Traducción y Validación de la Selfitis Behavior Scale para la Población Portuguesa
DOI:
https://doi.org/10.12707/RVI25.50.41890Palabras clave:
estudio de validación, psicometría, red socialResumen
Marco contextual: El uso excesivo de las redes sociales entre los jóvenes puede desencadenar comportamentos obsesivos, como el impulso recurrente de hacerse selfies
Objetivo: Traducir, adaptar y validar la Selfitis Behavior Scale (SBS) para la población universitariaportuguesa.
Metodología: Estudio psicométrico en el que la escala fue sometida a análisis de validez aparente, consistencia interna, análisis factorial confirmatorio, medir la invarianza, así como validez convergente y discriminante.
Resultados: El análisis factorial confirmatorio del modelo original de seis factores reveló un ajuste adecuado. La consistencia interna global fue alta (α de Cronbach y ω de McDonald = 0,94; CR = 0,97), con subescalas que oscilaron entre 0,79 y 0,89. Se encontraron evidencias de validez convergente, validez discriminante e invarianza entre grupos con diferentes frecuencias de selfies. Se observaron diferencias estadísticamente significativas entre los grupos, con puntuaciones más altas en los participantes que se tomaban selfies con mayor frecuencia.
Conclusión: La versión portuguesa del SBS mostró buenas propiedades psicométricas, demostrando ser un instrumento válido y confiable para evaluar el comportamiento de la selfitis en estudiantes universitarios.
Descargas
Citas
Arpaci, I., Yalçin, S.B., Baloglu, M., & Kesici, S. (2018). The moderating effect of gender in the relationship between narcissism and selfie-posting behavior. Personality and Individual Differences, 134, 71-74. https://doi.org/10.1016/j.paid.2018.06.006
Balakrishnan, J., & Griffiths, M.D. (2018). An exploratory study of “selfitis” and the development of the Selfitis Behavior Scale. International Journal of Mental Health Addiction, 16, 722–736. https://doi.org/10.1007/s11469-017-9844-x
Bozzola, E., Spina, G., Agostiniani, R., Barni, S., Russo, R., Scarpato, E., Di Mauro, A., Di Stefano, A. V., Caruso, C., Corsello, G., & Staiano, A. (2022). The use of social media in children and adolescents: Scoping review on the potential risks. International Journal of Environmental Research and Public Health, 19(16), 9960. https://doi.org/10.3390/ijerph19169960
Chen, F.F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14, 464-504. https://doi.org/10.1080/10705510701301834
Ciplak, E., & Atici, M. (2021). The Selfitis Behavior Scale: An adaptation study. European Journal of Educational Sciences, 8(2),29-41. https://doi.org/10.19044/ejes.v8no2a29
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge Academic. https://doi.org/10.4324/9780203771587
De Vaus, D. (2002). Analyzing social science data: 50 key problems in data analysis. Sage Publications Ltd.
