The Role of Big Data Analytics in the Investigation of Corruption Offences

Autores

DOI:

https://doi.org/10.34625/issn.2183-2705(37)2025.ic-6

Palavras-chave:

análise de dados, crimes de corrupção, direito penal, criminologia, princípios criminológicos, infração penal

Resumo

O artigo trata da integração de análises de big data (BD) na investigação de crimes de corrupção e avalia seu potencial para detectar esquemas criminais complexos. O uso de grandes volumes de dados, como transações financeiras, padrões de comunicação e registros públicos, melhora significativamente a eficácia das investigações. A análise de dados torna possível revelar conexões e anomalias ocultas, o que fornece novas ferramentas para o combate à corrupção. O artigo combina análise jurídica com inovação tecnológica e explora as questões jurídicas e éticas que surgem ao usar tais tecnologias. Ele se concentra em como o BD pode ser integrado ao processo legal dentro dos sistemas jurídicos existentes. A novidade acadêmica é o estudo das mudanças que a análise de BD traz para as práticas de investigação de corrupção. O estudo também identifica os desafios de proteção de dados e conformidade que exigem a criação de uma estrutura jurídica apropriada e o desenvolvimento de habilidades especializadas.

Referências

AKINBOWALE, O. E., KLINGELHÖFER, H. E., ZERIHUN, M. F. An innovative approach in combating economic crime using forensic accounting techniques. Journal of Financial Crime, 2020, vol. 27, no. 4, pp. 1253-1271. https://doi.org/10.1108/jfc-04-2020-0053

BAUHR, M., CZIBIK, Á., DE FINE LICHT, J., FAZEKAS, M. Lights on the shadows of public procurement: Transparency as an antidote to corruption. Governance, 2019, vol. 33, no. 3, pp. 495-523. https://doi.org/10.1111/gove.12432

BLAHUTA, R. I., MOVCHAN, A. V. The Latest Technologies in the Investigation of Crimes: The Current State and Use Problems. Lviv: LvDUVS, 2020. Available from https://dspace.lvduvs.edu.ua/handle/1234567890/3337

COUNCIL OF EUROPE. Network of Corruption Prevention Authorities. 2023. Available from https://www.coe.int/en/web/corruption/ncpa-network

DAS, P., DAS, A. K., NAYAK, J., PELUSI, D., DING, W. Incremental classifier in crime prediction using bi-objective Particle Swarm Optimization. Information Sciences, 2021, vol. 562, pp. 279-303. https://doi.org/10.1016/j.ins.2021.02.002

DONGES, N. Random Forest: A complete guide for machine learning. Built In. 2024. Available from https://builtin.com/data-science/random-forest-algorithm

HOU, M., HU, X., CAI, J., HAN, X., YUAN, S. An Integrated graph Model for Spatial–Temporal Urban Crime Prediction based on attention mechanism. International Journal of Geo-Information, 2022, vol. 11, no. 5, pp. 294. https://doi.org/10.3390/ijgi11050294

KAUR, B., SOOD, K., GRIMA, S. A systematic review on forensic accounting and its contribution towards fraud detection and prevention. Journal of Financial Regulation and Compliance, 2022, vol. 31, no. 1, pp. 60-95. https://doi.org/10.1108/jfrc-02-2022-0015

LEXTEGRITY. Data Analytics for Anti-Corruption Compliance. 2024. Available from https://www.lextegrity.com/resources/use-cases/data-analytics-for-anti-corruption-compliance

LUTSKA, K. Prospects of the use of modern technologies in counteraction to corruption in public administration. Bulletin of Taras Shevchenko National University of Kyiv Public Administration, 2021, vol. 14, no. 2, pp. 14-18. https://doi.org/10.17721/2616-9193.2021/14-3/6

MAZIYCHUK, V., VOIGHTKO, A., TYMOSHENKO, Y., TSIKALO, V., SYROVATKA, S. The effectiveness of electronic declaration monitoring in the detection and investigation of corruption offences in the judicial system. Pakistan Journal of Life and Social Sciences, 2024, vol. 22, no. 2, pp. 4833-4845. https://doi.org/10.57239/pjlss-2024-22.2.00358

MELNYK, D. S., PARFYLO, O. A., BUTENKO, O. V., TYKHONOVA, O. V., ZAROSYLO, V. O. Practice of the member states of the European Union in the field of anti-corruption regulation. Journal of Financial Crime, 2021, vol. 29, no. 3, pp. 853–863. https://doi.org/10.1108/jfc-03-2021-0050

MINITAB. Data analysis, statistical & process improvement tools. 2024. Available from https://www.minitab.com/en-us/

MOHR, T., PADILLA, V. Leveraging Data Analytics to Uncover FCPA Violations and Strengthen Compliance. Weaver, 2024. Available from https://weaver.com/resources/leveraging-data-analytics-to-uncover-fcpa-violations-and-strengthen-compliance/

N-IX. Fraud detection with big data analytics and machine learning: How to make it work. 2021. Available from https://www.n-ix.com/fraud-detection-big-data-analytics-machine-learning/

