Abordagem do baixo fluxo sistémico em recém-nascidos com prematuridade extrema
DOI:
https://doi.org/10.25753/BirthGrowthMJ.v33.i1.28239Palavras-chave:
fluxo sanguíneo sistémico, hipotensão, inotrópico, perfusão, recém-nascido pré-termo extremoResumo
Os recém-nascidos com prematuridade extrema apresentam risco considerável de baixo fluxo sanguíneo sistémico e perfusão inadequada de órgãos. Uma avaliação abrangente de marcadores clínicos, laboratoriais, ecocardiográficos e de perfusão de órgãos-alvo permite uma abordagem individualizada e baseada na fisiopatologia dos estados de baixo fluxo sanguíneo. O objetivo deste artigo foi rever o diagnóstico e a abordagem do baixo fluxo sanguíneo sistémico em recém-nascido com prematuridade extrema.
Downloads
Referências
Kluckow M, Evans N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed 2000;82(3): 188–94. doi: https://doi.org/10.1136/fn.82.3.f188.
Kluckow M, Evans N. Superior vena cava flow in newborn infants: a novel marker of systemic blood flow. Arch Dis Child Fetal Neonatal Ed 2000;82(3):182–7. doi: https://doi.org/10.1136/fn.82.3.F182.
Hunt R, Evans N, Rieger I, Kluckow M. Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants. J Pediatr 2004;145(5):588-592. doi: https://doi.org/10.1016/j.jpeds.2004.06.056.
Stranak Z, Semberova J, Barrington K, O’Donnell C, Marlow N, Naulaers G, Dempsey E On behalf of the HIP consortium. International survey on diagnosis and management of hypotension in extremely preterm babies. Eur J Pediatr 2014;173(6):793–8. doi: https://doi.org/10.1007/s00431-013-2251-9.
Wu T, Azhibekov T, Seri I. Transitional Hemodynamics in Preterm Neonates: Clinical Relevance. Pediatr Neonatol 2016;57(1):7-18. doi: https://doi.org/10.1016/j.pedneo.2015.07.002.
Paradisis M. Strategies to Tackle Early Low Flow States in the Extremely Preterm Infant. Current Pediatric Reviews 2013;9(1):90-8. doi: https://doi.org/10.2174/1573396311309010017.
Rios DR, Bhattacharya S, Levy PT, McNamara PJ. Circulatory Insufficiency and Hypotension Related to the Ductus Arteriosus in Neonates. Front Pediatr 2018;6:62. doi: https://doi.org/10.3389/fped.2018.00062.
El-Khuffash A, McNamara PJ. Hemodynamic Assessment and Monitoring of Premature Infants. Clin Perinatol 2017;44(2):77-393. doi: https://doi.org/10.1016/j.clp.2017.02.001.
Dasgupta SJ, Gill AB. Hypotension in the very low birthweight infant: the old, the new, and the uncertain. Arch Dis Child Fetal Neonatal Ed 2003;88(6):450-4. doi: https://doi.org/10.1136/fn.88.6.f450.
Batton B, Zhu X, Fanaroff J, Kirchner HL, Berlin S, Wilson-Costello D, Walsh M. Blood pressure, anti-hypotensive therapy, and neurodevelopment in extremely preterm infants. Journal of Pediatrics 2009;154(3):351-7. doi: https://doi.org/10.1016/j.jpeds.2008.09.017.
Faust K, Härtel C, Preuß M, Rabe H, Roll C, Emeis M, et al, Neocirculation project and the German Neonatal Network (GNN). Short-term outcome of very-low-birthweight infants with arterial hypotension in the first 24 h of life. Arch Dis Child Fetal Neonatal Ed 2015;10(5):F388-392. doi: https://doi.org/10.1136/archdischild-2014-306483.
Kluckow M, Evans N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. Journal of Pediatrics 1996;129(5):506-12. doi: https://doi.org/10.1016/s0022-3476(96)70114-2.
