Tailoring Extended Depth-of-Focus Intraocular Lens Design with Pupil Diameter and Spherical Aberration Profile
DOI:
https://doi.org/10.48560/rspo.38167Keywords:
Lens Implantation, Intraocular, Lenses, Intraocular, Presbyopia, Visual AcuityAbstract
INTRODUCTION: Several intraocular lens (IOL) designs have been designed for the correction of presbyopia. The purpose of this study is to evaluate the visual performance of two IOL models and their variation according to spherical aberration (SA) and pupil diameter (PD).
METHODS: Prospective analysis of all patients implanted with AcrySoft Vivity (“VIVITY”) or Precizon Presbyopic NVA (“PRESBY”) at the Refractive Surgery Unit of a tertiary hospital between January 2021 and December 2023. Patients with incomplete follow-up, amblyopia, and posterior capsule opacification were excluded. Defocus curve testing was performed at 0.5 diopters (D) intervals from +1.0 D to -3.0 D at the same examination room. PD, chord μ, and corneal wavefront profile was registered using a Scheimpflug system (Pentacam, Oculus).
RESULTS: We included 99 eyes of 54 patients - 50 eyes from the VIVITY group and 49 eyes from the PRESBY group. Baseline evaluation showed no significant differences. The VIVITY group showed better intermediate vision (logMAR 0.07 ± 0.06 vs 0.21 ± 0.25, p<0.001, respectively). The PRESBY group showed better near vision (logMAR 0.46 ± 0.11 vs 0.59 ± 0.16, p<0.001, respectively). Chord μ was not correlated with optical performance in either group. Near vision was positively correlated with PD (r=0.470, p<0.001 for 33 cm; r=0.350, p=0.015 for 40 cm; r=0.318, p=0.028 for 50 cm) and with SA (r=0.334, p=0.02 for 33 cm; r=0.374, p=0.009 for 40 cm; r=0.271, p=0.062 for 50 cm) only in the VIVITY group. Regarding PRESBY group, near vision was not significantly correlated with PD (r=0.224, p=0.143 for 33 cm; r=0.083, p=0.593 for 40 cm; r=0.146, p=0.343 for 50 cm) and statistically independent of SA (r=0.016, p=0.912 for 33 cm; r=0.221, p=0.131 for 40 cm; r=0.081, p=0.584 for 50 cm).
CONCLUSION: Each IOL performance in intermediate vision is different according to PD and SA: with VIVITY, it is better with smaller PD and less positive SA. With PRESBY, it is pupil-independent and clinically favored by more positive SA. Thus, preoperative evaluation of SA and PD near vision may influence the choice of refractive IOL for each patient.
Downloads
References
Kohnen T. How far we have come: from Ridley’s first intraocular lens to modern IOL technology. J Cataract Refract Surg. 2009;35:2039. doi:10.1016/j.jcrs.2009.10.019
Kohnen T. Current and future nomenclature and categorization of intraocular lenses. J Cataract Refract Surg. 2024;50:787. doi:10.1097/j.jcrs.000000000001510
Grzybowski A. Recent developments in cataract surgery. Ann Transl Med. 2020;8:1540. doi:10.21037/atm-2020-res-16
Fernández J, Ribeiro F, Rocha-de-Lossada C, Rodríguez-Vallejo M. Functional Classification of Intraocular Lenses Based on Defocus Curves: A Scoping Review and Cluster Analysis. J Refract Surg. 2024;40:e108-e116. doi:10.3928/1081 597X-20231212-01
Ribeiro F, Dick HB, Kohnen T, Findl O, Nuijis R, Cochner B, et al. Evidence-based functional classification of simultaneous vision intraocular lenses: seeking a global consensus by the ESCRS Functional Vision Working Group. J Cataract Refract Surg. 2024;50:794-8. doi:10.1097/j.jcrs.000000000001502
Kohnen T, Suryakumar R. Extended depth-of-focus technology in intraocular lenses. J Cataract Refract Surg. 2020;46:298-304. doi:10.1097/j.jcrs.000000000001009
Coassin M, Di Zazzo A, Antonini M, Gauderzi D, Gallo Affitto G, Kohnen T. Extended depth-of-focus intraocular lenses: power calculation and outcomes. J Cataract Refract Surg. 2020;46:1554-60. doi:10.1097/j.jcrs.000000000002093
Bellucci R, Curado MC. A New Extended Depth of Focus Intraocular Lens Based on Spherical Aberration. J Refract Surg. 2017;33:389-94. doi:10.3928/1081597X-20170329-01
Kanclerz P, Toto F, Grzybowski A, Alio JL. Extended Depth-of-Field Intraocular Lenses: An Update. Asia Pac J Ophthalmol. 2020;9:194-202. doi:10.1097/APO.000000000006296
Garzon N, Gomez-Pedrero JA, Albarrán-Diego C, Fernández-Núñez S, Villanueva Gomez-Chacon S, García-Montero M. Optical power profiles and aberrations of a non-diffractive wavefront-shaping extended depth of focus intraocular lens. Graefes Arch Clin Exp Ophthalmol. 2024. doi:10.1007/s00417-024-06469-y
Narang P, Agarwal A, Ashok Kumar D, Agarwal A. Pinhole pupilloplasty: Small-aperture optics for higher-order corneal aberrations. J Cataract Refract Surg. 2019;45:539-43. doi:10.1016/j.jcrs.2018.12.007
Campbell FW. The depth of field of the human eye. Optica Acta. 1957;4:157-64.
