Artificial Intelligence and Socio-Scientific Controversies in Science Teaching in Higher Education
Approaches and Projections Based on a Bibliographic Review
DOI:
https://doi.org/10.25749/sis.36570Keywords:
higher education, socio-scientific controversies, artificial intelligence, natural language processing, student feedbackAbstract
This literature review explores the implementation of Artificial Intelligence (AI) and Natural Language Processing (NLP) in the analysis of student feedback in universities. The methodology includes identification of the topic, systematic search of sources, assessment of the relevance and quality of the studies, and synthesis of the findings. The advantages and challenges of using AI and NLP to analyse student feedback, as well as their impact on improving educational quality, are discussed. The case studies of this literature review provide valuable information for the integration of socio-scientific controversies (SSC) in science education.
Downloads
References
Adair, A. (2023). Teaching and Learning with AI: How Artificial Intelligence is Transforming the Future of Education. XRDS: Crossroads, The ACM Magazine for Students, 29(3), 7-9. https://dl.acm.org/doi/fullHtml/10.1145/3589252
Albe V., Barrué C., Bencze L., Byhring A. K., Carter L., Grace M., Knain E., KolstØ D., Reis P., & Sperling E. (2014). Teachers' beliefs, classroom practices and professional development towards socio-scientific issues. In C. Bruguiere, A. Tiberghien & P. Clement (Eds.), Topics and Trends in Current Science Education (pp. 55-69). Springer. https://doi.org/10.1007/978-94-007-7281-6_4
Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: using learning analytics to increase student success. LAK '12: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 267-270). https://dl.acm.org/doi/10.1145/2330601.2330666
Bárcena, A., Samaniego, J., Peres, W., & Alatorre, J. E. (2020). La emergencia del cambio climático en América Latina y el Caribe: ¿seguimos esperando la catástrofe o pasamos a la acción? Comisión Económica para América Latina y El Caribe (CEPAL), N°160 (LC/PUB.2019/23P), Santiago de Chile. https://hdl.handle.net/11362/45677
Botelho, A., Baral, S., Erickson, J. A., Benachamardi, P., & Heffernan, N. T. (2023). Leveraging natural language processing to support automated assessment and feedback for student open responses in mathematics. Journal of Computer Assisted Learning, 39(3), 823-840. https://par.nsf.gov/servlets/purl/10470437
Carrasco, P. A., Orellana, N. J., & Quintanilla-Gatica, M. (2022, abril-junio). Argumentación y aprendizaje de la Teoría Ácido-Base. Educación Química, 33(2), 50-63. http://dx.doi.org/10.22201/fq.18708404e.2022.2.78138
Davidson, C. N. (2022). The New Education. Updated Paperback Edition: How to Revolutionize the University to Prepare Students for a World in Flux. Basic Books.
Demszky, D., Liu, J., Hill, H. C., Jurafsky, D., & Piech, C. (2023). Can Automated Feedback Improve Teachers’ Uptake of Student Ideas? Evidence From a Randomized Controlled Trial in a Large-Scale Online Course. Educational Evaluation and Policy Analysis, 46(3), 483-505. https://doi.org/10.3102/01623737231169270
Díaz Moreno, N., & Jiménez Liso, M. R. (2012). Las controversias sociocientíficas: temáticas e importancia para la educación científica. Revista eureka sobre enseñanza y divulgación de las ciencias, 9(1), 54-70. http://hdl.handle.net/10498/14624
Dos Santos, W. L. P., & Mortimer, E. F. (2016). Abordagem de aspectos sociocientíficos em aulas de ciências: possibilidades e limitações. Investigações em Ensino De Ciências, 14(2), 191-218. https://ienci.if.ufrgs.br/index.php/ienci/article/view/355
Equihua, M., Hernández, A., Pérez, O., Benítez, G., & Ibáñez, S. (2016). Cambio Global: El Antropoceno. CIENCIA ergo-sum, 23(1), 67-75. https://cienciaergosum.uaemex.mx/article/view/8115
Farnós, J. D. (2024). Formación de alumnos y docentes en el S XXI (Educación disruptiva & IA)-II. https://juandomingofarnos.wordpress.com/2024/05/07/formacion-de-alumnos-y-docentes-en-el-s-xxi-educacion-disruptiva-ia-ii/
García-Carmona, A., & Criado, A. M. (2017). Enseñanza de la energía en la etapa 6-12 años: un planteamiento desde el ámbito curricular de las máquinas. Enseñanza de Las Ciencias: Revista de Investigación Y Experiencias Didácticas, 31(3), 87-102. https://raco.cat/index.php/Ensenanza/article/view/285796
Garreaud, R. (2011). Cambio Climático: Bases Físicas e Impactos en Chile. Revista Tierra Adentro – INIA, (93). http://dgf.uchile.cl/rene/PUBS/inia_RGS_final.pdf
Genel, A., & Topçu, M. S. (2016). Turkish preservice science teachers’ socioscientific issues-based teaching practices in middle school science classrooms. Research in Science & Technological Education, 34(1), 105-123. https://doi.org/10.1080/02635143.2015.1124847
González-Gaudiano, E., Meira, P., & Gutiérrez, J. (2020) ¿Cómo educar sobre la complejidad de la crisis climática? Hacia un currículum de emergencia. Revista Mexicana de Investigación Educativa, XXV(87), (NÚMERO TEMÁTICO Educación y comunicación para el cambio climático), 843-872. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-66662020000400843