Kluckow M, Seri I. Cardiovascular Compromise in the Preterm Infant During the First Postnatal Day. In Seri I, Kluckow M. Neonatology Questions and Controversies - Hemodynamics and Cardiology. Philadelphia: Elsevier; 2019. p.471-488.
Munro MJ, Walker AM, Barfield CP. Hypotensive Extremely Low Birth Weight Infants Have Reduced Cerebral Blood Flow. Pediatrics 2004;114(6):1591-6. doi: https://doi.org/10.1542/peds.2004-1073.
Miall-Allen VM, de Vries LS, Whitelaw AG. Mean arterial blood pressure and neonatal cerebral lesions. Arch Dis Child 1987;62(10):1068–9. doi: https://doi.org/10.1136/adc.62.10.1068.
Noori S, Seri I. Evidence-based versus pathophysiology-based approach to diagnosis and treatment of neonatal cardiovascular compromise. Seminars in Fetal & Neonatal Medicine 2015;20(4):238-45. doi: https://doi.org/10.1016/j.siny.2015.03.005.
Miletin J, Pichova K, Dempsey EM. Bedside detection of low systemic flow in the very low birth weight infant on day 1 of life. European Journal of Pediatrics 2009;168(7):809-13. doi: https://doi.org/10.1007/s00431-008-0840-9.
Bravo MC, López-Ortego P, Sánchez L, Madero R, Cabañas F, Koch A, et al, on behalf of NeoCirculation Consortium (NEO-CIRC). Validity of Biomarkers of Early Circulatory Impairment to Predict Outcome: A Retrospective Analysis. Front Pediatr 2019;7:212. doi: https://doi.org/10.3389/fped.2019.00212.
Evans N, Iyer P. Assessment of ductus arteriosus shunt in preterm infants supported by mechanical ventilation: effect of interatrial shunting. J Pediatr 1994;125(5 Pt 1):778-85. doi: https://doi.org/10.1016/s0022-3476(94)70078-8.
Waal K, Kluckow M. Superior vena cava flow: Role, assessment and controversies in the management of perinatal perfusion. Seminars in Fetal & Neonatal Medicine 2020;25(5):101122. doi: https://doi.org/10.1016/j.siny.2020.101122.
Miletin J, Dempsey EM. Low superior vena cava flow on day 1 and adverse outcome in the very low birthweight infant. Arch Dis Child Fetal Neonatal 2008;93(5):368-71. doi: https://doi.org/10.1136/adc.2007.129304.
Osborn DA, Evans N, Kluckow M, Bowen JR, Rieger I. Low superior vena cava flow and effect of inotropes on neurodevelopment to 3 years in preterm infants. Pediatrics 2007;120(2):372–80. doi: https://doi.org/10.1542/peds.2006-3398.
Poon WB, Wong KY. Neonatologist-performed point-of-care functional echocardiography in the neonatal intensive care unit. Singapore Med J 2017;58(5):230-3. doi: https://doi.org/10.11622/smedj.2017036.
Monteiro SC, Correia-Costa L, Proença E. Perfusion index in preterm newborns during the first week of life and association with neonatal morbimortality: a prospective observational study. Journal of Pediatric and Neonatal Individualized Medicine 2017;6(2):e060212. doi: https://doi.org/10.7363/060212.
Takahashi S, Kakiuchi S, Nanba Y, Tsukamoto K, Nakamura T, Ito Y. The perfusion index derived from a pulse oximeter for predicting low superior vena cava flow in very low birth weight infants. J Perinatol 2010;30(4):265-9. doi: https://doi.org/10.1038/jp.2009.159.
Janaillac M, Beausoleil TP, Barrington KJ, Raboisson MJ, Karam O, Dehaes M, Lapointe A. Correlations between near-infrared spectroscopy, perfusion index and cardiac outputs in extremely preterm infants in the first 72 h of life. Eur J Pediatr 2018;177(4):541-50. doi: https://doi.org/10.1007/s00431-018-3096-z.
