The Role of Big Data Analytics in the Investigation of Corruption Offences

Authors

DOI:

https://doi.org/10.34625/issn.2183-2705(37)2025.ic-6

Keywords:

data analytics, corruption offenses, criminal law, criminology, criminological principles, criminal offense

Abstract

The article deals with the integration of big data (BD) analytics in the investigation of corruption offenses and assesses its potential to detect complex criminal schemes. The use of large data volumes, such as financial transactions, communication patterns, and public records, significantly improves the effectiveness of investigations. Data analysis makes it possible to reveal hidden connections and anomalies, which provides new tools for the fight against corruption. The article combines legal analysis with technological innovation and explores the legal and ethical issues that arise when using such technologies. It focuses on how BD can be integrated into the legal process within existing legal systems. The academic novelty is the study of the changes that BD analytics bring to the corruption investigation practices. The study also identifies data protection and compliance challenges that require the creation of an appropriate legal framework and the development of specialized skills.

References

AKINBOWALE, O. E., KLINGELHÖFER, H. E., ZERIHUN, M. F. An innovative approach in combating economic crime using forensic accounting techniques. Journal of Financial Crime, 2020, vol. 27, no. 4, pp. 1253-1271. https://doi.org/10.1108/jfc-04-2020-0053

BAUHR, M., CZIBIK, Á., DE FINE LICHT, J., FAZEKAS, M. Lights on the shadows of public procurement: Transparency as an antidote to corruption. Governance, 2019, vol. 33, no. 3, pp. 495-523. https://doi.org/10.1111/gove.12432

BLAHUTA, R. I., MOVCHAN, A. V. The Latest Technologies in the Investigation of Crimes: The Current State and Use Problems. Lviv: LvDUVS, 2020. Available from https://dspace.lvduvs.edu.ua/handle/1234567890/3337

COUNCIL OF EUROPE. Network of Corruption Prevention Authorities. 2023. Available from https://www.coe.int/en/web/corruption/ncpa-network

DAS, P., DAS, A. K., NAYAK, J., PELUSI, D., DING, W. Incremental classifier in crime prediction using bi-objective Particle Swarm Optimization. Information Sciences, 2021, vol. 562, pp. 279-303. https://doi.org/10.1016/j.ins.2021.02.002

DONGES, N. Random Forest: A complete guide for machine learning. Built In. 2024. Available from https://builtin.com/data-science/random-forest-algorithm

HOU, M., HU, X., CAI, J., HAN, X., YUAN, S. An Integrated graph Model for Spatial–Temporal Urban Crime Prediction based on attention mechanism. International Journal of Geo-Information, 2022, vol. 11, no. 5, pp. 294. https://doi.org/10.3390/ijgi11050294

KAUR, B., SOOD, K., GRIMA, S. A systematic review on forensic accounting and its contribution towards fraud detection and prevention. Journal of Financial Regulation and Compliance, 2022, vol. 31, no. 1, pp. 60-95. https://doi.org/10.1108/jfrc-02-2022-0015

LEXTEGRITY. Data Analytics for Anti-Corruption Compliance. 2024. Available from https://www.lextegrity.com/resources/use-cases/data-analytics-for-anti-corruption-compliance

LUTSKA, K. Prospects of the use of modern technologies in counteraction to corruption in public administration. Bulletin of Taras Shevchenko National University of Kyiv Public Administration, 2021, vol. 14, no. 2, pp. 14-18. https://doi.org/10.17721/2616-9193.2021/14-3/6

MAZIYCHUK, V., VOIGHTKO, A., TYMOSHENKO, Y., TSIKALO, V., SYROVATKA, S. The effectiveness of electronic declaration monitoring in the detection and investigation of corruption offences in the judicial system. Pakistan Journal of Life and Social Sciences, 2024, vol. 22, no. 2, pp. 4833-4845. https://doi.org/10.57239/pjlss-2024-22.2.00358

MELNYK, D. S., PARFYLO, O. A., BUTENKO, O. V., TYKHONOVA, O. V., ZAROSYLO, V. O. Practice of the member states of the European Union in the field of anti-corruption regulation. Journal of Financial Crime, 2021, vol. 29, no. 3, pp. 853–863. https://doi.org/10.1108/jfc-03-2021-0050

MINITAB. Data analysis, statistical & process improvement tools. 2024. Available from https://www.minitab.com/en-us/

MOHR, T., PADILLA, V. Leveraging Data Analytics to Uncover FCPA Violations and Strengthen Compliance. Weaver, 2024. Available from https://weaver.com/resources/leveraging-data-analytics-to-uncover-fcpa-violations-and-strengthen-compliance/

N-IX. Fraud detection with big data analytics and machine learning: How to make it work. 2021. Available from https://www.n-ix.com/fraud-detection-big-data-analytics-machine-learning/

