019;18:17. doi: 10.1186/s12938-019-0636-3.

Valbon B, Jr R, Fontes B, Luz A, Roberts C, Alves M. Ocular Biomechanical Metrics by CorVis ST in Healthy Brazilian Patients. J Refract Surg. 2014;30:1-6. doi: 10.3928/1081597X-20140521-01.

Roberts CJ, Mahmoud AM, Bons JP, Hossain A, Elsheikh A, Vinciguerra R, et al. Introduction of Two Novel Stiffness Parameters and Interpretation of Air Puff-Induced Biomechanical Deformation Parameters With a Dynamic Scheimpflug Analyzer. J Refract Surg. 2017;33:266-73. doi: 10.3928/1081597X-20161221-03.

Vinciguerra R, Ambrósio R, Jr., Elsheikh A, Roberts CJ, Lopes B, Morenghi E, et al. Detection of Keratoconus With a New Biomechanical Index. J Refract Surg. 2016;32:803-10. doi: 10.3928/1081597x-20160629-01.

Eliasy A, Chen KJ, Vinciguerra R, Lopes BT, Abass A, Vinciguerra P, et al. Determination of Corneal Biomechanical Behavior in-vivo for Healthy Eyes Using CorVis ST Tonometry: Stress-Strain Index. Front Bioeng Biotechnol. 2019;7:105. doi: 10.3389/fbioe.2019.00105.

Ambrósio R, Jr., Lopes BT, Faria-Correia F, Salomão MQ, Bühren J, Roberts CJ, et al. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33:434-43. doi: 10.3928/1081597x-20170426-02.

Bak-Nielsen S, Pedersen IB, Ivarsen A, Hjortdal J. Repeatability, reproducibility, and age dependency of dynamic Scheimpflug-based pneumotonometer and its correlation with a dynamic bidirectional pneumotonometry device. Cornea. 2015;34:71-7. doi: 10.1097/ico.0000000000000293.

Nemeth G, Hassan Z, Csutak A, Szalai E, Berta A, Modis L, Jr. Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J Refract Surg. 2013;29:558-63. doi: 10.3928/1081597X-20130719-06.

Silva R. Myopic Maculopathy: A Review. Ophthalmologica. 2012;228:197-213. DOI: 10.1159/000339893.

Wolf S, Balciuniene VJ, Laganovska G, Menchini U, OhnoMatsui K, Sharma T, et al. RADIANCE: a randomized controlled study of ranibizumab in patients with choroidal neovascularization secondary to pathologic myopia. Ophthalmology. 2014;121:682-92.e2. doi: 10.1016/j.ophtha.2013.10.023.

Hsu CR, Lai TT, Hsieh YT, Ho TC, Yang CM, Yang CH. Baseline predictors for good visual gains after anti-vascular endothelial growth factor therapy for myopic choroidal neovascularization. Sci Rep. 2022;12:6800. doi: 10.1038/s41598-022-10961-y.

Liu G, Rong H, Zhang P, Xue Y, Du B, Wang B, et al. The effect of axial length elongation on corneal biomechanical property. Front Bioeng Biotechnol. 2021;9:777239. doi: 10.3389/fbioe.2021.777239.

Chu Z, Ren Q, Chen M, Cheng L, Cheng H, Cui W, et al. The relationship between axial length/corneal radius of curvature ratio and stress-strain index in myopic eyeballs: Using Corvis ST tonometry. Front Bioeng Biotechnol. 2022;10:939129. doi: 10.3389/fbioe.2022.939129.

Hsu CC, Huang N, Lin PY, Fang SY, Tsai DC, Chen SY, et al. Risk factors for myopia progression in second-grade primary school children in Taipei: a population-based cohort study. Br J Ophthalmol. 2017;101:1611-7. doi: 10.1136/bjophthalmol-2016-309299.

Gupta S, Joshi A, Saxena H, Chatterjee A. Outdoor activity and myopia progression in children: A follow-up study using mixed-effects model. Indian J Ophthalmol. 2021;69:3446-50. doi: 10.4103/ijo.IJO_3602_20.

O’Donoghue L, Kapetanankis VV, McClelland JF, Logan NS, Owen CG, Saunders KJ, et al. Risk Factors for Childhood Myopia: Findings From the NICER Study. Invest Ophthalmol Vis Sci. 2015;56:1524-30. doi: 10.1167/iovs.14-15549.

