The potential of integrated transport modes

Modelling the combined use of bicycles and train in Lisbon, Portugal


  • Teresa Santos Interdisciplinary Centre of Social Sciences (CICS.NOVA), NOVA School of Social Sciences and Humanities (NOVA FCSH), Universidade NOVA de Lisboa
  • Ricardo Nogueira Mendes Interdisciplinary Centre of Social Sciences (CICS.NOVA), NOVA School of Social Sciences and Humanities (NOVA FCSH), Universidade NOVA de Lisboa
  • Rui Pedro Julião Interdisciplinary Centre of Social Sciences (CICS.NOVA), NOVA School of Social Sciences and Humanities (NOVA FCSH), Universidade NOVA de Lisboa


urban accessibility, bicycles and train, transport modes comparison, GIS


Many capital cities are expanding bicycle lanes or investing in public bike-sharing systems to make cycling mobility a viable transport solution within urban areas. While bicycles are fit for short-distance trips (<15 minutes), their attractiveness declines for longer trips (Ton et al., 2020; Handy et al., 2014; Jäppinen et al., 2013). So, it is opportune to estimate to what extent the accessibility can be increased when intermodal solutions are available. In this paper, a quantitative analysis of different mobility scenarios is conducted. The aim is to evaluate how time travel and accessibility to amenities by bike, can be improved if public transportation such, as the train, is considered.  The analysis uses open data and detailed GIS-based network analysis to examine the spatial relationship between transport opportunities, travel time and amenities access in Lisbon, Portugal. Three mobility scenarios are considered: in the first scenario, short-distance trips by bike from home are evaluated (15- minute travel). Then, to evaluate the contribution in time travel of potential modal shift (bike and train) vs individual car, second and third scenarios are presented considering longer distance travels within the city of Lisbon, during peak hours. Results suggest that for longer trips, the combined use of bicycle and train infrastructure can be a faster or more convenient alternative to individual car use. Also, multimodal cycling can expand riders’ area of influence and thus increase the accessibility to opportunities. So, people living near train stations can beneficiate from a “potential” proximity to a diversity of amenities that are geographically more distant. In Lisbon, 34% of the population live within the 10-minute bicycle catchment areas around the 8 train stations from Cintura Line and can thus benefit from this combination of transport modes. City planners can use this methodology to prioritize spaces where investing in accessibility can have the largest impact in terms of improving connections between homes and destinations. This methodology, developed and tested in Lisbon, can be applied in other cities to support planning interventions regarding sustainable transport alternatives.


AML - Área Metropolitana de Lisboa (2019). PAMUS - Plano de Ação de Mobilidade Urbana Sustentável da Área Metropolitana de Lisboa.

Baptista, P., Pina, A., Duarte, G., Rolim, C., Pereira, G., Silva, C., Farias, T. (2015). From on-road trial evaluation of electric and conventional bicycles to comparison with other urban transport modes: Case study in the city of Lisbon, Portugal. Energy Conversion and Management 92, 10–18.

Böhler, S., Brand, R., Brunner, L.M., Juliat, M., Rupprecht, S., Babio Somoza, L., Cré, I. (2021). Topic Guide: Planning for more resilient and robust urban mobility. Brussels.

Broach, J., Dill, J., Gliebe, J., 2012. Where do cyclists ride? A route choice model developed with revealed preference GPS data. Transportation Research Part A: Policy and Practice, 46, 1730–1740.

Capodici, A.E., D’Orso, G., Migliore, M. (2021). A GIS-Based Methodology for Evaluating the Increase in Multimodal Transport between Bicycle and Rail Transport Systems. A Case Study in Palermo. ISPRS International Journal of Geo-Information, 10, 321.

Carracedo, D., Mostofi, H., 2022. Electric cargo bikes in urban areas: A new mobility option for private transportation. Transportation Research Interdisciplinary Perspectives, 16, 100705.

