Advanced Diagnosis of Corneal Endothelial Dysfunction

Authors

  • Mariana Domingues Vaz Unidade Local de Saúde Almada-Seixal, Almada, Portugal https://orcid.org/0009-0002-1419-2499
  • Tomás Loureiro Unidade Local de Saúde Almada-Seixal, Almada, Portugal
  • Nelson Sena Jr Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil
  • Filipe Morais Unidade Local de Saúde Almada-Seixal, Almada, Portugal
  • Inês Machado Unidade Local de Saúde Almada-Seixal, Almada, Portugal
  • Nuno Campos Unidade Local de Saúde Almada-Seixal, Almada, Portugal
  • Frederico Guerra Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil
  • Renato Ambrósio Jr Rio de Janeiro Corneal Tomography and Biomechanics Study Group, Rio de Janeiro, Brazil; Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil

DOI:

https://doi.org/10.48560/rspo.41288

Keywords:

Corneal Endothelial Cell Loss, Endothelial Cells, Endothelium, Corneal, Fuchs’ Endothelial Dystrophy

Abstract

The corneal endothelium plays a vital role in maintaining corneal transparency through fluid homeostasis, which is regulated by the tight junctions and the activity of the Na⁺/K⁺-ATPase pump. As the endothelium is not regenerable, the loss of endothelial cells due to aging, trauma or dystrophies such as Fuchs’ endothelial corneal dystrophy (FECD) can lead to corneal edema and progressive visual impairment. Conventional methods such as slit-lamp biomicroscopy and clinical grading remain essential in advanced stages, but are limited in early detection. This review emphasizes the value of multimodal imaging in the detection of subclinical dysfunction. Specular and confocal microscopy allow quantitative assessment of endothelial cell density and morphology. Spatial thickness measurements, such as corneal thickness spatial profile (CTSP) and percent thickness increase (PTI), raise diagnostic specificity beyond traditional central corneal thickness (CCT). Scheimpflug tomography enables early detection of subtle morphologic changes, such as isopachal irregularities, posterior surface depressions, and the “camel sign” in densitometry. Optical coherence tomography of the anterior segment (AS-OCT) refines the diagnosis by correlating the reflectance patterns with the integrity of the endothelium. Biomechanical evaluation of the cornea with Corvis ST adds dynamic parameters such as applanation times, deformation amplitude and concavity radius, which vary depending on the stage of the disease. The genetic basis of endothelial dystrophies is also addressed, highlighting important loci and genes such as TCF4, COL8A2 and SLC4A11, which have been implicated in autosomal dominant and complex inheritance patterns. These findings emphasize the importance of molecular diagnostics and point to future therapeutic targets. In summary, a comprehensive diagnostic strategy that combines structural imaging, functional assessment and genetic analysis supports early detection, improves preoperative risk assessment — especially in cataract and keratoplasty planning — and could benefit from integration with artificial intelligence for predictive modelling and clinical decision making in the future.

Downloads

Download data is not yet available.

References

Maurice DM. Cellular membrane activity in the corneal endothelium of the intact eye. Experientia. 1968;24:1094-5. doi:10.1007/BF02147776

Bourne WM, Kaufman HE. Specular Microscopy of Human Corneal Endothelium in VIVO. Am J Ophthalmol. 1976;81:319-23. doi:10.1016/0002-9394(76)90247-6

de Oliveira RC, Wilson SE. Descemet’s membrane development, structure, function and regeneration. Exp Eye Res. 2020;197:108090. doi:10.1016/j.exer.2020.108090

Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull. 2010;81:198-210. doi:10.1016/j.brainresbull.2009.05.019

Valdez-García JE, Ortiz-Morales G, Morales-Mancillas N, Luis Domene-Hickman J, Hernández-Camarena J, Loya-García D et al. Age-related Changes of the Corneal Endothelium in the Hispanic Elderly Population. Open Ophthalmol J. 2022;16. doi:10.2174/18743641-v16-e2204140

