Prognóstico da Evasão Escolar em Instituição de Educação Profissional e Tecnológica por meio da Inteligência Artificial

Authors

  • Carlos Vital Giordano Centro Paula Souza, São Paulo, Brasil.
  • Raphael Antonio de Souza Centro Paula Souza, São Paulo, Brasil

DOI:

https://doi.org/10.25755/int.29456

Abstract

School dropout is a worrisome problem for educational institutions, society, educational policy makers, and students. The early identification of students with high dropout probability is essential in the establishment of actions to prevent the disorder. The research aims to verify the option of using Machine Learning (ML) algorithm to identify students with higher dropout risk. Using an Auto Machine Learning (AutoML) tool, the data of 1,222 students from an IEPT technical course was analyzed. After pre-processing the data, the purged data was submitted to the AutoML tool, which generated an algorithm model with accuracy higher than 90.0% when identifying students with the possibility of dropping out. The study results demonstrate the favorable perspective in the use of AM in educational data.

Author Biographies

Carlos Vital Giordano, Centro Paula Souza, São Paulo, Brasil.

Professor at the Professional Master's Program in Management and Development of Professional Education at Centro Paula Souza, São Paulo, Brazil.

Raphael Antonio de Souza, Centro Paula Souza, São Paulo, Brasil

Mestrando do programa de mestrado profissional em gestão e desenvolvimento da educação profissional do CEETEPS.

Published

2023-08-28

How to Cite

Giordano, C. V., & Souza, R. A. de . (2023). Prognóstico da Evasão Escolar em Instituição de Educação Profissional e Tecnológica por meio da Inteligência Artificial. Interacções, 19(66), 1–20. https://doi.org/10.25755/int.29456