Caselli, B., Carra, M., Rossetti, S., Zazzi, M. (2022). Exploring the 15-minute neighbourhoods. An evaluation based on the walkability performance to public facilities. Transportation Research Procedia, New scenarios for safe mobility in urban areas – Proceedings of the XXV International Conference Living and Walking in Cities (LWC 2021), September 9-10, 2021, Brescia, Italy 60, 346–353.

Christian, H.E., Bull, F.C., Middleton, N.J., Knuiman, M.W., Divitini, M.L., Hooper, P., Amarasinghe, A., Giles-Corti, B. (2011). How important is the land use mix measure in understanding walking behaviour? Results from the RESIDE study. International Journal of Behavioral Nutrition and Physical Activity, 8, 55.

CML (2020a). MOVE LISBOA - Strategic Vision for Mobility 2030 [WWW Document].

CML (2020b). Plano de transformação do espaço público.

Cooper, C.H.V. (2017). Using spatial network analysis to model pedal cycle flows, risk and mode choice. Journal of Transport Geography, 58, 157–165.

Cottrill, C.D., Brooke, S., Mulley, C., Nelson, J.D., Wright, S. (2020). Can multi-modal integration provide enhanced public transport service provision to address the needs of vulnerable populations? Research in Transportation Economics, Thredbo 16 conference 83, 100954.

de Souza, F., La Paix Puello, L., Brussel, M., Orrico, R., van Maarseveen, M. (2017). Modelling the potential for cycling in access trips to bus, train and metro in Rio de Janeiro. Transportation Research Part D: Transport and Environment, 56, 55–67.

Ellerman, D. (2017). Logical information theory: new logical foundations for information theory. Logic Journal of the IGPL, 25, 806–835.

Ellison, R.B., Greaves, S. (2011). Travel Time Competitiveness of Cycling in Sydney, Australia. Transportation Research Record, 2247, 99–108.

Frank, L.D., Saelens, B.E., Powell, K.E., Chapman, J.E. (2007). Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity? Social Science & Medicine, Placing Health in Context, 65, 1898–1914.

García-Palomares, J.C., Gutiérrez, J., Latorre, M. (2012). Optimizing the location of stations in bike-sharing programs: A GIS approach. Applied Geography, 35, 235–246.

Geurs, K.T., van Wee, B. (2004). Accessibility evaluation of land-use and transport strategies: review and research directions. Journal of Transport Geography, 14.

Giles-Corti, B., Foster, S., Shilton, T., Falconer, R., Giles-Corti, B., Foster, S., Shilton, T., Falconer, R. (2010). The co-benefits for health of investing in active transportation. NSW Public Health Bull, 21, 122–127.

Gössling, S. (2020). Why cities need to take road space from cars - and how this could be done. Journal of Urban Design, 25, 443–448.

Handy, S., van Wee, B., Kroesen, M. (2014). Promoting Cycling for Transport: Research Needs and Challenges. Transport Reviews, 34, 4–24.

INE (2022). Censos 2021 [WWW Document].

INE (2017). Mobilidade e funcionalidade do território nas Áreas Metropolitanas do Porto e de Lisboa 2017. Lisboa.

Jäppinen, S., Toivonen, T., Salonen, M. (2013). Modelling the potential effect of shared bicycles on public transport travel times in Greater Helsinki: An open data approach. Applied Geography, 43, 13–24.

Kager, R., Bertolini, L., Te Brömmelstroet, M. (2016). Characterisation of and reflections on the synergy of bicycles and public transport. Transportation Research Part A: Policy and Practice, 85, 208–219.

Karanikola, P., Panagopoulos, T., Tampakis, S., Tsantopoulos, G. (2018). Cycling as a Smart and Green Mode of Transport in Small Touristic Cities. Sustainability, 10, 268.

Kirschner, F., Lanzendorf, M. (2020). Parking management for promoting sustainable transport in urban neighbourhoods. A review of existing policies and challenges from a German perspective. Transport Reviews, 40, 54–75.

Kuhnimhof, T., Chlond, B., Huang, P.-C. (2010). Multimodal Travel Choices of Bicyclists: Multiday Data Analysis of Bicycle Use in Germany. Transportation Research Record, 2190, 19–27.

