STEM education in the development of cognitive structures about energy transformations: A study with 9th grade students

Authors

DOI:

https://doi.org/10.21814/rpe.25599

Keywords:

Cognitive structures, Science education, STEM education, Word association test (WAT), Energy transformations

Abstract

The concept of energy, although a central concept in Science teaching, is an abstract concept, whose understanding poses many challenges and difficulties to students. Likewise, the phenomena associated with this concept, namely energy transformations, are particularly difficult for most students. Thus, this study aimed to know the effect of a STEM activity (Science, Technology, Engineering, and Mathematics), for the teaching, in a formal context, of the topic “Energy Transformations”, in the cognitive structures of 31 students attending the 9th grade. The study followed a pre-test and post-test design, with a single group. Data collection was performed through a word association test (WAT), with six stimulus words, before and after the activity. The results obtained allowed the construction of tables of frequencies and maps of the cognitive structures of the students in the two distinct moments. In addition, and as a way of revealing the nature of the word associations made by the students, they were asked to write sentences with the associated words. The analysis of the results was performed considering the associations most frequently made by the students (i.e., based on the type and frequencies of the response words) and their nature (i.e., based on the sentences written by the students). Considering the results and their analysis, it is possible to conclude that there was an evolution of the cognitive structures of the students, which is indicative that their involvement in the STEM activity promoted the construction of a more in-depth knowledge about the contents in question.

Downloads

Download data is not yet available.

Author Biographies

Iva Martins, Universidade de Lisboa Instituto de Educação

Iva Martins é Doutora em Bioquímica pela Faculdade de Ciências da Universidade de Lisboa e Mestre em Ensino da Física e da Química para o 3.º Ciclo e Ensino Secundário pelo Instituto de Educação da Universidade de Lisboa (IE-ULisboa). Desempenha funções de Investigadora Doutorada e docente no Curso de Mestrado em Ensino da Física e da Química no IE-ULisboa. As suas áreas de interesse são: Educação STEM, inquiry, PCK e desenvolvimento profissional dos professores de ciências.

Mónica Baptista, Instituto de Educação da Universidade de Lisboa

Mónica Baptista é Doutora em Educação - Didática das Ciências pela Universidade de Lisboa. É Subdiretora e Professora Associada no IE-ULisboa. É representante dos países do mediterrâneo no IOSTE. Supervisiona trabalhos de mestrado e de doutoramento, estando envolvida na coordenação do Mestrado em Ensino de Física e Química. Coordena o projeto de investigação GoSTEM, financiado pela Fundação para a Ciência e Tecnologia e participa em vários projetos Europeus (e.g., Hands-on-Remote, KeySTEM, LOOP). As suas áreas de interesse Educação STEM, inquiry, lesson study e desenvolvimento profissional dos professores de ciências.

Inês Tomé, Externato de Penafirme

Inês Tomé é Licenciada em Ensino de Físico-Química, pela Faculdade de Ciências da Universidade de Lisboa e Mestre em Ensino na área de Didática das Ciências, pelo IE-ULisboa. Leciona a disciplina de Físico-Química no Externato de Penafirme desde 2005, desempenhando a função de diretora de turma desde 2006.

References

Almeida, L., & Freire, T. (2003). Metodologia da investigação em psicologia e educação. Psiquilíbrios.

Ausubel, D. P. (1963). Cognitive structure and the facilitation of meaningful verbal learning. Journal of Teacher Education, 14(2), 217-221. https://doi.org/10.1177/002248716301400220

Bächtold, M. (2018). How should energy be defined throughout schooling? Research in Science Education, 48(2), 345-367. https://doi.org/10.1007/s11165-016-9571-5

Bahar, M., Johnstone, A. H., & Sutcliffe, R. G. (1999). Investigation of students’ cognitive structure in elementary genetics through word association tests. Journal of Biological Education, 33(3), 134-141. https://doi.org/10.1080/00219266.1999.9655653

Baptista, M., Martins, I., Conceição, T., & Reis, P. (2019). Multiple representations in the development of students’ cognitive structures about the saponification reaction. Chemistry Education Research and Practice, 20(4), 760-771. https://doi.org/10.1039/C9RP00018F

Camoez, J. (2012). Relatório de estágio [Relatório de mestrado, Universidade Nova de Lisboa]. Repositório da Universidade Nova de Lisboa. http://hdl.handle.net/10362/9136

Cardellini, L., & Bahar, M. (2000). Monitoring the learning of chemistry through word association tests. Australian Chemistry Resource Book, 19, 59-69.