NASH, R., SCHARBATKE-CHURCH, C., TORIBIO, Z., WOODROW, P., BRINKERHOFF, D. W. Understanding corruption and social norms: a case study in Natural resource management. RTI Press, 2023. https://doi.org/10.3768/rtipress.2023.op.0089.2309

NAVARRETE, A. C., GALLEGO, A. C. Forensic accounting tools for fraud deterrence: a qualitative approach. Journal of Financial Crime, 2022, vol. 30, no. 3, pp. 840–854. https://doi.org/10.1108/jfc-03-2022-0068

OATLEY, G. C. Themes in data mining, big data, and crime analytics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2021, vol. 12, no. 2, pp. e1432. https://doi.org/10.1002/widm.1432

OATLEY, G., CHAPMAN, B., SPEERS, J. Forensic intelligence and the analytical process. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, 2020, vol. 10, no. 3. https://doi.org/10.1002/widm.1354

OECD. Anti-Corruption Network for Eastern Europe and Central Asia. 2024. Available from https://www.oecd.org/en/networks/anti-corruption-network-for-eastern-europe-and-central-asia.html

ORTIZ-OSPINA, E., ROSER, M. Corruption. Our World in Data. 2024. Available from https://ourworldindata.org/corruption

OUR WORLD IN DATA. Political corruption index. 2024. Available from https://ourworldindata.org/grapher/political-corruption-index

RISWANTO, U. K-Means Clustering for Anomaly Detection. Medium. 2023. Available from https://ujangriswanto08.medium.com/k-means-clustering-for-anomaly-detection-1bbbb0b20b52

RUDYK, T. O. E-government in Ukraine as a means of combating corruption. In Management of the XXI Century: Modern Models, Strategies, Technologies. VI All-Ukrainian Scientific and Practical Internet Conference Collection of Scientific Papers. Vinnytsia: Tsentr Pidhotovky Naukovykh ta Navchalno-Metodychnykh Vydan VTEI KNTEU, 2019, vol. 2, pp. 517-524. Available from http://vtei.com.ua/doc/2019/22_10_2.pdf#page=517

SCHUILENBURG, M., SOUDIJN, M. Big data in het veiligheidsdomein: onderzoek naar big-datatoepassingen bij de Nederlandse politie en de positieve effecten hiervan voor de politieorganisatie. Tijdschrift Voor Veiligheid, 2021, vol. 20, no. 4, pp. 44–62. https://doi.org/10.5553/tvv/.000028

SCIKIT-LEARN. IsolationForest. 2024. Available from https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.IsolationForest.html

SHCHOKIN, R., OLIINYK, V., BONDARENKO, O., KYSLENKO, D., KOLOS, O., TYMOSHENKO, Y. Sport management in the context of criminal liability for corruption. Retos, 2023, vol. 48, pp. 708–719. https://doi.org/10.47197/retos.v48.96768

SHCHOKIN, R., KABACHENKO, D., KOROLENKO, O., KUTOVA, N., CHURIKANOVA, O. Implementation of digitization for anti-crisis management of business entities. Economic Affairs, 2023, vol. 68, no. 01s, pp. 361-369. https://doi.org/10.46852/0424-2513.1s.2023.39

SIMPLILEARN. Random Forest Algorithm. 2023. Available from https://www.simplilearn.com/tutorials/machine-learning-tutorial/random-forest-algorithm

TAYLOR, M. M. Paul Lagunes, The Eye and the Whip: Corruption Control in the Americas. Oxford: Oxford University Press, 2021. Figures, tables, illustrations, bibliography, index, 168 pp.; hardcover $74, ebook. Latin American Politics and Society, 2022, vol. 64, no. 4, pp. 170-173. https://doi.org/10.1017/lap.2022.44

UDEH, N. E. O., AMAJUOYI, N. P., ADEUSI, N. K. B., SCOTT, N. A. O. The role of big data in detecting and preventing financial fraud in digital transactions. World Journal of Advanced Research and Reviews, 2024, vol. 22, no. 2, pp. 1746–1760. https://doi.org/10.30574/wjarr.2024.22.2.1575

UNITED NATIONS. Introduction to Role of Data Analytics in Anti-Corruption and Fraud. 2024. Available from https://www.unodc.org/roseap/en/what-we-do/anti-corruption/topics/2021/data-analytics-anti-corruption-fraud.html

WORLD BANK GROUP. Corruption Perceptions Index Rank. Indicator Profile Prosperity Data 360. 2024. Available from https://prosperitydata360.worldbank.org/en/indicator/TI+CPI+Rank

Downloads

Published

2025-04-07

How to Cite

Chystiakova, A. ., Podliehaiev, K. ., Khoronovskyi, O. ., Sokur, T. ., & Kubariev, I. (2025). The Role of Big Data Analytics in the Investigation of Corruption Offences. Revista Jurídica Portucalense, 116–143. https://doi.org/10.34625/issn.2183-2705(37)2025.ic-6

Issue

Section

SCIENTIFIC RESEARCH