Hervella L, Villegas EA, Robles C, Artal P. Spherical aberration customization to extend the depth of focus with a clinical adaptive optics visual simulator. J Refract Surg. 2020;36:223-9. doi:10.3928/1081597X-20200212-02
Fernández J, Rodríguez-Vallejo M, Burguera N, Rocha-de-Lossada C, Piñero DP. Spherical aberration for expanding depth of focus. J Cataract Refract Surg. 2021;47:1587-95. doi:10.1097/j.jcrs.00000000000713
Megiddo-Barnir E, Alió JL. Latest Development in extended depth-of-focus intraocular lenses: an update. Asia Pac J Ophthalmol. 2023;12:58-79. doi:10.1097/APO.00000000000590
Schiewegeling J, Gu X, Hong X, Lemp-Hull J, Merchea M. Optical Principles of Extended Depth of Focus IOLs. Presented at: 37th Congress of the European Society of Cataract and Refractive Surgeons; September 14, 2019; Paris, FA.
Rampat R, Gatinel D. Multifocal and extended depth-of-focus intraocular lenses in 2020. Ophthalmology. 2021;128:e164-85. doi:10.1016/j.ophtha.2020.09.026
Ophtec. Precizon Presbyopic NVA Factsheet. Presented at: 2023.
Böhm M, Petermann K, Hemkeppler E, Kohnen T. Defocus curves of 4 presbyopia-correcting IOL designs: Diffractive panfocal, diffractive trifocal, segmental refractive, and extended-depth-of-focus. J Cataract Refract Surg. 2019;45:1625-36. doi:10.1016/j.jcrs.2019.07.014
Wolfsohn JS, Jinabhai AN, Kingsnorth A, Sheppard AL, Naroo SA, Shah S, et al. Exploring the optimum step size for defocus curves. J Cataract Refract Surg. 2013;39:873-80. doi:10.1016/j.jcrs.2013.01.031
Buckhurst PJ, Wolfsohn JS, Naroo SA, Davies LN, Bhogal GK, Kipioti A, et al. Multifocal intraocular lens differentiation using defocus curves. Invest Ophthalmol Vis Sci. 2012;53:3920-6. doi:10.1167/iovs.11-9234
Alcon, USA. AcrySoft® IQVivityTM Extended Vision IOL Clinical Science Compendium. Presented at: 37th Meeting of the European Society of Cataract and Refractive Surgeons; September 14, 2019; Paris, FA.
MacRae S, Holladay JT, Glasser A, Calogero D, Hilmantel G, Masket S, et al. Special Report: American Academy of Ophthalmology Task Force Consensus Statement for Extended Depth of Focus Intraocular Lenses. Ophthalmology. 2017;124:139-41. doi:10.1016/j.ophtha.2016.09.039
Beiko GH, Haigis W, Steinmueller A. Distribution of corneal spherical aberration in a comprehensive ophthalmology practice and whether keratometry can predict aberration values. J Cataract Refract Surg. 2007;33:848-58. doi:10.1016/j.jcrs.2007.01.035
Kohnen T, Mahmoud K, Bühren J. Comparison of corneal higher-order aberrations induced by myopic and hyperopic LASIK. Ophthalmology. 2005;112:1692. doi:10.1016/j.ophtha.2005.05.004
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Sociedade Portuguesa de Oftalmologia

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Do not forget to download the Authorship responsibility statement/Authorization for Publication and Conflict of Interest.
The article can only be submitted with these two documents.
To obtain the Authorship responsibility statement/Authorization for Publication file, click here.
To obtain the Conflict of Interest file (ICMJE template), click here


