Neuromuscular efficiency of the knee joint muscles in the early-phase of strength training: effects of antagonist’s muscles pre-activation

  • Euler Alves Cardoso College of Physical Education, Universidade de Brasília (UnB), Brasília/DF, Brazil.
  • Frederico Ribeiro Neto College of Physical Education, Universidade de Brasília (UnB), Brasília/DF, Brazil.
  • Wagner Rodrigues Martins School of Physical Therapy, Universidade de Brasília (UnB), Campus UnB Ceilândia, Brasília/DF, Brazil.
  • Martim Bottaro College of Physical Education, Universidade de Brasília (UnB), Brasília/DF, Brazil.
  • Rodrigo Luiz Carregaro School of Physical Therapy, Universidade de Brasília (UnB), Campus UnB Ceilândia, Brasília/DF, Brazil.


It was our objective tTo compare the neuromuscular efficiency (NME) adaptations between resistance exercise methods (with and without pre-activation of the antagonist’s muscles) after six-weeks training. This randomized controlled trial assigned forty-nine men (mean age 20.9 ± 2.2 years; height 1.80 ± 0.1 m; body mass 75.0 ± 8.2 kg) into two groups: 1) Reciprocal Training group (RT, concentric knee flexion immediately followed by concentric knee extension at 60°.s-1); and Conventional Training (CT, concentric knee extension exercise). Both training adopted three sets, 10 repetitions at 60°.s-1, 2 days/week for 6 weeks. NME of knee extension and flexion were assessed pre and post-training. The groups were similar at baseline, for all variables. We found significant effects on NME only for the rectus femoris muscle in the RT group (ES = 0.31; 95%CI [0.30-0,92]; p<0.01). There were no significant differences at NME pre- and post-training in CT and Total Work did not differ between groups. Reciprocal training provided better neuromuscular efficiency, but effects were limited to the rectus femoris muscle. The small effect sizes suggest caution in the results.


Arabadzhiev, T. I., Dimitrov, V. G., Dimitrova, N. A., & Dimitrov, G. V. (2010). Interpretation of EMG integral or RMS and estimates of "neuromuscular efficiency" can be misleading in fatiguing contraction. Journal of electromyography and kinesiology, 20(2), 223-232. doi:10.1016/j.jelekin.2009.01.008

Aragão, F. A., Schäfer, G. S., Albuquerque, C. E. d., Vituri, R. F., Mícolis de Azevedo, F., & Bertolini, G. R. F. (2015). Eficiência neuromuscular dos músculos vasto lateral e bíceps femoral em indivíduos com lesão de ligamento cruzado anterior. Revista Brasileira de Ortopedia, 50(2), 180-185. doi:

Baker, D., & Newton, R. U. (2005). Acute effect on power output of alternating an agonist and antagonist muscle exercise during complex training. Journal of Strength and Conditioning Research, 19(1), 202-205. doi:10.1519/1533-4287(2005)19<202:Aeopoo>2.0.Co;2

Beck, T. W., Housh, T. J., Johnson, G. O., Weir, J. P., Cramer, J. T., Coburn, J. W., . . . Mielke, M. (2007). Effects of two days of isokinetic training on strength and electromyographic amplitude in the agonist and antagonist muscles. Journal of Strength and Conditioning Research, 21(3), 757-762. doi:10.1519/r-20536.1

Bickel, C. S., Slade, J., Mahoney, E., Haddad, F., Dudley, G. A., & Adams, G. R. (2005). Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. Journal of applied physiology (Bethesda, Md. : 1985), 98(2), 482-488. doi:10.1152/japplphysiol.00895.2004

Brill, P., Macera, C., Davis, D., Blair, S., & Gordon, N. (2000). Muscular strength and physical function. Medicine and Science in Sports and Exercise, 32, 412–416.

Brown, L., & Whitehurst, M. (2003). The effect of short-term isokinetic training on force and rate of velocity development. Journal of Strength and Conditioning Research, 17(1), 88-94.

Burke, D. G., Pelham, T. W., & Holt, L. E. (1999). The influence of varied resistance and speed of concentric antagonistic contractions on subsequent concentric agonistic efforts. Journal of Strength and Conditioning Research, 13(3), 193-197.

Carregaro, R. L., Gentil, P., Brown, L. E., Pinto, R. S., & Bottaro, M. (2011). Effects of antagonist pre-load on knee extensor isokinetic muscle performance. Journal of sports sciences, 29(3), 271-278. doi:10.1080/02640414.2010.529455

Coburn, J. W., Housh, T. J., Malek, M. H., Weir, J. P., Cramer, J. T., Beck, T. W., & Johnson, G. O. (2006). Neuromuscular responses to three days of velocity-specific isokinetic training. Journal of Strength and Conditioning Research, 20(4), 892-898. doi:10.1519/r-18745.1

Costill, D., Wilmore, D., & Kenney, W. (2012). Physiology of sport and exercise (6th ed.): Human Kinetics.

Cunha, R., Carregaro, R. L., Martorelli, A., Vieira, A., Oliveira, A. B., & Bottaro, M. (2013). Effects of short-term isokinetic training with reciprocal knee extensors agonist and antagonist muscle actions: a controlled and randomized trial. Brazilian journal of physical therapy, 17(2), 137-145. doi:10.1590/s1413-35552012005000077

David, P., Mora, I., & Perot, C. (2008). Neuromuscular efficiency of the rectus abdominis differs with gender and sport practice. Journal of Strength and Conditioning Research, 22(6), 1855-1861. doi:10.1519/JSC.0b013e31817bd529

De Luca, C. J. (1984). Myoelectrical manifestations of localized muscular fatigue in humans. Critical reviews in biomedical engineering, 11(4), 251-279.