Lee, Q.Y., Pojani, D. (2019). Making cycling irresistible in tropical climates? Views from Singapore. Policy Design and Practice, 2, 359–369.

Moreno, C., Allam, Z., Chabaud, D., Gall, C., Pratlong, F. (2021). Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities. Smart Cities, 4, 93–111.

Müggenburg, H., Blitz, A., Lanzendorf, M. (2022). What is a good design for a cycle street? – User perceptions of safety and attractiveness of different street layouts. Case Studies on Transport Policy.

Oeschger, G., Carroll, P., Caulfield, B. (2020). Micromobility and public transport integration: The current state of knowledge. Transportation Research Part D: Transport and Environment, 89, 102628.

Ortegon-Sanchez, A., Oviedo Hernandez, D. (2016). Assessment of the potential for modal shift to non-motorised transport in a developing context: Case of Lima, Peru. Research in Transportation Economics, Transportation and Land Development: A Global View, 60, 3–13.

Raustorp, J., Koglin, T. (2019). The potential for active commuting by bicycle and its possible effects on public health. Journal of Transport & Health, 13, 72–77.

Rérat, P. (2021). The rise of the e-bike: Towards an extension of the practice of cycling?, Mobilities, 16, 423–439.

Rode, P., Floater, G., Thomopoulos, N., Docherty, J., Schwinger, P., Mahendra, A., Fang, W. (2017). Accessibility in Cities: Transport and Urban Form. In G. Meyer, S. Shaheen (Eds.), Disrupting Mobility: Impacts of Sharing Economy and Innovative Transportation on Cities, Lecture Notes in Mobility. Springer International Publishing, Cham (pp. 239–273).

Saghapour, T., Moridpour, S., Thompson, R.G. (2017). Measuring cycling accessibility in metropolitan areas. International Journal of Sustainable Transportation, 11, 381–394.

Selzer, S., Lanzendorf, M., 2022. Car independence in an automobile society? The everyday mobility practices of residents in a car-reduced housing development. Travel Behaviour and Society, 28, 90–105.

Shelat, S., Huisman, R., van Oort, N. (2018). Analysing the trip and user characteristics of the combined bicycle and transit mode. Research in Transportation Economics, 69, 68–76.

Silva, C., Castro, N., Bicalho, T., Cadima, C. (2020). Using Accessibility Measures to reveal Public Transport Competitiveness compared to the car.

Silva, C., Teixeira, J., Proença, A. (2019). Revealing the Cycling Potential of Starter Cycling Cities. Transportation Research Procedia, 41, 637–654.

Ton, D., Shelat, S., Nijënstein, S., Rijsman, L., van Oort, N., Hoogendoorn, S. (2020). Understanding the Role of Cycling to Urban Transit Stations through a Simultaneous Access Mode and Station Choice Model. Transportation Research Record, 2674, 823–835.

Tønnesen, A., Knapskog, M., Uteng, T.P., Øksenholt, K.V. (2021). The integration of active travel and public transport in Norwegian policy packages: A study on ‘access, egress and transfer’ and their positioning in two multilevel contractual agreements. Research in Transportation Business & Management, 40, 100546.

van Mil, J.F.P., Leferink, T.S., Annema, J.A., van Oort, N. (2021). Insights into factors affecting the combined bicycle-transit mode. Public Transp, 13, 649–673.

Walsh, C., Jakeman, P., Moles, R., O’Regan, B. (2008). A comparison of carbon dioxide emissions associated with motorised transport modes and cycling in Ireland. Transportation Research Part D: Transport and Environment, 13, 392–399.

Wang, R. (2011). Autos, transit and bicycles: Comparing the costs in large Chinese cities. Transport Policy, 18, 139–146.

Zuo, T., Wei, H., Chen, N., Zhang, C. (2020). First-and-last mile solution via bicycling to improving transit accessibility and advancing transportation equity. Cities, 99, 102614.