Retinal Nerve Fiber Layer in Aortic Coarctation Patients
DOI:
https://doi.org/10.48560/rspo.33098Keywords:
Aortic Coarctation, Biomarkers, Nerve Fibers, Retinal Diseases, Retinal VesselsAbstract
INTRODUCTION: Aortic coarctation (COA) is a congenital cardiovascular defect characterized by a narrowed aorta, leading to increased afterload and significant hypertension. COA is associated with severe vascular complications, including coronary atherosclerosis, cerebrovascular accidents, and sudden death. Given the link between retinal microvascular changes and cerebrovascular disease and considering the shared embryological development between the brain and heart in congenital cardiac disease, we can observe vascular lesions caused by COA through transneural degeneration. Detecting and monitoring related-vascular damage in COA patients is crucial to prevent these complications. Notably, the retinal nerve fiber layer (RNFL) shows promising potential as a non-invasive biomarker, providing insights into COA patients’ vascular health. Our purpose was to evaluate alterations in RNFL thickness in COA patients using spectral- domain optical coherence tomography (SD-OCT).METHODS: Prospective data were collected from patients diagnosed with COA and healthy controls. SD-OCT was performed to measure peripapillary RNFL in both eyes of each patient.
RESULTS: Forty-eight patients with COA diagnosis (COA group; mean [SD] age, 21.0 [8.4] years; 32 males [67%]) and 48 healthy normal controls (control group; mean [SD] age, 21.4 [8.8] years; 23 males [49%]) were included in this study. In univariate analysis, peripapillary RNFL thickness was reduced in both eyes in the COA group compared with the control group in the global parameter (OD, p = 0.058; OS, p = 0.036), superior-nasal (OD, p = 0.006; OS, p = 0.006), and superior-temporal (OD, p = 0.023; OS, p = 0.085). In multivariate logistic regression analysis, only the supero-nasal sector in both eyes showed a significant reduction in peripapillary RNFL thickness on COA group (right eye: coef = 12.83 Std err = 4.44, p-value = 0.005, 95% CI = [4.00 – 21.66]; left eye: coef = 12.80, Std err = 4.16, p-value = 0.003, 95% CI = [4.54 – 21.07]) after adjusting for age, male sex, blood pressure, and IOP.
CONCLUSION: These findings suggest that COA patients might exhibit significant alterations in RNFL thickness, particularly in specific sectors, indicating potential neurological repercussions. Such insights could have valuable implications for the early detection and management of COA-related vascular complications, potentially serving as a non-invasive biomarker.
Downloads
References
Kim YY, Andrade L, Cook SC. Aortic Coarctation. Cardiol Clin. 2020;38(3):337-351. doi:10.1016/j.ccl.2020.04.003
Campbell M. Natural history of coarctation of the aorta. Heart. 1970;32(5):633-640. doi:10.1136/hrt.32.5.633
Vigneswaran T V., Sinha MD, Valverde I, Simpson JM, Charakida M. Hypertension in Coarctation of the Aorta: Challenges in Diagnosis in Children. Pediatr Cardiol. 2018;39(1):1-10. doi:10.1007/s00246-017-1739-x
Le Gloan L, Chakor H, Mercier LA, et al. Aortic coarctation and the retinal microvasculature. Int J Cardiol. 2014;174(1):25-30. doi:10.1016/j.ijcard.2014.03.129
Pickard SS, Gauvreau K, Gurvitz M, et al. Stroke in Adults With Coarctation of the Aorta: A National Population‐Based Study. J Am Heart Assoc. 2018;7(11). doi:10.1161/JAHA.118.009072
Celermajer DS. Survivors of coarctation repair: fixed but not cured. Heart. 2002;88(2):113-114. doi:10.1136/heart.88.2.113