Shah D, Paradisis M, Bowen JR. Relationship between systemic blood flow, blood pressure, inotropes, and aEEG in the first 48 h of life in extremely preterm infants. Pediatr Res 2013;74(3):314-20. doi: https://doi.org/10.1038/pr.2013.104.
Hummler H. Near-Infrared spectroscopy for perfusion assessment and neonatal management. Semin Fetal Neonatal Med 2020;25(5):101145. doi: https://doi.org/10.1016/j.siny.2020.101145.
Baik N, Urlesberger B, Schwaberger B, Schmölzer GM, Avian A, Pichler G. Cerebral haemorrhage in preterm neonates: does cerebral regional oxygen saturation during the immediate transition matter? Arch Dis Child Fetal Neonatal Ed 2015;100(5):422-7. doi: https://doi.org/10.1136/archdischild-2014-307590.
Lemmers PMA, Toet MC, van Bel F. Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants. Pediatrics 2008;121(1):142-7. doi: https://doi.org/10.1542/peds.2007-0925.
Poon WB, Tagamolila V. Cerebral perfusion and assessing hemodynamic significance for patent ductus arteriosus using near infrared red spectroscopy in very low birth weight infants. J Matern Fetal Neonatal Med 2021;34(10):1645-50. doi: https://doi.org/10.1080/14767058.2019.1644313.
Hyttel-Sorensen S, Pellicer A, Alderliesten T, Austin T, van Bel F, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ 2015;350:g7635. doi: https://doi.org/10.1136/bmj.g7635.
Pichler G, Baumgartner S, Biermayr M, Dempsey E, Fuchs H, et al. Cerebral regional tissue Oxygen Saturation to Guide Oxygen Delivery in preterm neonates during immediate transition after birth (COSGOD III): an investigator-initiated, randomized, multi-center, multi-national, clinical trial on additional cerebral tissue oxygen saturation monitoring combined with defined treatment guidelines versus standard monitoring and treatment as usual in premature infants during immediate transition: study protocol for a randomized controlled trial. Trials 2019;20(1):178. doi: https://doi.org/10.1186/s13063-019-3258-y.
Hansen ML, Pellicer A, Gluud C, Dempsey E, Mintzer J, et al. Cerebral near-infrared spectroscopy monitoring versus treatment as usual for extremely preterm infants: a protocol for the SafeBoosC randomised clinical phase III trial. Trials 2019;20(1):811. doi: https://doi.org/10.1186/s13063-019-3955-6.
Demarini S, Dollberg S, Hoath SB, Ho M, Donovan EF. Effects of antenatal corticosteroids on blood pressure in very low birth weight infants during the first 24 hours of life. J Perinatol 1999;19(6):419-25. doi: https://doi.org/10.1038/sj.jp.7200245.
Osborn D, Evans N, Kluckow M. Randomized trial of dobutamine versus dopamine in preterm infants with low systemic blood flow. Journal of Pediatrics 2002;140(2):183-91. doi: https://doi.org/10.1067/mpd.2002.120834.
Rabe H, Diaz-Rossello JL, Duley L, Dowswell T. Effect of timing of umbilical cord clamping and other strategies to influence placental transfusion at preterm birth on maternal and neonatal outcomes. Cochrane Database Syst Rev 2012;8:CD003248. doi: https://doi.org/10.1002/14651858.CD003248.pub3.
Popat H, Robledo KP, Sebastian L, Evans N, Gill A, et al. Effect of Delayed Cord Clamping on Systemic Blood Flow: A Randomized Controlled Trial. The Journal of Pediatrics 2016;178:81-6. doi: https://doi.org/10.1016/j.jpeds.2016.08.004.
Paradisis M, Evans N, Kluckow M, Osborn D. Randomized trial of milrinone versus placebo for prevention of low systemic blood flow in very preterm infants. The Journal of Pediatrics 2009;154(2):189-95. doi: https://doi.org/10.1016/j.jpeds.2008.07.059.
