How to measure and explore heterogeneity in a meta-analysis: Key methodological strategies

Authors

  • Eduardo Santos Unidade de Investigação em Ciências da Saúde: Enfermagem (UICISA: E), Escola Superior de Enfermagem de Coimbra (ESEnfC), Coimbra, Portugal; Portugal Centre for Evidence-Based Practice: a JBI Centre of Excellence, Coimbra, Portugal https://orcid.org/0000-0003-0557-2377
  • Daniela Cardoso Unidade de Investigação em Ciências da Saúde: Enfermagem (UICISA: E), Escola Superior de Enfermagem de Coimbra (ESEnfC), Coimbra, Portugal; Portugal Centre for Evidence-Based Practice: a JBI Centre of Excellence, Coimbra, Portugal https://orcid.org/0000-0002-1425-885X
  • João Apóstolo Unidade de Investigação em Ciências da Saúde: Enfermagem (UICISA: E), Escola Superior de Enfermagem de Coimbra (ESEnfC), Coimbra, Portugal; Portugal Centre for Evidence-Based Practice: a JBI Centre of Excellence, Coimbra, Portugal https://orcid.org/0000-0002-3050-4264

DOI:

https://doi.org/10.12707/RV21077

Keywords:

meta-analysis, review literature as topic, effectiveness, epidemiologic methods, evidence- based practice

Abstract

Background: Systematic reviews including several studies will have some diversity, even if they address a similar topic. Studies have different designs, participants, interventions/exposures, and expected outcomes. This diversity is called heterogeneity. For its relevance, we will put forward some methodological strategies to measure and explore it.

Objective: To demonstrate how to measure and explore heterogeneity in a meta-analysis.

Main topics under analysis: We present the concept of heterogeneity in meta-analysis, as well as its types, measurement models, and conditions for its application. We also put forward several methodological options for exploring heterogeneity, using practical examples to operationalize them.

Conclusion: Exploring heterogeneity in a meta-analysis is an essential step in the development of a systematic review to increase the consistency of its results and, consequently, the strength of its recommendations.

Downloads

Download data is not yet available.

References

Apostolo, J. (2017). Síntese da evidência no contexto da translação da ciência. Escola Superior de Enfermagem de Coimbra.

Aromataris, E., & Pearson, A. (2014). The systematic review: An overview. The American Journal of Nursing, 114(3), 53-58. https://doi.org/10.1097/01.NAJ.0000444496.24228.2c

Berman, N. G., & Parker, R. A. (2002). Meta-analysis: Neither quick nor easy. BMC Medical Research Methodology, 2, 10-10. https://doi.org/10.1186/1471-2288-2-10

DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials, 7(3), 177-188. https://doi.org/10.1016/0197-2456(86)90046-2

Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., & Schunemann, H. J. (2008). GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ, 336(7650), 924-926. https://doi.org/10.1136/bmj.39489.470347.AD

Higgins, J. P., & Thompson, S. G. (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21(11), 1539-1558. https://doi.org/10.1002/sim.1186

Higgins, J. P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2019). Cochrane handbook for systematic reviews of interventions version 6.0. www.training.cochrane.org/handbook

Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. Bmj, 327(7414), 557-560. http://doi.org/10.1136/bmj.327.7414.557

Imrey, P. B. (2020). Limitations of meta-analyses of studies with high heterogeneity. JAMA Network Open, 3(1), e1919325-e1919325. https://doi.org/10.1001/jamanetworkopen.2019.19325

Lau, J., Ioannidis, J. P., & Schmid, C. H. (1998). Summing up evidence: One answer is not always enough. Lancet, 351(9096), 123-127. https://doi.org/10.1016/s0140-6736(97)08468-7

Maroco, J. (2021). Análise estatística com o SPSS Statistics (8a ed.). ReportNumber.

Moayyedi, P. (2004). Meta-analysis: Can we mix apples and oranges? The American Journal of Gastroenterology, 99(12), 2297-2301. https://doi.org/10.1111/j.1572-0241.2004.40948.x

Richardson, M., Garner, P., & Donegan, S. (2019). Interpretation of subgroup analyses in systematic reviews: A tutorial. Clinical Epidemiology and Global Health, 7(2), 192-198. https://doi.org/10.1016/j.cegh.2018.05.005

Santos, E. J., & Cunha, M. (2013). Interpretacao critica dos resultados estatisticos de uma meta‐analise: Estrategias metodologicas. Millenium, 44, 85‐98.

Santos, E. J., Ferreira, R. J., & Marques, A. A. (2016). How to perform and interpret a network meta-analysis for indirect and mixed comparisons: Key methodological strategies. Revista de Enfermagem Referência, 4(8), 133-140. https://dx.doi.org/10.12707/RIV15055

Tufanaru, C., Munn, Z., Aromataris, E., Campbell, J., & Hopp, L. (2017). Systematic reviews of effectiveness. In E. Aromataris & Z. Munn (Eds.), Joanna Briggs Institute Reviewer’s Manual (Chapter 3). The Joanna Briggs Institute.

Tufanaru, C., Munn, Z., Stephenson, M., & Aromataris, E. (2015). Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. International Journal of Evidence- Based Health, 13(3), 196-207. https://doi.org/10.1097/xeb.0000000000000065

Published

2022-09-08

How to Cite

Santos, E., Cardoso, D., & Apóstolo, J. (2022). How to measure and explore heterogeneity in a meta-analysis: Key methodological strategies. Journal of Nursing Referência, 6(1), 1–8. https://doi.org/10.12707/RV21077

Issue

Section

Theoretical Articles/Essays