Dueber, D.M. (2017). Bifactor Indices Calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. https://doi.org/10.13023/edp.tool.01
El Khoueiry, C., Sacre, H., Haddad, C., Akel, M., Saade, S., Hallit, S., & Obeid, S. (2020). Selfie addiction: The impact of personality traits? A cross-sectional study among the Lebanese population. Perspectives in Psychiatric Care, 57(1), 167–178. https://doi.org/10.1111/ppc.12539
Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which coefficient omega is right? A tutorial on using R to obtain better reliability estimates. Advances in Methods and Practices in Psychological Science, 484–501. https://doi.org/10.1177/2515245920951747
Fornell, C., Arpaci, I., Yalçin, S. B., Baloglu, M., & Kesici, S. (2018). The moderating effect of gender in the relationship between narcissism and selfie-posting behavior. Personality and Individual Differences, 134, 71-74. https://doi.org/10.1016/j.paid.2018.06.006
Balakrishnan, J., & Griffiths, M. D. (2018). An exploratory study of “selfitis” and the development of the selfitis behavior scale. International Journal of Mental Health and Addiction, 16(3), 722-736. https://doi.org/10.1007/s11469-017-9844-x
Bozzola, E., Spina, G., Agostiniani, R., Barni, S., Russo, R., Scarpato, E., Mauro, A. D., Stefano, A. V., Caruso, C., Corsello, G.,& Staiano, A. (2022). The use of social media in children and adolescents: Scoping review on the potential risks. International Journal of Environmental Research and Public Health, 19(16), 9960. https://doi.org/10.3390/ijerph19169960
Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464-504. https://doi.org/10.1080/10705510701301834
Ciplak, E., & Atici, M. (2021). The selfitis behavior scale: An adaptation study. European Journal of Educational Sciences, 8(2), 29-41. https://doi.org/10.19044/ejes.v8no2a29
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587
Dueber, D. M. (2017). Bifactor indices calculator: A microsoft excel-based tool to calculate various indices relevant to bifactor CFA models. Uknowledge. https://doi.org/10.13023/edp.tool.01
Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which coefficient omega is right? A tutorial on using R to obtain better reliability estimates. Advances in Methods and Practices in Psychological Science, 3(4), 484-501. https://doi.org/10.1177/2515245920951747
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion or assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8
Kanchan, S., & Gaidhane, A. (2023). Social media role and its im pact on public health: A narrative review. Cureus, 15(1), e33737. https://doi.org/10.7759/cureus.33737
Khoueiry, C. E., Sacre, H., Haddad, C., Akel, M., Saade, S., Hallit, S., & Obeid, S. (2020). Selfie addiction: The impact of personality traits? A cross-sectional study among the lebanese population. Perspectives in Psychiatric Care, 57(1), 167-178. https://doi.org/10.1111/ppc.12539
Lin, C. -Y., Lin, C. -K., Imani, V., Griffiths, M. D., & Pakpour, A. H. (2020). Evaluation of the selfitis behavior scale across two persian-speaking countries, Iran and Afghanistan: Advanced psychometric testing in a large-scale sample. International Journal of Mental Health and Addiction, 18(1), 222-235. https://doi.org/10.1007/s11469-019-00124-y
Marôco, J. (2021a). Análise de equações estruturais: Fundamentos teóricos, software & aplicações (3ª ed.). ReportNumber.
Marôco, J. (2021b). Análise estatística com o SPSS statistics (8ª ed.). ReportNumber.
McLean, S. A., Paxton, S. J., Wertheim, E. H., & Masters, J. (2015). Photoshopping the selfie: Self photo editing and photo investment are associated with body dissatisfaction in adolescent girls. International Journal of Eating Disorders, 48(8), 1132-1140. https://doi.org/10.1002/eat.22449
Monacis, L., Griffiths, M. D., Limone, P., Sinatra, M., & Servidio, R. (2020). Selfitis behavior: Assessing the italian version of the selfitis behavior scale and its mediating role in the relationship of dark traits with social media addiction. International Journal of Environmental Research and Public Health, 17(16), 5738. https://doi.org/10.3390/ijerph17165738
Morciano, D., Musso, P., Cassibba, R., & Devlin, M. (2022). An exploratory study of selfie motivations and their relation to sociability and shyness among youth. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 16(5). https://doi.org/10.5817/CP2022-5-8
Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistics for moment structure analysis. Psychometrika, 66(4), 507-514. https://doi.org/10.1007/BF02296192
Statista. (2024). Number of internet and social media users worldwide as of January 2024. Statista. Disponível em: https://www.statista.com/statistics/617136/digital-population-worldwide/
Varma, D. R., Sarada, K., & Rani, S. R. (2020). A study on “selfitis” selfie addiction among medical students. IOSR Journal of Dental and Medical Sciences, 19(3), 58-61. https://www.iosrjournals.org/iosr-jdms/papers/Vol19-issue3/Series-3/K1903035861.pdf
Vaus, D. (2002). Analyzing social science data: 50 key problems in data analysis. Sage.



