Sweet DG, Carnielli V, Greisen G, Hallman M, Ozek E, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology 2019;115(4):432-50. doi: https://doi.org/10.1159/000499361.
Dempsey EM, Hazzani FA, Barrington KJ. Permissive hypotension in the extremely low birthweight infant with signs of good perfusion. Arch Dis Child Fetal Neonatal Ed 2009;94(4):241-4. doi: https://doi.org/10.1136/adc.2007.124263.
Durrmeyer X, Marchand-Martin L, Porcher R, Gascoin G, Roze J, et al, for the Hemodynamic EPIPAGE 2 Study Group. Abstention or intervention for isolated hypotension in the first 3 days of life in extremely preterm infants: association with short-term outcomes in the EPIPAGE 2 cohort study. Arch Dis Child Fetal Neonatal Ed 2017;102(6):490-6. doi: https://doi.org/10.1136/archdischild-2016-312104.
Kooi EM, van der Laan ME, Verhagen EA, Braeckel KNV, Bos AF. Volume expansion does not alter cerebral tissue oxygen extraction in preterm infants with clinical signs of poor perfusion. Neonatology 2013;103(4):308-14. doi: https://doi.org/10.1159/000346383.
Lundstrøm K, Pryds O, Greisen G. The haemodynamic effects of dopamine and volume expansion in sick preterm infants. Early Hum Dev 2000;57(2):157-63. doi: https://doi.org/10.1016/s0378-3782(00)00048-7.
Bonestroo JC, Lemmers PM, Baerts W, van Bel F. Effect of antihypotensive treatment on cerebral oxygenation of preterm infants without PDA. Pediatrics 2011;128(6):e1502-1510. doi: https://doi.org/10.1542/peds.2010-3791.
Ewer AK, Tyler W, Francis A, Drinkall D, Gardosi JO. Excessive volume expansion and neonatal death in preterm infants born at 27-28 weeks gestation. Paediatr Perinat Epidemio 2003;17(2):180-6. doi: https://doi.org/10.1046/j.1365-3016.2003.00474.x.
Bakshi S, Koerner T, Knee A, Singh R, Vaidya R. Effect of Fluid Bolus on Clinical Outcomes in Very Low Birth Weight Infants. J Pediatr Pharmacol Ther 2020;25(5):437–44. doi: https://doi.org/10.5863/1551-6776-25.5.437.
Subhedar NV, Shaw NJ. Dopamine versus dobutamine for hypotensive preterm infants. Cochrane Database Syst Rev 2003;(3):CD001242. doi: https://doi.org/10.1002/14651858.CD001242.
Rozé JC, Tohier C, Maingueneau C, Lefèvre M, Mouzard A. Response to dobutamine and dopamine in the hypotensive very preterm infant. Archives of Disease in Childhood 1993;69(1):59-63. doi: https://doi.org/10.1136/adc.69.1_spec_no.59.
Seri I, Abbasi S, Wood DC, Gerdes JS. Regional hemodynamic effects of dopamine in the sick preterm neonate. J Pediatr 1998;133(6):728-34. doi: https://doi.org/10.1016/s0022-3476(98)70141-6.
Zhang J, Penny DJ, Kim NS, Yu VY, Smolich JJ. Mechanisms of blood pressure increase induced by dopamine in hypotensive preterm neonates. Arch Dis Child Fetal Neonatal Ed 1999;81(2):99-104. doi: https://doi.org/10.1136/fn.81.2.f99.
Pellicer A, Valverde E, Elorza MD, Madero R, Gayá F, Quero F, Cabañas F. Cardiovascular support for low birth weight infants and cerebral hemodynamics: a randomized, blinded, clinical trial. Pediatrics 2005;115(6):1501-12. doi: https://doi.org/10.1542/peds.2004-1396.
