Predicción de lesiones por presión en unidades de cuidados intensivos mediante inteligencia artificial
protocolo de scoping review
DOI:
https://doi.org/10.48492/servir0212.36731Palabras clave:
Inteligencia Artificial, Úlcera por Presión, Unidades de Cuidados Intensivos, Cuidados Críticos, Enfermería de Cuidados CríticosResumen
Introducción: Las lesiones por presión son frecuentes en cuidados intensivos, afectando la calidad de vida y aumentando los costes sanitarios. Las escalas tradicionales presentan limitaciones en pacientes críticos. La inteligencia artificial surge como alternativa prometedora para una detección precoz más precisa.
Objetivo: Identificar y mapear la evidencia científica disponible sobre el uso de inteligencia artificial para la predicción de lesiones por presión en pacientes adultos en situación crítica ingresados en unidades de cuidados intensivos.
Métodos: Se realizará una scoping review según la metodología del Joanna Briggs Institute y la checklist PRISMA-ScR. La búsqueda incluirá bases de datos científicas y literatura gris, sin restricciones de idioma o fecha. Se considerarán estudios que aborden el uso de inteligencia artificial para predecir lesiones por presión en cuidados intensivos.
Resultados: Los datos se presentarán de forma descriptiva y narrativa, con tablas que resuman tipos de inteligencia artificial, variables predictoras, rendimiento de los modelos e implicaciones clínicas.
Conclusiones: Esta revisión permitirá sistematizar el conocimiento actual, identificar vacíos en la literatura y apoyar la integración de soluciones basadas en inteligencia artificial en la práctica enfermera en cuidados intensivos.
Descargas
Citas
Al Mutairi, K. B., & Hendrie, D. (2018). Global incidence and prevalence of pressure injuries in public hospitals: A systematic review. Wound Medicine, 22, 23–31. https://doi.org/10.1016/j.wndm.2018.05.004
Alderden, J., Kennerly, S. M., Wilson, A., Dimas, J., McFarland, C., Yap, D. Y., Zhao, L., & Yap, T. L. (2022). Explainable Artificial Intelligence for Predicting Hospital-Acquired Pressure Injuries in COVID-19-Positive Critical Care Patients. Computers, Informatics, Nursing : CIN, 40(10), 659–665. https://doi.org/10.1097/CIN.0000000000000943
Barghouthi, E. D., Owda, A. Y., Asia, M., & Owda, M. (2023). Systematic Review for Risks of Pressure Injury and Prediction Models Using Machine Learning Algorithms. Diagnostics, 13(17), 2739. https://doi.org/10.3390/diagnostics13172739
Çayirtepe, Z., & Şenel, A. C. (2022). Risk Management In Intensive Care Units With Artificial Intelligence Technologies: Systematic Review of Prediction Models Using Electronic Health Records. Journal of Basic and Clinical Health Sciences, 6(3), 958–976. https://doi.org/10.30621/jbachs.993798
Chaboyer, W. P., Thalib, L., Harbeck, E. L., Coyer, F. M., Blot, S., Bull, C. F., Nogueira, P. C., & Lin, F. F. (2018). Incidence and Prevalence of Pressure Injuries in Adult Intensive Care Patients: A Systematic Review and Meta-Analysis. Critical Care Medicine, 46(11), e1074–e1081. https://doi.org/10.1097/CCM.0000000000003366
De Micco, F., Di Palma, G., Ferorelli, D., De Benedictis, A., Tomassini, L., Tambone, V., Cingolani, M., & Scendoni, R. (2025). Artificial intelligence in healthcare: Transforming patient safety with intelligent systems—A systematic review. Frontiers in Medicine, 11. https://doi.org/10.3389/fmed.2024.1522554
Fulbrook, P., Lovegrove, J., Hay, K., & Coyer, F. (2023). State-wide prevalence of pressure injury in intensive care versus acute general patients: A five-year analysis. Journal of Clinical Nursing, 32(15–16), 4947–4961. https://doi.org/10.1111/jocn.16687
Gefen, A., Alves, P., Ciprandi, G., Coyer, F., Milne, C. T., Ousey, K., Ohura, N., Waters, N., & Worsley, P. (2020). Device-related pressure ulcers: SECURE prevention. Journal of Wound Care, 29(Sup2a), S1–S52. https://doi.org/10.12968/jowc.2020.29.Sup2a.S1
Haesler, E. (Ed.). (2019). Prevention and treatment of pressure ulcers/injuries: Clinical practice guideline: the international guideline (3. edition). Epuap, European Pressure Ulcer Advisory Panel.