Cardoso, A. (2020). Educação STEM na aprendizagem da eletricidade. Um trabalho com alunos do 9.º ano [Relatório de mestrado, Universidade de Lisboa]. Repositório da Universidade de Lisboa. http://hdl.handle.net/10451/47065

Chiu, M. H., & Duit, R. (2011). Globalization: Science education from an international perspective. Journal of Research in Science Teaching, 48(6), 553-566. https://doi.org/10.1002/tea.20427

Christensen, R., & Knezek, G. (2017). Relationship of middle school student STEM interest to career intent. Journal of Education in Science, Environment and Health, 3(1), 1-13. https://doi.org/10.21891/jeseh.275649

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design and analysis issues for field settings. Houghton Mifflin.

Cotabish, A., Dailey, D., Robinson, A., & Hughes, G. (2013). The effects of a STEM intervention on elementary students’ science knowledge and skills. School Science and Mathematics, 113(5), 215-226. https://doi.org/10.1111/ssm.12023

Crippen, K. J., & Antonenko, P. D. (2018). Designing for collaborative problem solving in STEM cyberlearning. In Y. J. Dori, Z. R. Mevarech, & D. R. Baker (Eds.), Cognition, metacognition, and culture in STEM education (pp. 89-116). Springer Nature. https://doi.org/10.1007/978-3-319-66659-4_5

Crotty, E. A., Guzey, S. S., Roehrig, G. H., Glancy, A. W., Ring-Whalen, E. A., & Moore, T. J. (2017). Approaches to integrating engineering in STEM units and student achievement gains. Journal of Pre-College Engineering Education Research, 7(2), Article 1. https://doi.org/10.7771/2157-9288.1148

Derman, A., & Eilks, I. (2016). Using a word association test for the assessment of high school students’ cognitive structures on dissolution. Chemistry Education Research and Practice, 17(4), 902-913. https://doi.org/10.1039/c6rp00084c

Duit, R. (1987). Should energy be introduced as something quasi-material? International Journal of Science Education, 9(2), 139-145. https://doi.org/10.1080/0950069870090202

Duit, R. (2014). Teaching and learning the physics energy concept. In R. F. Chen, A. Eisenkraft, D. Fortus, J. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education (pp. 67-85). Springer. https://doi.org/10.1007/978-3-319-05017-1_5

Eryilmaz, A. (2002). Effects of conceptual assignments and conceptual change discussions on students’ misconceptions and achievement regarding force and motion. Journal of Research in Science Teaching, 39(10), 1001-1015. https://doi.org/10.1002/tea.10054

Fernandes, A. M., & Soares, S. (2022). Estruturas cognitivas e conceções alternativas sobre energia: Estudo preliminar em futuros professores do 1.º CEB. APEduC Revista, 3(2), 31-42. https://apeducrevista.utad.pt/index.php/apeduc/article/view/315

Feynman, R., Leighton, R., & Sands, M. (2011). The Feynman lectures on physics. New millennium edition. Volume I: Mainly mechanics, radiation and heat. New York: Basic Books.

Fiolhais, C. (Coord.). (2013). Metas curriculares do 3.º ciclo do ensino básico: Ciências físico-químicas. Direção-Geral da Educação. https://www.dge.mec.pt/sites/default/files/ficheiros/eb_cfq_metas_curriculares_3c_0.pdf

Gazibeyoglu, T., & Aydin, A. (2019). The effect of STEM-based activities on 7th grade students’ academic achievement in force and energy unit and students’ opinions about these activities. Universal Journal of Educational Research, 7(5), 1275-1285. https://doi.org/10.13189/ujer.2019.070513

Gunstone, R. F. (1980). Word association and the description of cognitive structure. Research in Science Education, 10(1), 45-53. https://doi.org/10.1007/bf02356308

Hovardas, T., & Korfiatis, K. J. (2006). Word associations as a tool for assessing conceptual change in science education. Learning and Instruction, 16(5), 416-432. https://doi.org/10.1016/j.learninstruc.2006.09.003

Jewett, J. (2008). Energy and the confused student III: Language. The Physics Teacher, 46(3), 149-153. https://doi.org/10.1119/1.2840978

Johnson, P. E. (1967). Some psychological aspects of subject-matter structure. Journal of Educational Psychology, 58(2), 75-83. https://doi.org/10.1037/h0024465

Johnson, P. E. (1969). On the communication of concepts in science. Journal of Educational Psychology, 60(1), 32-40. https://doi.org/10.1037/h0026691