Deschenes, M., Giles, J., McCoy, R., Volek, J., Gomez, A., & Kraemer, W. (2002). Neural factors account for strength decrements observed after short-term muscle unloading American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 282, R578–R583.

Garber, C., Blissmer, B., Deschenes, M., Franklin, B., Lamonte, M., Lee, I., . . . Swain, D. (2011). Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Medicine and Science in Sports and Exercise, 43(1), 334–1359.

Gorgey, A. S., Poarch, H., Miller, J., Castillo, T., & Gater, D. R. (2010). Locomotor and resistance training restore walking in an elderly person with a chronic incomplete spinal cord injury. NeuroRehabilitation, 26(2), 127-133. doi:10.3233/nre-2010-0544

Harvey, L., Lin, C., Glinsky, J. V., & De Wolf, A. (2009). The effectiveness of physical interventions for people with spinal cord injuries: A systematic review. Spinal Cord, 47, 184-195.

Hassani, A., Patikas, D., Bassa, E., Hatzikotoulas, K., Kellis, E., & Kotzamanidis, C. (2006). Agonist and antagonist muscle activation during maximal and submaximal isokinetic fatigue tests of the knee extensors. Journal of electromyography and kinesiology, 16(6), 661-668. doi:10.1016/j.jelekin.2005.11.006

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., & Rau, G. (2000). Development of recommendations for SEMG sensors and sensor placement procedures. Journal of electromyography and kinesiology, 10(5), 361-374.

Holtermann, A., Roeleveld, K., Vereijken, B., & Ettema, G. (2005). Changes in agonist EMG activation level during MVC cannot explain early strength improvement. European Journal of Applied Physiology, 94, 593–601.

Jeon, H. S., Trimble, M. H., Brunt, D., & Robinson, M. E. (2001). Facilitation of quadriceps activation following a concentrically controlled knee flexion movement: the influence of transition rate. The Journal of orthopaedic and sports physical therapy, 31(3), 122-129; discussion 130-122. doi:10.2519/jospt.2001.31.3.122

Kannus, P. (1994). Isokinetic Evaluation of Muscular Performance. International Journal of Sports Medicine, 15, S11–S18.

Lee, M., & Carroll, T. J. (2007). Cross education: possible mechanisms for the contralateral effects of unilateral resistance training. Sports medicine (Auckland, N.Z.), 37(1), 1-14.

Maynard, J., & Ebben, W. P. (2003). The effects of antagonist prefatigue on agonist torque and electromyography. Journal of Strength and Conditioning Research, 17(3), 469-474.

Miller, J. P., Croce, R. V., & Hutchins, R. (2000). Reciprocal coactivation patterns of the medial and lateral quadriceps and hamstrings during slow, medium and high speed isokinetic movements. Journal of electromyography and kinesiology, 10(4), 233-239.

Milner-Brown, H. S., Mellenthin, M., & Miller, R. G. (1986). Quantifying human muscle strength, endurance and fatigue. Archives of physical medicine and rehabilitation, 67(8), 530-535.

Moritani, T., & deVries, H. A. (1979). Neural factors versus hypertrophy in the time course of muscle strength gain. American journal of physical medicine, 58(3), 115-130.

Parcell, A. C., Sawyer, R. D., Tricoli, V. A., & Chinevere, T. D. (2002). Minimum rest period for strength recovery during a common isokinetic testing protocol. Medicine and Science in Sports and Exercise, 34(6), 1018-1022.

Purves, D., Augustine, G., Itzpatrick, F., Hall, W., LaMantia, A., McNamara, J., & Williams, S. (2001). Neuroscience (4th ed.). Sunderland (MA): Sinauer Associates.

Remaud, A., Cornu, C., & Guevel, A. (2005). A methodologic approach for the comparison between dynamic contractions: Influences on the neuromuscular system. Journal of Athletic Training, 40(4), 281-287.

Robbins, D. W., Young, W. B., Behm, D. G., & Payne, W. R. (2010). The effect of a complex agonist and antagonist resistance training protocol on volume load, power output, electromyographic responses, and efficiency. Journal of Strength and Conditioning Research, 24(7), 1782-1789. doi:10.1519/JSC.0b013e3181dc3a53

Schimidt, H. L., Machado, Á. S., Vaz, M. A., & Carpes, F. P. (2014). Isometric muscle force, rate of force development and knee extensor neuromuscular efficiency asymmetries at different age groups. Revista Brasileira de Cineantropometria & Desempenho Humano, 16, 307-315.

Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ, 340, c332. doi:10.1136/bmj.c332

Serra-Añó, P., Pellicer-Chenoll, M., García-Massó, X., Morales, J., Giner-Pascual, M., & González, L. (2012). Effects of resistance training on strength, pain and shoulder functionality in paraplegics. Spinal Cord, 50, 827–831.

Seynnes, O. R., de Boer, M., & Narici, M. V. (2007). Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. Journal of applied physiology (Bethesda, Md. : 1985), 102(1), 368-373. doi:10.1152/japplphysiol.00789.2006

Original Article