Advanced Diagnosis of Corneal Endothelial Dysfunction
DOI:
https://doi.org/10.48560/rspo.41288Keywords:
Corneal Endothelial Cell Loss, Endothelial Cells, Endothelium, Corneal, Fuchs’ Endothelial DystrophyAbstract
The corneal endothelium plays a vital role in maintaining corneal transparency through fluid homeostasis, which is regulated by the tight junctions and the activity of the Na⁺/K⁺-ATPase pump. As the endothelium is not regenerable, the loss of endothelial cells due to aging, trauma or dystrophies such as Fuchs’ endothelial corneal dystrophy (FECD) can lead to corneal edema and progressive visual impairment. Conventional methods such as slit-lamp biomicroscopy and clinical grading remain essential in advanced stages, but are limited in early detection. This review emphasizes the value of multimodal imaging in the detection of subclinical dysfunction. Specular and confocal microscopy allow quantitative assessment of endothelial cell density and morphology. Spatial thickness measurements, such as corneal thickness spatial profile (CTSP) and percent thickness increase (PTI), raise diagnostic specificity beyond traditional central corneal thickness (CCT). Scheimpflug tomography enables early detection of subtle morphologic changes, such as isopachal irregularities, posterior surface depressions, and the “camel sign” in densitometry. Optical coherence tomography of the anterior segment (AS-OCT) refines the diagnosis by correlating the reflectance patterns with the integrity of the endothelium. Biomechanical evaluation of the cornea with Corvis ST adds dynamic parameters such as applanation times, deformation amplitude and concavity radius, which vary depending on the stage of the disease. The genetic basis of endothelial dystrophies is also addressed, highlighting important loci and genes such as TCF4, COL8A2 and SLC4A11, which have been implicated in autosomal dominant and complex inheritance patterns. These findings emphasize the importance of molecular diagnostics and point to future therapeutic targets. In summary, a comprehensive diagnostic strategy that combines structural imaging, functional assessment and genetic analysis supports early detection, improves preoperative risk assessment — especially in cataract and keratoplasty planning — and could benefit from integration with artificial intelligence for predictive modelling and clinical decision making in the future.Downloads
References
Maurice DM. Cellular membrane activity in the corneal endothelium of the intact eye. Experientia. 1968;24:1094-5. doi:10.1007/BF02147776
Bourne WM, Kaufman HE. Specular Microscopy of Human Corneal Endothelium in VIVO. Am J Ophthalmol. 1976;81:319-23. doi:10.1016/0002-9394(76)90247-6
de Oliveira RC, Wilson SE. Descemet’s membrane development, structure, function and regeneration. Exp Eye Res. 2020;197:108090. doi:10.1016/j.exer.2020.108090
Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull. 2010;81:198-210. doi:10.1016/j.brainresbull.2009.05.019
Valdez-García JE, Ortiz-Morales G, Morales-Mancillas N, Luis Domene-Hickman J, Hernández-Camarena J, Loya-García D et al. Age-related Changes of the Corneal Endothelium in the Hispanic Elderly Population. Open Ophthalmol J. 2022;16. doi:10.2174/18743641-v16-e2204140
Price MO, Mehta JS, Jurkunas UV, Price FW. Corneal endothelial dysfunction: Evolving understanding and treatment options. Prog Retin Eye Res. 2021;82:100904. doi:10.1016/j.preteyeres.2020.100904
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas U V. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res. 2021;80:100863. doi:10.1016/j.preteyeres.2020.100863
Krachmer JH. Corneal Endothelial Dystrophy. Arch Ophthalmol. 1978;96:2036. doi:10.1001/archopht.1978.03910060424004
Seitzman GD, Gottsch JD, Stark WJ. Cataract surgery in patients with Fuchs’ corneal dystrophy. Ophthalmology. 2005;112:441-6. doi:10.1016/j.ophtha.2004.10.044
Repp DJ, Hodge DO, Baratz KH, McLaren JW, Patel SV. Fuchs’ Endothelial Corneal Dystrophy. Ophthalmology. 2013;120:687-94. doi:10.1016/j.ophtha.2012.09.022
Sun SY, Wacker K, Baratz KH, Patel SV. Determining Subclinical Edema in Fuchs Endothelial Corneal Dystrophy: Revised Classification using Scheimpfung Tomography for Preoperative Assessment. Ophthalmology. 2019;126:195-204. doi:10.1016/j.ophtha.2018.07.005
Ambrosio R, Faria Correia F, Belin MW. Analyzing Tomographic Thickness for Detecting Corneal Ectatic Diseases. In: Alió, editor. Keratoconus, Essentials in Ophthalmology, Berlin: Springer; 2017. p.77-85.
Fritz M, Grewing V, Bohringer D, Lapp T, Maier P, Reinhard T, et al. Avoiding Hyperopic Surprises After Descemet Membrane Endothelial Keratoplasty in Fuchs Dystrophy Eyes by Assessing Corneal Shape. Am J Ophthalmol. 2019;197:1-6. doi:10.1016/j.ajo.2018.08.052
Ambrosio Jr R. Multimodal imaging for refractive surgery: Quo vadis? Indian J Ophthalmol. 2020;68:2647. doi:10.4103/0301-4738.301283
Ambrosio R, Guerra FP. Advanced Corneal Imaging for Fuchs Endothelial Corneal Dystrophy. Ophthalmology. 2019;126:205-6. doi:10.1016/j.ophtha.2018.09.020
Benetz BAM, Shivade VS, Joseph NM, Romig NJ, McCormick JC, Chen J, et al. Automatic Determination of Endothelial Cell Density From Donor Cornea Endothelial Cell Images. Transl Vis Sci Technol. 2024;13:40. doi:10.1167/tvst.13.8.40
Qu JH, Qin XR, Peng RM, Xiao CG, Cheng J, Gu SF, et al. A Fully Automated Segmentation and Morphometric Parameter Estimation System for Assessing Corneal Endothelial Cell Images. Am J Ophthalmol. 2022;239:142-53. doi:10.1016/j.ajo.2022.02.026
Liu S, Kandakji L, Stupnicki A, Sumodhee D, Leucci MT, Hau S, et al. Current Applications of Artificial Intelligence for Fuchs Endothelial Corneal Dystrophy: A Systematic Review. Transl Vis Sci Technol. 2025;14:12. doi:10.1167/tvst.14.6.12.
Eleiwa T, Elsawy A, Özcan E, Abou Shousha M. Automated diagnosis and staging of Fuchs’ endothelial cell corneal dystrophy using deep learning. Eye Vision. 2020;7:44. doi:10.1186/s40662-020-00209-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Sociedade Portuguesa de Oftalmologia

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Do not forget to download the Authorship responsibility statement/Authorization for Publication and Conflict of Interest.
The article can only be submitted with these two documents.
To obtain the Authorship responsibility statement/Authorization for Publication file, click here.
To obtain the Conflict of Interest file (ICMJE template), click here