Price MO, Mehta JS, Jurkunas UV, Price FW. Corneal endothelial dysfunction: Evolving understanding and treatment options. Prog Retin Eye Res. 2021;82:100904. doi:10.1016/j.preteyeres.2020.100904

Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas U V. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res. 2021;80:100863. doi:10.1016/j.preteyeres.2020.100863

Krachmer JH. Corneal Endothelial Dystrophy. Arch Ophthalmol. 1978;96:2036. doi:10.1001/archopht.1978.03910060424004

Seitzman GD, Gottsch JD, Stark WJ. Cataract surgery in patients with Fuchs’ corneal dystrophy. Ophthalmology. 2005;112:441-6. doi:10.1016/j.ophtha.2004.10.044

Repp DJ, Hodge DO, Baratz KH, McLaren JW, Patel SV. Fuchs’ Endothelial Corneal Dystrophy. Ophthalmology. 2013;120:687-94. doi:10.1016/j.ophtha.2012.09.022

Sun SY, Wacker K, Baratz KH, Patel SV. Determining Subclinical Edema in Fuchs Endothelial Corneal Dystrophy: Revised Classification using Scheimpfung Tomography for Preoperative Assessment. Ophthalmology. 2019;126:195-204. doi:10.1016/j.ophtha.2018.07.005

Ambrosio R, Faria Correia F, Belin MW. Analyzing Tomographic Thickness for Detecting Corneal Ectatic Diseases. In: Alió, editor. Keratoconus, Essentials in Ophthalmology, Berlin: Springer; 2017. p.77-85.

Fritz M, Grewing V, Bohringer D, Lapp T, Maier P, Reinhard T, et al. Avoiding Hyperopic Surprises After Descemet Membrane Endothelial Keratoplasty in Fuchs Dystrophy Eyes by Assessing Corneal Shape. Am J Ophthalmol. 2019;197:1-6. doi:10.1016/j.ajo.2018.08.052

Ambrosio Jr R. Multimodal imaging for refractive surgery: Quo vadis? Indian J Ophthalmol. 2020;68:2647. doi:10.4103/0301-4738.301283

Ambrosio R, Guerra FP. Advanced Corneal Imaging for Fuchs Endothelial Corneal Dystrophy. Ophthalmology. 2019;126:205-6. doi:10.1016/j.ophtha.2018.09.020

Benetz BAM, Shivade VS, Joseph NM, Romig NJ, McCormick JC, Chen J, et al. Automatic Determination of Endothelial Cell Density From Donor Cornea Endothelial Cell Images. Transl Vis Sci Technol. 2024;13:40. doi:10.1167/tvst.13.8.40

Qu JH, Qin XR, Peng RM, Xiao CG, Cheng J, Gu SF, et al. A Fully Automated Segmentation and Morphometric Parameter Estimation System for Assessing Corneal Endothelial Cell Images. Am J Ophthalmol. 2022;239:142-53. doi:10.1016/j.ajo.2022.02.026

Liu S, Kandakji L, Stupnicki A, Sumodhee D, Leucci MT, Hau S, et al. Current Applications of Artificial Intelligence for Fuchs Endothelial Corneal Dystrophy: A Systematic Review. Transl Vis Sci Technol. 2025;14:12. doi:10.1167/tvst.14.6.12.

Eleiwa T, Elsawy A, Özcan E, Abou Shousha M. Automated diagnosis and staging of Fuchs’ endothelial cell corneal dystrophy using deep learning. Eye Vision. 2020;7:44. doi:10.1186/s40662-020-00209-z

Downloads

Published

2025-09-16

How to Cite

Vaz, M. D., Loureiro, T., Sena Jr, N., Morais, F., Machado, I., Campos, N., … Ambrósio Jr, R. (2025). Advanced Diagnosis of Corneal Endothelial Dysfunction. Revista Sociedade Portuguesa De Oftalmologia, 49(3), 242–248. https://doi.org/10.48560/rspo.41288

Issue

Section

Review Article