Sassano-Higgins S, Friedlich P, Seri I. A meta-analysis of dopamine use in hypotensive preterm infants: blood pressure and cerebral hemodynamics. J Perinatol 2011;31(10):647-55. doi: https://doi.org/10.1038/jp.2011.2.
Dempsey EM, Barrington KJ, Marlow N, O’Donnell CPF, Miletin J, et al, for the HIP consortium. Hypotension in Preterm Infants (HIP) randomised trial, Arch Dis Child Fetal Neonatal Ed 2021;106(4):398-403. doi: https://doi.org/10.1136/archdischild-2020-320241.
Thewissen L, Naulaers G, Hendrikx D, Caicedo A, Barrigton K, et al. Cerebral oxygen saturation and autoregulation during hypotension in extremely preterm infants. Pediatr Res 2021;90(2):373-80. doi: https://doi.org/10.1038/s41390-021-01483-w.
Bravo MC, López-Ortego P, Sánchez L, Riera J, Madero R, Cabañas F, Pellicer A. Randomized, Placebo-Controlled Trial of Dobutamine for Low Superior Vena Cava Flow in Infants. Journal of Pediatrics 2015;167(3):572-8. doi: https://doi.org/10.1016/j.jpeds.2015.05.037.
Bravo MC, López-Ortego P, Sánchez L, Diez J, Cabañas F, Pellicer A. Randomised trial of dobutamine versus placebo for low superior vena cava flow in preterm infants: Long-term neurodevelopmental outcome. J Paediatr Child Health 2021;57(6):872-6. doi: 10.1111/jpc.15344.
Pellicer A, Bravo MC, Madero R, Salas S, Quero J, Cabañas F. Early systemic hypotension and vasopressor support in low birth weight infants: impact on neurodevelopment. Pediatrics 2009;123(5):1369-76. doi: https://doi.org/10.1542/peds.2008-0673.
Rowcliff K, de Waal K, Mohamed AL, Chaudhari T. Noradrenaline in preterm infants with cardiovascular compromise. Eur J Pediatr 2016;175(12):1967-73. doi: https://doi.org/10.1007/s00431-016-2794-7.
Tourneux P, Rakza T, Abazine A, Krim G, Storme L. Noradrenaline for management of septic shock refractory to fluid loading and dopamine or dobutamine in full-term newborn infants. Acta Paediatr 2008;97(2):177-80. doi: https://doi.org/10.1111/j.1651-2227.2007.00601.x
Bidegain M, Greenberg R, Simmons C, Dang C, Cotten CM, Smith BP. Vasopressin for refractory hypotension in extremely low birth weight infants. J Pediatr 2010;157(3):502-4. doi: https://doi.org/10.1016/j.jpeds.2010.04.038.
Ni M, Kaiser JR, Moffett BS, Rhee CJ, Placencia J, Dinh KL, Hagan JL, Rios DR. Use of Vasopressin in Neonatal Intensive Care Unit Patients With Hypotension. J Pediatr Pharmacol Ther 2017;22(6):430–5. doi: https://doi.org/10.5863/1551-6776-22.6.430.
Rios DR, Kaiser JR. Vasopressin versus dopamine for treatment of hypotension in extremely low birth weight infants: a randomized, blinded pilot study. J Pediatr 2015;166(4):850-5. doi: https://doi.org/10.1016/j.jpeds.2014.12.027.
Mohamed AA, Louis D, Surak A, Weisz DE, McNamara P, Jain A. Vasopressin for refractory persistent pulmonar hypertension of the newborn in preterm neonates – a case series. J Matern Fetal Neonatal Med 2022;35(8):1476-83. doi: https://doi.org/10.1080/14767058.2020.1757642.
Jain A, Sahni M, El-Khuffash A, Khadawardi E, Sehgal A, McNamara PJ. Use of targeted neonatal echocardiography to prevent postoperative cardiorespiratory instability after patent ductus arteriosus ligation. J Pediatr 2012;160(4):584-9. doi: https://doi.org/10.1016/j.jpeds.2011.09.027.
