Traducción y Validación de la Selfitis Behavior Scale para la Población Portuguesa

Autores/as

  • Lígia Monterroso Escola Superior de Saúde de Santarém, Instituto Politécnico de Santarém, Portugal https://orcid.org/0000-0003-0364-6491
  • Luís Sá Universidade Católica Portuguesa, Centro de Investigação Interdisciplinar em Saúde (CIIS), Porto, Portugal https://orcid.org/0000-0001-9687-413X
  • Claúdia Sousa Universidade Lusófona, HEI-Lab: Laboratórios Digitais de Ambientes e Interações Humanas, Lisboa, Portugal; Instituto Piaget, Insight - Piaget Research Center for Ecological Human Development, Lisboa, Portugal https://orcid.org/0000-0003-4658-9781
  • Hugo Alonso Universidade Portucalense/Research on Economics, Management and Information Technologies (REMIT), Porto, Portugal; Universidade de Aveiro, Centro de Investigação e Desenvolvimento em Matemática e Aplicações (CIDMA), Departamento de Matemática, Aveiro, Portugal https://orcid.org/0000-0002-1599-5392
  • Mafalda Silva Instituto Piaget, Escola Superior de Saúde Jean Piaget, Vila Nova de Gaia, Portugal https://orcid.org/0000-0002-2509-5566

DOI:

https://doi.org/10.12707/RVI25.50.41890

Palabras clave:

estudio de validación, psicometría, red social

Resumen

Marco contextual: El uso excesivo de las redes sociales entre los jóvenes puede desencadenar comportamentos obsesivos, como el impulso recurrente de hacerse selfies

Objetivo: Traducir, adaptar y validar la Selfitis Behavior Scale (SBS) para la población universitariaportuguesa.

Metodología: Estudio psicométrico en el que la escala fue sometida a análisis de validez aparente, consistencia interna, análisis factorial confirmatorio, medir la invarianza, así como validez convergente y discriminante.

Resultados: El análisis factorial confirmatorio del modelo original de seis factores reveló un ajuste adecuado. La consistencia interna global fue alta (α de Cronbach y ω de McDonald = 0,94; CR = 0,97), con subescalas que oscilaron entre 0,79 y 0,89. Se encontraron evidencias de validez convergente, validez discriminante e invarianza entre grupos con diferentes frecuencias de selfies. Se observaron diferencias estadísticamente significativas entre los grupos, con puntuaciones más altas en los participantes que se tomaban selfies con mayor frecuencia.

Conclusión: La versión portuguesa del SBS mostró buenas propiedades psicométricas, demostrando ser un instrumento válido y confiable para evaluar el comportamiento de la selfitis en estudiantes universitarios.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Arpaci, I., Yalçin, S.B., Baloglu, M., & Kesici, S. (2018). The moderating effect of gender in the relationship between narcissism and selfie-posting behavior. Personality and Individual Differences, 134, 71-74. https://doi.org/10.1016/j.paid.2018.06.006

Balakrishnan, J., & Griffiths, M.D. (2018). An exploratory study of “selfitis” and the development of the Selfitis Behavior Scale. International Journal of Mental Health Addiction, 16, 722–736. https://doi.org/10.1007/s11469-017-9844-x

Bozzola, E., Spina, G., Agostiniani, R., Barni, S., Russo, R., Scarpato, E., Di Mauro, A., Di Stefano, A. V., Caruso, C., Corsello, G., & Staiano, A. (2022). The use of social media in children and adolescents: Scoping review on the potential risks. International Journal of Environmental Research and Public Health, 19(16), 9960. https://doi.org/10.3390/ijerph19169960

Chen, F.F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14, 464-504. https://doi.org/10.1080/10705510701301834

Ciplak, E., & Atici, M. (2021). The Selfitis Behavior Scale: An adaptation study. European Journal of Educational Sciences, 8(2),29-41. https://doi.org/10.19044/ejes.v8no2a29

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Routledge Academic. https://doi.org/10.4324/9780203771587

De Vaus, D. (2002). Analyzing social science data: 50 key problems in data analysis. Sage Publications Ltd.

Dueber, D.M. (2017). Bifactor Indices Calculator: A Microsoft Excel-based tool to calculate various indices relevant to bifactor CFA models. https://doi.org/10.13023/edp.tool.01

El Khoueiry, C., Sacre, H., Haddad, C., Akel, M., Saade, S., Hallit, S., & Obeid, S. (2020). Selfie addiction: The impact of personality traits? A cross-sectional study among the Lebanese population. Perspectives in Psychiatric Care, 57(1), 167–178. https://doi.org/10.1111/ppc.12539

Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which coefficient omega is right? A tutorial on using R to obtain better reliability estimates. Advances in Methods and Practices in Psychological Science, 484–501. https://doi.org/10.1177/2515245920951747