Cohen M, Fuster V, Steele PM, Driscoll D, McGoon DC. Coarctation of the aorta. Long-term follow-up and prediction of outcome after surgical correction. Circulation. 1989;80(4):840-845. doi:10.1161/01.CIR.80.4.840
Warnes CA. The Adult With Congenital Heart Disease. J Am Coll Cardiol. 2005;46(1):1-8. doi:10.1016/j.jacc.2005.02.083
Nasir-Ahmad S, Cordina R, Liew G, McCluskey P, Celermajer D. The eye in CHD. Cardiol Young. 2018;28(8):981-985. doi:10.1017/S1047951118000859
Fraser‐Bell S, Symes R, Vaze A. Hypertensive eye disease: a review. Clin Exp Ophthalmol. 2017;45(1):45-53. doi:10.1111/ceo.12905
Bhargava M, Ikram MK, Wong TY. How does hypertension affect your eyes? J Hum Hypertens. 2012;26(2):71-83. doi:10.1038/jhh.2011.37
Wang JJ, Baker ML, Hand PJ, et al. Transient Ischemic Attack and Acute Ischemic Stroke. Stroke. 2011;42(2):404-408. doi:10.1161/STROKEAHA.110.598599
Wong TY, Klein R, Couper DJ, et al. Retinal microvascular abnormalities and incident stroke: the Atherosclerosis Risk in Communities Study. The Lancet. 2001;358(9288):1134-1140. doi:10.1016/S0140-6736(01)06253-5
Wong TY. Cerebral White Matter Lesions, Retinopathy, and Incident Clinical Stroke. JAMA. 2002;288(1):67. doi:10.1001/jama.288.1.67
McQuillen PS, Goff DA, Licht DJ. Effects of congenital heart disease on brain development. Prog Pediatr Cardiol. 2010;29(2):79-85. doi:10.1016/j.ppedcard.2010.06.011
Del Pinto R, Mulè G, Vadalà M, et al. Arterial Hypertension and the Hidden Disease of the Eye: Diagnostic Tools and Therapeutic Strategies. Nutrients. 2022;14(11):2200. doi:10.3390/nu14112200
Bridge H, T. Plant G. Conclusive Evidence for Human Transneuronal Retrograde Degeneration in the Visual System. J Clin Exp Ophthalmol. 2012;01(s3). doi:10.4172/2155-9570-S3-003
Jindahra P, Petrie A, Plant GT. The time course of retrograde trans-synaptic degeneration following occipital lobe damage in humans. Brain. 2012;135(2):534-541. doi:10.1093/brain/awr324
Park HYL, Park YG, Cho AH, Park CK. Transneuronal Retrograde Degeneration of the Retinal Ganglion Cells in Patients with Cerebral Infarction. Ophthalmology. 2013;120(6):1292-1299. doi:10.1016/j.ophtha.2012.11.021
Cheung CY lui, Tay WT, Ikram MK, et al. Retinal Microvascular Changes and Risk of Stroke. Stroke. 2013;44(9):2402-2408. doi:10.1161/STROKEAHA.113.001738
Mantri SS, Raju B, Jumah F, et al. Aortic arch anomalies, embryology and their relevance in neuro-interventional surgery and stroke: A review. Interventional Neuroradiology. 2022;28(4):489-498. doi:10.1177/15910199211039924
Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet. 2015;385(9963):117-171. doi:10.1016/S0140-6736(14)61682-2
Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F. Morphological and functional retinal impairment in Alzheimer’s disease patients. Clinical Neurophysiology. 2001;112(10):1860-1867. doi:10.1016/S1388-2457(01)00620-4
Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A. Retinal nerve fiber layer thinning in Parkinson disease. Vision Res. 2004;44(24):2793-2797. doi:10.1016/j.visres.2004.06.009
Schönfeldt-Lecuona C, Kregel T, Schmidt A, et al. Retinal single-layer analysis with optical coherence tomography (OCT) in schizophrenia spectrum disorder. Schizophr Res. 2020;219:5-12. doi:10.1016/j.schres.2019.03.022
Wang D, Li Y, Wang C, et al. Localized Retinal Nerve Fiber Layer Defects and Stroke. Stroke. 2014;45(6):1651-1656. doi:10.1161/STROKEAHA.113.004629
