Retinal Nerve Fiber Layer in Aortic Coarctation Patients

Authors

  • Nuno Rodrigues Alves Department of Ophthalmology, Unidade Local de Saúde de São José, Lisbon, Portugal https://orcid.org/0009-0001-3329-1014
  • Catarina Barão Department of Ophthalmology, Unidade Local de Saúde de São José, Lisbon, Portugal
  • Lívio Costa Department of Ophthalmology, Unidade Local de Saúde de São José, Lisbon, Portugal; Hospital CUF Descobertas, Lisbon, Portugal; NOVA Medical School, Faculty of Medical Sciences of Lisbon, Lisbon, Portugal http://orcid.org/0000-0003-4646-1358
  • Mariana Cardoso Hospital CUF Descobertas, Lisbon, Portugal; Department of Ophthalmology, Hospital Vila Franca de Xira, Vila Franca de Xira, Portugal
  • Cristina Ferreira Department of Ophthalmology, Unidade Local de Saúde de São José, Lisbon, Portugal; Hospital CUF Descobertas, Lisbon, Portugal
  • Liliana Caldeira Hospital CUF Descobertas, Lisbon, Portugal
  • Paulo Gouveia Department of Ophthalmology, Unidade Local de Saúde de São José, Lisbon, Portugal; Hospital CUF Descobertas, Lisbon, Portugal
  • Luís Abegão Pinto Department of Ophthalmology, Unidade Local de Saúde de Santa Maria, Lisbon, Portugal; Vision Sciences Study Centre, CECV, Faculty of Medicine, University of Lisbon, Lisbon, Portugal https://orcid.org/0000-0002-9960-7579
  • Rui Anjos Hospital CUF Descobertas, Lisbon, Portugal; Department of Pediatric Cardiology, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal https://orcid.org/0000-0002-9280-2697
  • Rita Anjos Centro Hospitalar Universitário Lisboa Central https://orcid.org/0000-0002-9058-5836

DOI:

https://doi.org/10.48560/rspo.33098

Keywords:

Aortic Coarctation, Biomarkers, Nerve Fibers, Retinal Diseases, Retinal Vessels

Abstract

INTRODUCTION: Aortic coarctation (COA) is a congenital cardiovascular defect characterized by a narrowed aorta, leading to increased afterload and significant hypertension. COA is associated with severe vascular complications, including coronary atherosclerosis, cerebrovascular accidents, and sudden death. Given the link between retinal microvascular changes and cerebrovascular disease and considering the shared embryological development between the brain and heart in congenital cardiac disease, we can observe vascular lesions caused by COA through transneural degeneration. Detecting and monitoring related-vascular damage in COA patients is crucial to prevent these complications. Notably, the retinal nerve fiber layer (RNFL) shows promising potential as a non-invasive biomarker, providing insights into COA patients’ vascular health. Our purpose was to evaluate alterations in RNFL thickness in COA patients using spectral- domain optical coherence tomography (SD-OCT).
METHODS: Prospective data were collected from patients diagnosed with COA and healthy controls. SD-OCT was performed to measure peripapillary RNFL in both eyes of each patient.
RESULTS: Forty-eight patients with COA diagnosis (COA group; mean [SD] age, 21.0 [8.4] years; 32 males [67%]) and 48 healthy normal controls (control group; mean [SD] age, 21.4 [8.8] years; 23 males [49%]) were included in this study. In univariate analysis, peripapillary RNFL thickness was reduced in both eyes in the COA group compared with the control group in the global parameter (OD, p = 0.058; OS, p = 0.036), superior-nasal (OD, p = 0.006; OS, p = 0.006), and superior-temporal (OD, p = 0.023; OS, p = 0.085). In multivariate logistic regression analysis, only the supero-nasal sector in both eyes showed a significant reduction in peripapillary RNFL thickness on COA group (right eye: coef = 12.83 Std err = 4.44, p-value = 0.005, 95% CI = [4.00 – 21.66]; left eye: coef = 12.80, Std err = 4.16, p-value = 0.003, 95% CI = [4.54 – 21.07]) after adjusting for age, male sex, blood pressure, and IOP.
CONCLUSION: These findings suggest that COA patients might exhibit significant alterations in RNFL thickness, particularly in specific sectors, indicating potential neurological repercussions. Such insights could have valuable implications for the early detection and management of COA-related vascular complications, potentially serving as a non-invasive biomarker.

Downloads

Download data is not yet available.