Kitchen, J. A., Sonnert, G., & Sadler, P. M. (2018). The impact of college- and university-run high school summer programs on students’ end of high school STEM career aspirations. Science Education, 102(3), 529-547. https://doi.org/10.1002/sce.21332

Kostova, Z., & Radoynovska, B. (2008). Word association test for studying conceptual structures of teachers and students. Bulgarian Journal of Science and Education Policy, 2(2), 209-231. http://bjsep.org/getfile.php?id=20

Lemke, J. (1998). Teaching all the languages of science: Words, symbols, images, and actions. La Caixa Conference On Science Education. https://doi.org/10.13140/2.1.4022.5608

Liu, G., & Fang, N. (2017). Student misconceptions of work and energy in engineering dynamics. Proceedings of the 2017 ASEE Gulf-Southwest Section Annual Conference. https://www.researchgate.net/publication/313558250

Marques, M. (2009). Integração de tópicos de história das ciências no ensino – Estudo de caso: Energia no ensino básico. Actes d’Història de La Ciència i de la Tècnica, 2(1), 327-335. https://revistes.iec.cat/index.php/AHCT/article/view/55774.001

Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799-822. https://doi.org/10.1002/sce.21522

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage Publications.

Moore, T. J., Tank, K. M., Glancy, A. W., & Kersten, J. A. (2015). NGSS and the landscape of engineering in K-12 state science standards. Journal of Research in Science Teaching, 52(3), 296-318. https://doi.org/10.1002/tea.21199

Moreno, J. (2013). Ensino da física e da química e as concepções alternativas dos alunos do ensino secundário sobre o conceito de energia – Relatório de estágio [Dissertação de mestrado, Universidade Nova de Lisboa]. Repositório da Universidade Nova de Lisboa. http://hdl.handle.net/10362/12206

Nakiboglu, C. (2008). Using word associations for assessing non major science students’ knowledge structure before and after general chemistry instruction: The case of atomic structure. Chemistry Education Research and Practice, 9(4), 309-322. https://doi.org/10.1039/b818466f

National Academy of Engineering and National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. The National Academies Press. https://doi.org/10.17226/18612

National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. The National Academies Press. https://doi.org/10.17226/9596

Ortiz-Revilla, J., Adúriz-Bravo, A., & Greca, I. M. (2020). A framework for epistemological discussion on integrated STEM education. Science & Education, 29(4), 857-880. https://doi.org/10.1007/s11191-020-00131-9

Ortiz-Revilla, J., Greca, I. M., & Arriassecq, I. (2022). A theoretical framework for integrated STEM education. Science & Education, 31(2), 383-404. https://doi.org/10.1007/s11191-021-00242-x

Özcan, O., & Tavukçuoğlu, E. (2018). Investigating the high school students’ cognitive structures about the light concept through word association test. Journal of Education and Future, 13, 121-132. https://www.researchgate.net/publication/322963382

Park, W., Wu, J. Y., & Erduran, S. (2020). The nature of STEM disciplines in the science education standards documents from the USA, Korea and Taiwan. Science & Education, 29, 899-927. https://doi.org/10.1007/s11191-020-00139-1

Piaget, J. (1964). Part I: Cognitive development in children: Piaget development and learning. Journal of Research in Science Teaching, 2(3), 176-186. https://doi.org/10.1002/tea.3660020306

Piaget, J. (1978). Success and understanding. Harvard University Press.

Pilot, A., & Bulte, A. M. W. (2006). Why do you “need to know”? Context-based education. International Journal of Science Education, 28(9), 953-956. https://doi.org/10.1080/09500690600702462

Quinn, C. M., Reid, J. W., & Gardner, G. E. (2020). S + T + M = E as a convergent model for the nature of STEM. Science & Education, 29(4), 881-898. https://doi.org/10.1007/s11191-020-00130-w

Quinn, H. R. (2014). A physicist’s musings on teaching about energy. In R. F. Chen, A. Eisenkraft, D. Fortus, J. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education (pp. 15-36). Springer Nature. https://doi.org/10.1007/978-3-319-05017-1_2

Sanders, M. (2009). STEM, STEM Education, STEMmania. The Technology Teacher, 68(4), 20-27. https://www.teachmeteamwork.com/files/sanders.istem.ed.ttt.istem.ed.def.pdf

Şendur, G., & Toprak, M. (2017). An investigation of changes in the cognitive structures of 11th grade students using the word association test: The case of chemical equilibrium. Journal of Turkish Studies, 12(17), 411-436. https://doi.org/10.7827/turkishstudies.11911