Kim M, Park KH, Kwon JW, Jeoung JW, Kim TW, Kim DM. Retinal nerve fiber layer defect and cerebral small vessel disease. Invest Ophthalmol Vis Sci. 2011;52(9):6882-6886. doi:10.1167/iovs.11-7276
Ikram MK, De Jong FJ, Van Dijk EJ, et al. Retinal vessel diameters and cerebral small vessel disease: the Rotterdam Scan Study. Brain. 2006;129(1):182-188. doi:10.1093/brain/awh688
Lindley RI, Wang JJ, Wong MC, et al. Retinal microvasculature in acute lacunar stroke: a cross-sectional study. Lancet Neurol. 2009;8(7):628-634. doi:10.1016/S1474-4422(09)70131-0
Cheung N, Mosley T, Islam A, et al. Retinal microvascular abnormalities and subclinical magnetic resonance imaging brain infarct: a prospective study. Brain. 2010;133(7):1987-1993. doi:10.1093/brain/awq127
Tsai SH, Xie W, Zhao M, Rosa RH, Hein TW, Kuo L. Alterations of Ocular Hemodynamics Impair Ophthalmic Vascular and Neuroretinal Function. Am J Pathol. 2018;188(3):818-827. doi:10.1016/j.ajpath.2017.11.015
Savastano MC, Lumbroso B, Rispoli M. IN VIVO CHARACTERIZATION OF RETINAL VASCULARIZATION MORPHOLOGY USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. Retina. 2015;35(11):2196-2203. doi:10.1097/IAE.0000000000000635
Mendis KR, Balaratnasingam C, Yu P, et al. Correlation of Histologic and Clinical Images to Determine the Diagnostic Value of Fluorescein Angiography for Studying Retinal Capillary Detail. Investigative Opthalmology & Visual Science. 2010;51(11):5864. doi:10.1167/iovs.10-5333
Du J, Du Y, Xue Y, Wang H, Li Y. Factors Associated with Changes in Peripapillary Retinal Nerve Fibre Layer Thickness in Healthy Myopic Eyes. J Ophthalmol. 2021;2021:1-9. doi:10.1155/2021/3462004
Hood DC, Fortune B, Arthur SN, et al. Blood Vessel Contributions to Retinal Nerve Fiber Layer Thickness Profiles Measured With Optical Coherence Tomography. J Glaucoma. 2008;17(7):519-528. doi:10.1097/IJG.0b013e3181629a02
Xu L, Zhou JQ, Wang S, et al. Localized Retinal Nerve Fiber Layer Defects and Arterial Hypertension. Am J Hypertens. 2013;26(4):511-517. doi:10.1093/ajh/hps081
Park HYL, Jung KI, Na KS, Park SH, Park CK. Visual Field Characteristics in Normal-Tension Glaucoma Patients With Autonomic Dysfunction and Abnormal Peripheral Microcirculation. Am J Ophthalmol. 2012;154(3):466-475.e1. doi:10.1016/j.ajo.2012.03.028
Jung KI, Kim SJ, Park CK. Systemic Vascular Risk Factors for Multiple Retinal Nerve Fiber Layer Defects. Sci Rep. 2018;8(1):7797. doi:10.1038/s41598-018-26160-7
Tatham AJ, Weinreb RN, Zangwill LM, Liebmann JM, Girkin CA, Medeiros FA. Estimated Retinal Ganglion Cell Counts in Glaucomatous Eyes with Localized Retinal Nerve Fiber Layer Defects. Am J Ophthalmol. 2013;156(3):578-587.e1. doi:10.1016/j.ajo.2013.04.015
Jonas JB, Fernández MC, Stürmer J. Pattern of Glaucomatous Neuroretinal Rim Loss. Ophthalmology. 1993;100(1):63-68. doi:10.1016/S0161-6420(13)31694-7
Hood DC, Raza AS, de Moraes CG V, Johnson CA, Liebmann JM, Ritch R. The Nature of Macular Damage in Glaucoma as Revealed by Averaging Optical Coherence Tomography Data. Transl Vis Sci Technol. 2012;1(1):3. doi:10.1167/tvst.1.1.3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Sociedade Portuguesa de Oftalmologia
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Do not forget to download the Authorship responsibility statement/Authorization for Publication and Conflict of Interest.
The article can only be submitted with these two documents.
To obtain the Authorship responsibility statement/Authorization for Publication file, click here.
To obtain the Conflict of Interest file (ICMJE template), click here