Cao K, Wan Y, Yusufu M, Wang N. Significance of Outdoor Time for Myopia Prevention: A Systematic Review and Meta-Analysis Based on Randomized Controlled Trials. Ophthalmic Res. 2020;63:97-105. doi: 10.1159/000501937.

Deng L, Pang Y. Effect of Outdoor Activities in Myopia Control: Meta-analysis of Clinical Studies. Optom Vis Sci. 2019;96:276-82. doi: 10.1097/opx.0000000000001357.

Karthikeyan SK, Ashwini DL, Priyanka M, Nayak A, Biswas S. Physical activity, time spent outdoors, and near work in relation to myopia prevalence, incidence, and progression: An overview of systematic reviews and meta-analyses. Indian J Ophthalmol. 2022;70:728-39. doi: 10.4103/ijo.IJO_1564_21.

Yang Z, Wang X, Zhang S, Ye H, Chen Y, Xia Y. Pediatric Myopia Progression During the COVID-19 Pandemic Home Quarantine and the Risk Factors: A Systematic Review and Meta-Analysis. Front Public Health. 2022;10:835449. doi: 10.3389/fpubh.2022.835449.

Mazharian A, Panthier C, Courtin R, Jung C, Rampat R, Saad A, et al. Incorrect sleeping position and eye rubbing in patients with unilateral or highly asymmetric keratoconus: a case-control study. Graefes Arch Clin Exp Ophthalmol. 2020;258:2431-9. doi: 10.1007/s00417-020-04771-z.

Schweitzer C, Korobelnik J-F, Boniol M, Cougnard-Gregoire A, Le Goff M, Malet F, et al. Associations of Biomechanical Properties of the Cornea With Environmental and Metabolic Factors in an Elderly Population: The ALIENOR Study. Invest Ophthalmol Vis Sci. 2016;57:2003-11. doi: 10.1167/iovs.16-19226.

Zhang F, Lai L. Advanced research in scleral cross-linking to prevent from progressive myopia. Asia-Pacific J Ophthalmol. 2021;10:161-6. doi: 10.1097/apo.0000000000000340.

Kobayashi K, Mandai M, Suzuma I, Kobayashi H, Okinami S. Expression of estrogen receptor in the choroidal neovascular membranes in highly myopic eyes. Retina. 2002;22:418-22. doi: 10.1097/00006982-200208000-00004.

Ciucci F, Sacchetti M, Gaetano CD, Bardocci A, Lofoco G. Choroidal neovascular membrane following hormonal stimulation for in vitro fertilization. Eur J Ophthalmol. 2015;25:e95-7. doi: 10.5301/ejo.5000607.

Yin H, Fang X, Ma J, Chen M, Yang Y, Guo S, et al. Idiopathic choroidal neovascularization: intraocular inflammatory cytokines and the effect of intravitreal ranibizumab treatment. Sci Rep. 2016;6:31880. doi: 10.1038/srep31880.

Hirasawa K, Nakakura S, Nakao Y, Fujino Y, Matsuura M, Murata H, et al. Changes in corneal biomechanics and intraocular pressure following cataract surgery. Am J Ophthalmol. 2018;195:26-35. doi: 10.1016/j.ajo.2018.07.025.

Wallace HB, Misra SL, Li SS, McKelvie J. Biomechanical changes in the cornea following cataract surgery: A prospective assessment with the Corneal Visualisation Scheimpflug Technology. Clin Exp Ophthalmol. 2019;47:461-8. doi: 10.1111/ceo.13451.

Orr JB, Zvirgzdina M, Wolffsohn J. The influence of age, ethnicity, eye/body size and diet on corneal biomechanics. Invest Ophthalmol Vis Sci. 2017;58:113131.

Downloads

Published

2024-03-24

How to Cite

Baptista, P. M., Heitor Marques, J., Sousa, P., Pires, S., Furtado, M. J. ., Ribeiro Lume, M., Meireles, A., Ambrósio, R., Menéres, P., & Melo Beirão, J. . (2024). The Role of Corneal Biomechanics as a Predictor of Choroidal Neovascular Membranes in Myopic Eyes. Revista Sociedade Portuguesa De Oftalmologia, 48(1), 36–48. https://doi.org/10.48560/rspo.28312

Issue

Section

Original Article