James AT, Bee C, Corcoran JD, McNamara PJ, Franklin O, El-Khuffash AF. Treatment of premature infants with pulmonary hypertension and right ventricular dysfunction with milrinone: a case series. J Perinatol 2015;35(4):268-73. doi: https://doi.org/10.1038/jp.2014.208.
Ng PC, Lee CH, Lam CW, Ma KC, Fok TF, Chan IH, Wong E. Transient adrenocortical insufficiency of prematurity and systemic hypotension in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 2004;89(2):119-26. doi: https://doi.org/10.1136/adc.2002.021972.
Efird MM, Heerens AT, Gordon PV, Bose CL, Young DA. A randomized-controlled trial of prophylactic hydrocortisone supplementation for the prevention of hypotension in extremely low birth weight infants. J Perinatol 2005;25(2):119-24. doi: https://doi.org/10.1038/sj.jp.7211193.
Bourchier D, Weston P. Randomised trial of dopamine compared with hydrocortisone for the treatment of hypotensive very low birthweight infants. Arch Dis Child Fetal Neonatal Ed 1997;76(3):174–8. doi: https://doi.org/10.1136/fn.76.3.f174.
Ng PC, Lee CH, Bnur FN, Chan IH, Lee AW, Wong E, et al. A double-blind, randomized, controlled study of a “stress dose” of hydrocortisone for rescue treatment of refractory hypotension in preterm infants. Pediatrics 2006;117(2):367-75. doi: https://doi.org/10.1542/peds.2005-0869.
Noori S, Friedlich P, Wong P, Ebrahimi M, Siassi B, Seri I. Hemodynamic changes after low-dosage hydrocortisone administration in vasopressor-treated preterm and term neonates. Pediatrics 2006;118(4):1456-66. doi: https://doi.org/10.1542/peds.2006-0661.
Ibrahim H, Sinha IP, Subhedar NV. Corticosteroids for treating hypotension in preterm infants. Cochrane Database Syst Rev 2011(12):CD003662. doi: https://doi.org/10.1002/14651858.CD003662.pub4.
Barrington KJ, Finer N, Pennaforte T, Altit G. Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev 2017;1(1):CD000399. doi: 10.1002/14651858.CD000399.pub3.
Barrington KJ, Finer N, Pennaforte T. Inhaled nitric oxide for respiratory failure in preterm infants. Cochrane Database Syst Rev 2017;1(1):CD000509. doi: https://doi.org/10.1002/14651858.CD000509.pub5.
Shah DM, Kluckow M. Early functional echocardiogram and inhaled nitric oxide: usefulness in managing neonates born following extreme preterm premature rupture of membranes (PPROM). J Paediatr Child Health 2011;47(6):340-5. doi: https://doi.org/10.1111/j.1440-1754.2010.01982.x.
Downloads
Publicado
Como Citar
Edição
Secção
Licença
Direitos de Autor (c) 2024 Catarina Couto
Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.
Copyright e Direitos dos Autores
Todos os artigos publicados na Revista Nascer e Crescer – Birth and Growth Medical Journal são de acesso aberto e cumprem os requisitos das agências de financiamento ou instituições académicas. Relativamente à utilização por terceiros a Nascer e Crescer – Birth and Growth Medical Journal rege-se pelos termos da licença Creative Commons "Atribuição - Uso Não-Comercial - (CC-BY-NC)"".
É da responsabilidade do autor obter permissão para reproduzir figuras, tabelas, etc. de outras publicações.
Juntamente com a submissão do artigo, os autores devem enviar a Declaração de conflito de interesses e formulário de autoria. Será enviado um e-mail ao autor correspondente, confirmando a receção do manuscrito.
Os autores ficam autorizados a disponibilizar os seus artigos em repositórios das suas instituições de origem, desde que mencionem sempre onde foram publicados e de acordo com a licença Creative Commons.