References

Kim YY, Andrade L, Cook SC. Aortic Coarctation. Cardiol Clin. 2020;38(3):337-351. doi:10.1016/j.ccl.2020.04.003

Campbell M. Natural history of coarctation of the aorta. Heart. 1970;32(5):633-640. doi:10.1136/hrt.32.5.633

Vigneswaran T V., Sinha MD, Valverde I, Simpson JM, Charakida M. Hypertension in Coarctation of the Aorta: Challenges in Diagnosis in Children. Pediatr Cardiol. 2018;39(1):1-10. doi:10.1007/s00246-017-1739-x

Le Gloan L, Chakor H, Mercier LA, et al. Aortic coarctation and the retinal microvasculature. Int J Cardiol. 2014;174(1):25-30. doi:10.1016/j.ijcard.2014.03.129

Pickard SS, Gauvreau K, Gurvitz M, et al. Stroke in Adults With Coarctation of the Aorta: A National Population‐Based Study. J Am Heart Assoc. 2018;7(11). doi:10.1161/JAHA.118.009072

Celermajer DS. Survivors of coarctation repair: fixed but not cured. Heart. 2002;88(2):113-114. doi:10.1136/heart.88.2.113

Cohen M, Fuster V, Steele PM, Driscoll D, McGoon DC. Coarctation of the aorta. Long-term follow-up and prediction of outcome after surgical correction. Circulation. 1989;80(4):840-845. doi:10.1161/01.CIR.80.4.840

Warnes CA. The Adult With Congenital Heart Disease. J Am Coll Cardiol. 2005;46(1):1-8. doi:10.1016/j.jacc.2005.02.083

Nasir-Ahmad S, Cordina R, Liew G, McCluskey P, Celermajer D. The eye in CHD. Cardiol Young. 2018;28(8):981-985. doi:10.1017/S1047951118000859

Fraser‐Bell S, Symes R, Vaze A. Hypertensive eye disease: a review. Clin Exp Ophthalmol. 2017;45(1):45-53. doi:10.1111/ceo.12905

Bhargava M, Ikram MK, Wong TY. How does hypertension affect your eyes? J Hum Hypertens. 2012;26(2):71-83. doi:10.1038/jhh.2011.37

Wang JJ, Baker ML, Hand PJ, et al. Transient Ischemic Attack and Acute Ischemic Stroke. Stroke. 2011;42(2):404-408. doi:10.1161/STROKEAHA.110.598599

Wong TY, Klein R, Couper DJ, et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. The Lancet. 2001;358(9288):1134-1140. doi:10.1016/S0140-6736(01)06253-5

Wong TY. Cerebral White Matter Lesions, Retinopathy, and Incident Clinical Stroke. JAMA. 2002;288(1):67. doi:10.1001/jama.288.1.67

McQuillen PS, Goff DA, Licht DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol. 2010;29(2):79-85. doi:10.1016/j.ppedcard.2010.06.011

Del Pinto R, Mulè G, Vadalà M, et al. Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies. Nutrients. 2022;14(11):2200. doi:10.3390/nu14112200

Bridge H, T. Plant G. Conclusive Evidence for Human Transneuronal Retrograde Degeneration in the Visual System. J Clin Exp Ophthalmol. 2012;01(s3). doi:10.4172/2155-9570-S3-003

Jindahra P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain. 2012;135(2):534-541. doi:10.1093/brain/awr324

Park HYL, Park YG, Cho AH, Park CK. Transneuronal Retrograde Degeneration of the Retinal Ganglion Cells in Patients with Cerebral Infarction. Ophthalmology. 2013;120(6):1292-1299. doi:10.1016/j.ophtha.2012.11.021

Cheung CY lui, Tay WT, Ikram MK, et al. Retinal Microvascular Changes and Risk of Stroke. Stroke. 2013;44(9):2402-2408. doi:10.1161/STROKEAHA.113.001738

Mantri SS, Raju B, Jumah F, et al. Aortic arch anomalies, embryology and their relevance in neuro-interventional surgery and stroke: A review. Interventional Neuroradiology. 2022;28(4):489-498. doi:10.1177/15910199211039924

Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015;385(9963):117-171. doi:10.1016/S0140-6736(14)61682-2

Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F. Morphological and functional retinal impairment in Alzheimer’s disease patients. Clinical Neurophysiology. 2001;112(10):1860-1867. doi:10.1016/S1388-2457(01)00620-4

Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res. 2004;44(24):2793-2797. doi:10.1016/j.visres.2004.06.009

Schönfeldt-Lecuona C, Kregel T, Schmidt A, et al. Retinal single-layer analysis with optical coherence tomography (OCT) in schizophrenia spectrum disorder. Schizophr Res. 2020;219:5-12. doi:10.1016/j.schres.2019.03.022