Sgro, C. M., Bobowski, T., & Oliveira, A. W. (2020). Current praxis and conceptualization of STEM education: A call for greater clarity in integrated curriculum development. In V. Akerson & G. Buck (Eds.), Critical questions in STEM education (pp. 185-210). Springer. https://doi.org/10.1007/978-3-030-57646-2_11

Shahali, E., Halim, L., Rasul, M. S., Osman, K., & Zulkifeli, M. A. (2017). STEM learning through engineering design: Impact on middle secondary students’ interest towards STEM. Eurasia Journal of Mathematics, Science and Technology Education, 13(5), 1189-1211. https://doi.org/10.12973/eurasia.2017.00667a

Taber, K. S. (2008). Exploring conceptual integration in student thinking: Evidence from a case study. International Journal of Science Education, 30(14), 1915-1943. https://doi.org/10.1080/09500690701589404

Tanel, Z., & Tanel, R. (2010). Determining the misconceptions and learning difficulties of undergraduate level students on topics of energy and momentum. Balkan Physics Letters, 18, 108-117.

Tatar, E., & Oktay, M. (2007). Students’ misunderstandings about the energy conservation principle: A general view to studies in literature. International Journal of Environmental & Science Education, 2(3), 79-81. https://www.researchgate.net/publication/255651470

Thibaut, L., Ceuppens, S., de Loof, H., de Meester, J., Goovaerts, L., Struyf, A., Boeve-de Pauw, J., Dehaene, W., Deprez, J., de Cock, M., Hellinckx, L., Knipprath, H., Langie, G., Struyven, K., van de Velde, D., van Petegem, P., & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), e02. https://doi.org/10.20897/ejsteme/85525

Toma, R. B., & Greca, I. M. (2018). The effect of integrative STEM instruction on elementary students’ attitudes toward science. Eurasia Journal of Mathematics, Science and Technology Education, 14(4), 1383-1395. https://doi.org/10.29333/ejmste/83676

Tomás, A. (2021). STEM no ensino da massa e do peso. Um estudo com alunos do 7.º ano [Dissertação de mestrado, Universidade de Lisboa]. Repositório da Universidade de Lisboa. http://hdl.handle.net/10451/47105

Trumper, R. (1993). Children’s energy concepts: A cross‐age study. International Journal of Science Education, 15(2), 139-148. https://doi.org/10.1080/0950069930150203

Tsai, C. C. (2001). Probing students’ cognitive structures in science: The use of a flow map method coupled with a meta-listening technique. Studies in Educational Evaluation, 27(3), 257-268. https://doi.org/10.1016/S0191-491X(01)00029-3

Tsai, C. C., & Huang, C. M. (2002). Exploring students’ cognitive structures in learning science: A review of relevant methods. Journal of Biological Education, 36(4), 163-169. https://doi.org/10.1080/00219266.2002.9655827

Tsupros, N., Kohler, R., & Hallinen, J. (2009). STEM education: A project to identify the missing components [Summary report]. Intermediate Unit 1: Center for STEM Education and Leonard Gelfand Center for Service Learning and Outreach, Carnegie Mellon University, Pennsylvania.

Valadares, J. (1994a). A energia. Química, (53), 30-41. https://dx.doi.org/10.52590/M3.P577.A3000633

Valadares, J. (1994b). Alguns aspectos essenciais sobre a energia. Química, (54), 38-46. https://dx.doi.org/10.52590/M3.P578.A3000647

Valadares, J. (1995). Concepções alternativas no ensino da física à luz da filosofia da ciência [Tese de doutoramento, Universidade Aberta]. Repositório Aberto - Universidade Aberta. http://hdl.handle.net/10400.2/2520

Vygotsky, L. (1978). Mind in society: The development of higher psychological processes. Harvard University Press.

Warren, J. W. (1982). The nature of energy. European Journal of Science Education, 4(3), 295-297. https://doi.org/10.1080/0140528820040308

Yildirir, H. E., & Demirkol, H. (2018). Revealing students’ cognitive structure about physical and chemical change: Use of a word association test. European Journal of Education Studies, 4(1), 134-154. https://doi.org/10.5281/zenodo.1156414

Published

2023-07-31

How to Cite

Martins, I., Baptista, M., & Tomé, I. (2023). STEM education in the development of cognitive structures about energy transformations: A study with 9th grade students. Portuguese Journal of Education, 36(2), e23032. https://doi.org/10.21814/rpe.25599