NASH, R., SCHARBATKE-CHURCH, C., TORIBIO, Z., WOODROW, P., BRINKERHOFF, D. W. Understanding corruption and social norms: a case study in Natural resource management. RTI Press, 2023. https://doi.org/10.3768/rtipress.2023.op.0089.2309

NAVARRETE, A. C., GALLEGO, A. C. Forensic accounting tools for fraud deterrence: a qualitative approach. Journal of Financial Crime, 2022, vol. 30, no. 3, pp. 840–854. https://doi.org/10.1108/jfc-03-2022-0068

OATLEY, G. C. Themes in data mining, big data, and crime analytics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2021, vol. 12, no. 2, pp. e1432. https://doi.org/10.1002/widm.1432

OATLEY, G., CHAPMAN, B., SPEERS, J. Forensic intelligence and the analytical process. Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, 2020, vol. 10, no. 3. https://doi.org/10.1002/widm.1354

OECD. Anti-Corruption Network for Eastern Europe and Central Asia. 2024. Available from https://www.oecd.org/en/networks/anti-corruption-network-for-eastern-europe-and-central-asia.html

ORTIZ-OSPINA, E., ROSER, M. Corruption. Our World in Data. 2024. Available from https://ourworldindata.org/corruption

OUR WORLD IN DATA. Political corruption index. 2024. Available from https://ourworldindata.org/grapher/political-corruption-index

RISWANTO, U. K-Means Clustering for Anomaly Detection. Medium. 2023. Available from https://ujangriswanto08.medium.com/k-means-clustering-for-anomaly-detection-1bbbb0b20b52

RUDYK, T. O. E-government in Ukraine as a means of combating corruption. In Management of the XXI Century: Modern Models, Strategies, Technologies. VI All-Ukrainian Scientific and Practical Internet Conference Collection of Scientific Papers. Vinnytsia: Tsentr Pidhotovky Naukovykh ta Navchalno-Metodychnykh Vydan VTEI KNTEU, 2019, vol. 2, pp. 517-524. Available from http://vtei.com.ua/doc/2019/22_10_2.pdf#page=517

SCHUILENBURG, M., SOUDIJN, M. Big data in het veiligheidsdomein: onderzoek naar big-datatoepassingen bij de Nederlandse politie en de positieve effecten hiervan voor de politieorganisatie. Tijdschrift Voor Veiligheid, 2021, vol. 20, no. 4, pp. 44–62. https://doi.org/10.5553/tvv/.000028

SCIKIT-LEARN. IsolationForest. 2024. Available from https://scikit-learn.org/1.5/modules/generated/sklearn.ensemble.IsolationForest.html

SHCHOKIN, R., OLIINYK, V., BONDARENKO, O., KYSLENKO, D., KOLOS, O., TYMOSHENKO, Y. Sport management in the context of criminal liability for corruption. Retos, 2023, vol. 48, pp. 708–719. https://doi.org/10.47197/retos.v48.96768

SHCHOKIN, R., KABACHENKO, D., KOROLENKO, O., KUTOVA, N., CHURIKANOVA, O. Implementation of digitization for anti-crisis management of business entities. Economic Affairs, 2023, vol. 68, no. 01s, pp. 361-369. https://doi.org/10.46852/0424-2513.1s.2023.39

SIMPLILEARN. Random Forest Algorithm. 2023. Available from https://www.simplilearn.com/tutorials/machine-learning-tutorial/random-forest-algorithm

TAYLOR, M. M. Paul Lagunes, The Eye and the Whip: Corruption Control in the Americas. Oxford: Oxford University Press, 2021. Figures, tables, illustrations, bibliography, index, 168 pp.; hardcover $74, ebook. Latin American Politics and Society, 2022, vol. 64, no. 4, pp. 170-173. https://doi.org/10.1017/lap.2022.44

UDEH, N. E. O., AMAJUOYI, N. P., ADEUSI, N. K. B., SCOTT, N. A. O. The role of big data in detecting and preventing financial fraud in digital transactions. World Journal of Advanced Research and Reviews, 2024, vol. 22, no. 2, pp. 1746–1760. https://doi.org/10.30574/wjarr.2024.22.2.1575

UNITED NATIONS. Introduction to Role of Data Analytics in Anti-Corruption and Fraud. 2024. Available from https://www.unodc.org/roseap/en/what-we-do/anti-corruption/topics/2021/data-analytics-anti-corruption-fraud.html

WORLD BANK GROUP. Corruption Perceptions Index Rank. Indicator Profile Prosperity Data 360. 2024. Available from https://prosperitydata360.worldbank.org/en/indicator/TI+CPI+Rank

Downloads

Publicado

2025-04-07

Como Citar

Chystiakova, A. ., Podliehaiev, K. ., Khoronovskyi, O. ., Sokur, T. ., & Kubariev, I. (2025). The Role of Big Data Analytics in the Investigation of Corruption Offences. Revista Jurídica Portucalense, 116–143. https://doi.org/10.34625/issn.2183-2705(37)2025.ic-6

Edição

Secção

INVESTIGAÇÃO CIENTÍFICA