Wang D, Li Y, Wang C, et al. Localized Retinal Nerve Fiber Layer Defects and Stroke. Stroke. 2014;45(6):1651-1656. doi:10.1161/STROKEAHA.113.004629

Kim M, Park KH, Kwon JW, Jeoung JW, Kim TW, Kim DM. Retinal nerve fiber layer defect and cerebral small vessel disease. Invest Ophthalmol Vis Sci. 2011;52(9):6882-6886. doi:10.1167/iovs.11-7276

Ikram MK, De Jong FJ, Van Dijk EJ, et al. Retinal vessel diameters and cerebral small vessel disease: the Rotterdam Scan Study. Brain. 2006;129(1):182-188. doi:10.1093/brain/awh688

Lindley RI, Wang JJ, Wong MC, et al. Retinal microvasculature in acute lacunar stroke: a cross-sectional study. Lancet Neurol. 2009;8(7):628-634. doi:10.1016/S1474-4422(09)70131-0

Cheung N, Mosley T, Islam A, et al. Retinal microvascular abnormalities and subclinical magnetic resonance imaging brain infarct: a prospective study. Brain. 2010;133(7):1987-1993. doi:10.1093/brain/awq127

Tsai SH, Xie W, Zhao M, Rosa RH, Hein TW, Kuo L. Alterations of Ocular Hemodynamics Impair Ophthalmic Vascular and Neuroretinal Function. Am J Pathol. 2018;188(3):818-827. doi:10.1016/j.ajpath.2017.11.015

Savastano MC, Lumbroso B, Rispoli M. IN VIVO CHARACTERIZATION OF RETINAL VASCULARIZATION MORPHOLOGY USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina. 2015;35(11):2196-2203. doi:10.1097/IAE.0000000000000635

Mendis KR, Balaratnasingam C, Yu P, et al. Correlation of Histologic and Clinical Images to Determine the Diagnostic Value of Fluorescein Angiography for Studying Retinal Capillary Detail. Investigative Opthalmology & Visual Science. 2010;51(11):5864. doi:10.1167/iovs.10-5333

Du J, Du Y, Xue Y, Wang H, Li Y. Factors Associated with Changes in Peripapillary Retinal Nerve Fibre Layer Thickness in Healthy Myopic Eyes. J Ophthalmol. 2021;2021:1-9. doi:10.1155/2021/3462004

Hood DC, Fortune B, Arthur SN, et al. Blood Vessel Contributions to Retinal Nerve Fiber Layer Thickness Profiles Measured With Optical Coherence Tomography. J Glaucoma. 2008;17(7):519-528. doi:10.1097/IJG.0b013e3181629a02

Xu L, Zhou JQ, Wang S, et al. Localized Retinal Nerve Fiber Layer Defects and Arterial Hypertension. Am J Hypertens. 2013;26(4):511-517. doi:10.1093/ajh/hps081

Park HYL, Jung KI, Na KS, Park SH, Park CK. Visual Field Characteristics in Normal-Tension Glaucoma Patients With Autonomic Dysfunction and Abnormal Peripheral Microcirculation. Am J Ophthalmol. 2012;154(3):466-475.e1. doi:10.1016/j.ajo.2012.03.028

Jung KI, Kim SJ, Park CK. Systemic Vascular Risk Factors for Multiple Retinal Nerve Fiber Layer Defects. Sci Rep. 2018;8(1):7797. doi:10.1038/s41598-018-26160-7

Tatham AJ, Weinreb RN, Zangwill LM, Liebmann JM, Girkin CA, Medeiros FA. Estimated Retinal Ganglion Cell Counts in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects. Am J Ophthalmol. 2013;156(3):578-587.e1. doi:10.1016/j.ajo.2013.04.015

Jonas JB, Fernández MC, Stürmer J. Pattern of Glaucomatous Neuroretinal Rim Loss. Ophthalmology. 1993;100(1):63-68. doi:10.1016/S0161-6420(13)31694-7

Hood DC, Raza AS, de Moraes CG V, Johnson CA, Liebmann JM, Ritch R. The Nature of Macular Damage in Glaucoma as Revealed by Averaging Optical Coherence Tomography Data. Transl Vis Sci Technol. 2012;1(1):3. doi:10.1167/tvst.1.1.3

Downloads

Published

2024-11-24

How to Cite

Rodrigues Alves, N., Barão, C., Costa, L., Cardoso, M., Ferreira, C., Caldeira, L., Gouveia, P., Abegão Pinto, L., Anjos, R., & Anjos, R. . (2024). Retinal Nerve Fiber Layer in Aortic Coarctation Patients. Revista Sociedade Portuguesa De Oftalmologia. https://doi.org/10.48560/rspo.33098

Issue

Section

Original Article