Fornell, C., Arpaci, I., Yalçin, S. B., Baloglu, M., & Kesici, S. (2018). The moderating effect of gender in the relationship between narcissism and selfie-posting behavior. Personality and Individual Differences, 134, 71-74. https://doi.org/10.1016/j.paid.2018.06.006

Balakrishnan, J., & Griffiths, M. D. (2018). An exploratory study of “selfitis” and the development of the selfitis behavior scale. International Journal of Mental Health and Addiction, 16(3), 722-736. https://doi.org/10.1007/s11469-017-9844-x

Bozzola, E., Spina, G., Agostiniani, R., Barni, S., Russo, R., Scarpato, E., Mauro, A. D., Stefano, A. V., Caruso, C., Corsello, G.,& Staiano, A. (2022). The use of social media in children and adolescents: Scoping review on the potential risks. International Journal of Environmental Research and Public Health, 19(16), 9960. https://doi.org/10.3390/ijerph19169960

Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling: A Multidisciplinary Journal, 14(3), 464-504. https://doi.org/10.1080/10705510701301834

Ciplak, E., & Atici, M. (2021). The selfitis behavior scale: An adaptation study. European Journal of Educational Sciences, 8(2), 29-41. https://doi.org/10.19044/ejes.v8no2a29

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587

Dueber, D. M. (2017). Bifactor indices calculator: A microsoft excel-based tool to calculate various indices relevant to bifactor CFA models. Uknowledge. https://doi.org/10.13023/edp.tool.01

Flora, D. B. (2020). Your coefficient alpha is probably wrong, but which coefficient omega is right? A tutorial on using R to obtain better reliability estimates. Advances in Methods and Practices in Psychological Science, 3(4), 484-501. https://doi.org/10.1177/2515245920951747

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.2307/3151312

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion or assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8

Kanchan, S., & Gaidhane, A. (2023). Social media role and its im pact on public health: A narrative review. Cureus, 15(1), e33737. https://doi.org/10.7759/cureus.33737

Khoueiry, C. E., Sacre, H., Haddad, C., Akel, M., Saade, S., Hallit, S., & Obeid, S. (2020). Selfie addiction: The impact of personality traits? A cross-sectional study among the lebanese population. Perspectives in Psychiatric Care, 57(1), 167-178. https://doi.org/10.1111/ppc.12539

Lin, C. -Y., Lin, C. -K., Imani, V., Griffiths, M. D., & Pakpour, A. H. (2020). Evaluation of the selfitis behavior scale across two persian-speaking countries, Iran and Afghanistan: Advanced psychometric testing in a large-scale sample. International Journal of Mental Health and Addiction, 18(1), 222-235. https://doi.org/10.1007/s11469-019-00124-y

Marôco, J. (2021a). Análise de equações estruturais: Fundamentos teóricos, software & aplicações (3ª ed.). ReportNumber.

Marôco, J. (2021b). Análise estatística com o SPSS statistics (8ª ed.). ReportNumber.

McLean, S. A., Paxton, S. J., Wertheim, E. H., & Masters, J. (2015). Photoshopping the selfie: Self photo editing and photo investment are associated with body dissatisfaction in adolescent girls. International Journal of Eating Disorders, 48(8), 1132-1140. https://doi.org/10.1002/eat.22449

Monacis, L., Griffiths, M. D., Limone, P., Sinatra, M., & Servidio, R. (2020). Selfitis behavior: Assessing the italian version of the selfitis behavior scale and its mediating role in the relationship of dark traits with social media addiction. International Journal of Environmental Research and Public Health, 17(16), 5738. https://doi.org/10.3390/ijerph17165738

Morciano, D., Musso, P., Cassibba, R., & Devlin, M. (2022). An exploratory study of selfie motivations and their relation to sociability and shyness among youth. Cyberpsychology: Journal of Psychosocial Research on Cyberspace, 16(5). https://doi.org/10.5817/CP2022-5-8

Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistics for moment structure analysis. Psychometrika, 66(4), 507-514. https://doi.org/10.1007/BF02296192

Statista. (2024). Number of internet and social media users worldwide as of January 2024. Statista. Disponível em: https://www.statista.com/statistics/617136/digital-population-worldwide/

Varma, D. R., Sarada, K., & Rani, S. R. (2020). A study on “selfitis” selfie addiction among medical students. IOSR Journal of Dental and Medical Sciences, 19(3), 58-61. https://www.iosrjournals.org/iosr-jdms/papers/Vol19-issue3/Series-3/K1903035861.pdf

Vaus, D. (2002). Analyzing social science data: 50 key problems in data analysis. Sage.

Publicado

2025-12-18

Cómo citar

Monterroso, L., Sá, L., Sousa, C., Alonso, H., & Silva, M. (2025). Traducción y Validación de la Selfitis Behavior Scale para la Población Portuguesa. Revista De Enfermería Referencia, 6(4). https://doi.org/10.12707/RVI25.50.41890

Número

Sección

Artículos de Investigación