Unveiling the Hidden Potential of Big Data: Empowering Nurses through Data Science
DOI:
https://doi.org/10.12707/RVI23ED3Downloads
References
Aramaki, E., Wakamiya, S., Yada, S., & Nakamura, Y. (2022). Natural Language Processing: from Bedside to Everywhere. Yearb Med Inform, 31(1), 243-253. https://doi.org/10.1055/s-0042-1742510
Batko, K., & Slezak, A. (2022). The use of Big Data Analytics in healthcare. J Big Data, 9(1), 3. https://doi.org/10.1186/s40537-021-00553-4
Bradshaw, N. A. (2020). Florence Nightingale (1820-1910): An Unexpected Master of Data. Patterns (N Y), 1(2), 100036. https://doi.org/10.1016/j.patter.2020.100036
Brenner, M. J., Pandian, V., Milliren, C. E., Graham, D. A., Zaga, C., Morris, L. L., Bedwell, J. R., Das, P., Zhu, H., Lee, Y. A. J., Peltz, A., Chin, K., Schiff, B. A., Randall, D. M., Swords, C., French, D., Ward, E., Sweeney, J. M., Warrillow, S. J., . . . Roberson, D. W. (2020). Global Tracheostomy Collaborative: data-driven improvements in patient safety through multidisciplinary teamwork, standardisation, education, and patient partnership. Br J Anaesth, 125(1), e104-e118. https://doi.org/10.1016/j.bja.2020.04.054
Cremer, F., Sheehan, B., Fortmann, M., Kia, A. N., Mullins, M., Murphy, F., & Materne, S. (2022). Cyber risk and cybersecurity: a systematic review of data availability. Geneva Pap Risk Insur Issues Pract, 47(3), 698-736. https://doi.org/10.1057/s41288-022-00266-6
Dicuonzo, G., Galeone, G., Shini, M., & Massari, A. (2022). Towards the Use of Big Data in Healthcare: A Literature Review. Healthcare (Basel), 10(7). https://doi.org/10.3390/healthcare10071232
Hassan, M., Awan, F. M., Naz, A., deAndrés-Galiana, E. J., Alvarez, O., Cernea, A., Fernández Brillet, L., Fernández-Martínez, J. L., & Kloczkowski, A. (2022). Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int J Mol Sci, 23(9). https://doi.org/10.3390/ijms23094645
Hirsch, J., & Pitak-Arnnop, P. (2023). [Epidemiology and treatment of traumatic facial nerve palsy following skull base fractures: Results from the IBM MarketScan commercial database (2006-2019)]. Unfallchirurgie (Heidelb). https://doi.org/10.1007/s00113-023-01367-0
Johnson, K. B., Wei, W. Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., Zhao, J., & Snowdon, J. L. (2021). Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci, 14(1), 86-93. https://doi.org/10.1111/cts.12884
Lorkowski, J., & Pokorski, M. (2022). Medical Records: A Historical Narrative. Biomedicines, 10(10). https://doi.org/10.3390/biomedicines10102594
Ma, J., Johnson, E. A., & McCrory, B. (2023). Predicting risk factors for pediatric mortality in clinical trial research: A retrospective, cross-sectional study using a Healthcare Cost and Utilization Project database. J Clin Transl Sci, 7(1), e211. https://doi.org/10.1017/cts.2023.634
Matabele, M. N., Cheng, C., Venkatesh, M., Barr, S., Ellefson, J., Beninati, M., Lobeck, I. N., & Puricelli, M. D. (2023). Perinatal airway management in neonatal goiter: A healthcare cost and utilization project (HCUP) kids’ inpatient database analysis. Int J Pediatr Otorhi
nolaryngol, 175, 111767. https://doi.org/10.1016/j.ijporl.2023.111767
Metcalfe, D., Zogg, C. K., Haut, E. R., Pawlik, T. M., Haider, A. H., & Perry, D. C. (2019). Data resource profile: State Inpatient Databases. Int J Epidemiol, 48(6), 1742-1742h. https://doi.org/10.1093/ije/dyz117
National Institute of Standards and Technology. (2015). NIST Big Data Interoperability Framework: Volume 1, Definitions National Institute of Standards and Technology. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-1.pdf
Osama, M., Ateya, A. A., Sayed, M. S., Hammad, M., Plawiak, P., Abd El-Latif, A. A., & Elsayed, R. A. (2023). Internet of Medical Things and Healthcare 4.0: Trends, Requirements, Challenges, and Research Directions. Sensors (Basel), 23(17). https://doi.org/10.3390/s23177435
Premo, H., Gordee, A., Lee, H. J., Scales, C. D., Moul, J. W., & Peterson, A. (2023). Disparities in Prostate Cancer Screening for Transgender Women: An Analysis of the MarketScan Database. Urology, 176, 237-242. https://doi.org/10.1016/j.urology.2023.03.016
Saraswathula, A., Roy, S., Blythe, W. R., Gourin, C. G., & Boss, E. F. (2023). The Unrealized Potential of the Reg-ent ENT Clinical Data Registry. JAMA Otolaryngol Head Neck Surg, 149(8), 659-661. https://doi.org/10.1001/jamaoto.2023.1389
Sarker, I. H. (2021). Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective. SN Comput Sci, 2(5), 377. https://doi.org/10.1007/s42979-021-00765-8
Schmalbach, C. E., Brereton, J., Bowman, C., & Denneny, J. C., 3rd. (2021). American Academy of Otolaryngology-Head and Neck Surgery/Foundation Reg-ent Registry: Purpose, Properties, and Priorities. Otolaryngol Head Neck Surg, 164(5), 964-971. https://doi.org/10.1177/0194599820984135
Subrahmanya, S. V. G., Shetty, D. K., Patil, V., Hameed, B. M. Z., Paul, R., Smriti, K., Naik, N., & Somani, B. K. (2022). The role of data science in healthcare advancements: applications, benefits, and future prospects. Ir J Med Sci, 191(4), 1473-1483. https://doi.org/10.1007/s11845-021-02730-z
Uddin, M., & Syed-Abdul, S. (2020). Data Analytics and Applications of the Wearable Sensors in Healthcare: An Overview. Sensors (Basel), 20(5). https://doi.org/10.3390/s20051379
Wadhwa, H., Varshneya, K., Stienen, M. N., & Veeravagu, A. (2023). Do Epidural Steroid Injections Affect Outcomes and Costs in Cervical Degenerative Disease? A Retrospective MarketScan Database Analysis. Global Spine J, 13(7), 1812-1820. https://doi.org/10.1177/21925682211050320
Xie, F., Beukelman, T., Sun, D., Yun, H., & Curtis, J. R. (2023). Identifying inpatient mortality in MarketScan claims data using machine learning. Pharmacoepidemiol Drug Saf, 32(11), 1299-1305. https://doi.org/10.1002/pds.5658
Yogesh, M. J., & Karthikeyan, J. (2022). Health Informatics: Engaging Modern Healthcare Units: A Brief Overview. Front Public Health, 10, 854688. https://doi.org/10.3389/fpubh.2022.854688