Kayambankadzanja, R. K., Schell, C. O., Gerdin Wärnberg, M., Tamras, T., Mollazadegan, H., Holmberg, M., Alvesson, H. M., & Baker, T. (2022). Towards definitions of critical illness and critical care using concept analysis. BMJ Open, 12(9), e060972. https://doi.org/10.1136/bmjopen-2022-060972
Labeau, S. O., Afonso, E., Benbenishty, J., Blackwood, B., Boulanger, C., Brett, S. J., Calvino-Gunther, S., Chaboyer, W., Coyer, F., Deschepper, M., François, G., Honore, P. M., Jankovic, R., Khanna, A. K., Llaurado-Serra, M., Lin, F., Rose, L., Rubulotta, F., Saager, L., … Erdogan, E. (2021). Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: The DecubICUs study. Intensive Care Medicine, 47(2), 160–169. https://doi.org/10.1007/s00134-020-06234-9
Ladios-Martin, M., Fernández-de-Maya, J., Ballesta-López, F.-J., Belso-Garzas, A., Mas-Asencio, M., & Cabañero-Martínez, M. J. (2020). Predictive Modeling of Pressure Injury Risk in Patients Admitted to an Intensive Care Unit. American Journal of Critical Care : An Official Publication, American Association of Critical-Care Nurses, 29(4), e70–e80. https://doi.org/10.4037/ajcc2020237
Luo, Y., Yin, L., Bai, W., & Mao, K. (2020). An Appraisal of Incremental Learning Methods. Entropy, 22(11), 1190. https://doi.org/10.3390/e22111190
Marshall, J. C., Bosco, L., Adhikari, N. K., Connolly, B., Diaz, J. V., Dorman, T., Fowler, R. A., Meyfroidt, G., Nakagawa, S., Pelosi, P., Vincent, J.-L., Vollman, K., & Zimmerman, J. (2017). What is an intensive care unit? A report of the task force of the World Federation of Societies of Intensive and Critical Care Medicine. Journal of Critical Care, 37, 270–276. https://doi.org/10.1016/j.jcrc.2016.07.015
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan—A web and mobile app for systematic reviews. Systematic Reviews, 5(1). https://doi.org/10.1186/s13643-016-0384-4
Peters, M. D. J., Godfrey, C., McInerney, P., Khalil, H., Larsen, P., Marnie, C., Pollock, D., Tricco, A. C., & Munn, Z. (2022). Best practice guidance and reporting items for the development of scoping review protocols. JBI Evidence Synthesis, 20(4), 953. https://doi.org/10.11124/JBIES-21-00242
Peters, M. D. J., Marnie, C., Tricco, A. C., Pollock, D., Munn, Z., Alexander, L., McInerney, P., Godfrey, C. M., & Khalil, H. (2020). Updated methodological guidance for the conduct of scoping reviews. JBI Evidence Synthesis, 18(10), 2119–2126. https://doi.org/10.11124/JBIES-20-00167
Picoito, R. J. de B. R., Lapuente, S. M. M. P. da C., Ramos, A. C. P., Rabiais, I. C. M., Deodato, S. J., & Nunes, E. M. G. T. (2023). Risk assessment instruments for pressure ulcer in adults in critical situation: A scoping review. Revista Latino-Americana de Enfermagem, 31(e3983). https://doi.org/10.1590/1518-8345.6659.3983
Raju, D., Su, X., Patrician, P. A., Loan, L. A., & McCarthy, M. S. (2015). Exploring factors associated with pressure ulcers: A data mining approach. International Journal of Nursing Studies, 52(1), 102–111. https://doi.org/10.1016/j.ijnurstu.2014.08.002
Roussou, E., Fasoi, G., Stavropoulou, A., Kelesi, M., Vasilopoulos, G., Gerogianni, G., & Alikari, V. (2023). Quality of life of patients with pressure ulcers: A systematic review. Medicine and Pharmacy Reports, 96(2), 123–130. https://doi.org/10.15386/mpr-2531
Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
Wei, M., Wu, L., Chen, Y., Fu, Q., Chen, W., & Yang, D. (2020). Predictive Validity of the Braden Scale for Pressure Ulcer Risk in Critical Care: A Meta-Analysis. Nursing in Critical Care, 25(3), 165–170. https://doi.org/10.1111/nicc.12500
Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C.-W., Qiu, J., Hua, K., Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., … Zhang, J. (2021). Artificial intelligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.org/10.1016/j.xinn.2021.100179
Zheng, L., Xue, Y., Yuan, Z., & Xing, X. (2025). Explainable SHAP-XGBoost models for pressure injuries among patients requiring with mechanical ventilation in intensive care unit. Scientific Reports, 15(1), 9878. https://doi.org/10.1038/s41598-025-92848-2
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 José Alves, Rita Azevedo, Ana Marques, Paulo Alves

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
No intuito de promover a livre circulação do conhecimento, a Servir funciona em regime de acesso livre (open access). Todo o seu conteúdo está disponível e protegido sob a licença Creative Commons (CC BY 4.0).
A revista permite o auto-arquivo em repositórios institucionais de todas as versões, podendo ficar imediatamente disponíveis.