Guerrero, G., & Sjöström, J. (2024). Critical scientific and environmental literacies: a systematic and critical review. Studies in Science Education, 61(1), 41-87. https://doi.org/10.1080/03057267.2024.2344988
IABAC. (2023, September 13). Ethical Considerations in Data Science - IABAC - Medium. https://iabac.medium.com/ethical-considerations-in-data-science-1453dee88b2
IBM. (2024, June 10). Procesamiento del lenguaje natural. https://www.ibm.com/es-es/topics/natural-language-processing?regionCode=es&languageCode=es&cm-history=es-es
Jiménez Aleixandre, M. P., & Puig, B. (2010). Argumentación y evaluación de explicaciones causales en ciencias: el caso de la inteligencia. Alambique: didáctica de las ciencias experimentales, (63), 11-18. http://hdl.handle.net/11162/24293
Karisan, D., & Zeidler, D. L. (2017). Contextualization of Nature of Science Within the Socioscientific Issues Framework: A Review of Research. International Journal of Education in Mathematics, Science and Technology, 5(2), 139-152. https://files.eric.ed.gov/fulltext/EJ1124953.pdf
Kastrati, Z., Dalipi, F., Imran, A. S., Pireva Nuci, K., & Wani, M. A. (2021). Sentiment Analysis of Students’ Feedback with NLP and Deep Learning: A Systematic Mapping Study. Appl. Sci., 11(9), 3986. https://www.mdpi.com/2076-3417/11/9/3986?type=check_update&version=1
Klucevsek, K. (2017). The Intersection of Information and Science Literacy. Communications in Information Literacy, 11(2), 354-365. https://files.eric.ed.gov/fulltext/EJ1166457.pdf
Kutluca, A. Y., & Aydin, A. (2017). Changes in Pre-service Science Teachers’ Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes. Science & Education, 26(6), 637-668. https://philpapers.org/rec/KUTCIP
Lerma García, L., Rivas Porras, D., Adame Gallegos, J. R., Ledezma Millán, F., López De La Torre, H. A., & Ortiz Palomino, C. E. (2020). Realidad Virtual como técnica de enseñanza en Educación Superior: perspectiva del usuario. Enseñanza & Teaching: Revista Interuniversitaria De Didáctica, 38(1), 111-123. https://doi.org/10.14201/et2020381111123
Lynch, J. (2017). How AI Will Destroy Education. https://medium.com/buzzrobot/how-ai-will-destroy-education-20053b7b88a6
Microsoft Copilot. (2024). Large language model. Retrieved from https://copilot.cloud.microsoft. Access October, 2024 (based on guidelines on citing generative AI in APA style https://apastyle.apa.org/blog/how-to-cite-chatgpt)
Nielsen, J. A. (2013). Delusions about evidence: On why scientific evidence should not be the main concern in socioscientific decision making. Canadian Journal of Science, Mathematics and Technology Education, 13(4), 373-385. https://doi.org/10.1080/14926156.2013.845323
Opertti, R. (2022). Sobre La Disrupción En La Educación - notas Temáticas N°9. UNESCO https://unesdoc.unesco.org/ark:/48223/pf0000382283_spa
Osborne, J., & Patterson, A. (2011). Scientific Argument and Explanation: A Necessary Distinction? Science Education, 95, 627-638. https://doi.org/10.1002/sce.20438
Pitpiorntapin S., & Topçu, M. S. (2016). Teaching Based on Socioscientific Issues in Science Classrooms: A review study. KKU International Journal of Humanities and Social Sciences, 6(1), 119-136. https://rtt.kku.ac.th/ejournal/pa_upload_pdf/229897.pdf
PRISMA-Statement (2020). (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). http://www.prisma-statement.org
Quintanilla-Gatica, M., & Adúriz-Bravo, A. (Eds.) (2024). La actualidad del modelo cognitivo de ciencia escolar. Tributo a Mercè Izquierdo-Aymerich. Editorial Bellaterra Ltda.
Ratcliffe, M., & Grace, M. (2003). Science education for citizenship: teaching socio-scientific issues. Open University Press. https://www.academia.edu/34522233/Science_Education_For_Citizenship_Teaching_Socio_Scientific_Issues
Sanchez, A., Gil Perez, D., & Martinez Torregrosa, J. (2021). Evaluar no es calificar. La evaluación y la calificación en una enseñanza constructivista de las ciencias. Investigación en la escuela, (30), 15-26. https://revistascientificas.us.es/index.php/IE/article/view/8060
Sandoval, W. A., & Millwood, K. A. (2005). The Quality of Students ’ Use of Evidence in Written Scientific Explanations. Cognition and Instruction, 23(1), 23-55. https://doi.org/10.1207/s1532690xci2301_2
Sanmartí, N. (2007). 10 ideas claves para aprender. Editoral Grao.
Sanmartí, N., & García, P. (1999). Interrelaciones entre los enfoques curriculares CTS y los enfoques de evaluación. Pensamiento Educativo, 25(2), 265-298. https://www.revistadisena.uc.cl/index.php/pel/article/view/26221
Selwyn, N. (2016). Is Technology Good for Education? Polity Press. http://au.wiley.com/WileyCDA/WileyTitle/productCd-0745696465.html
Solbes, J., & Torres, N. Y. (2020). Educación científica basada en pruebas. Praxis & Saber, 11(27), e12287. https://doi.org/10.19053/22160159.v11.n27.2020.12287
Technology Enhanced Learning - Stockholm University. (2024, September 3). www.su.se. https://www.su.se/english/research/research-subjects/computer-and-systems-sciences/technology-enhanced-learning
Tidemand S., & Nielsen J. A. (2016). The role of socioscientific issues in biology teaching: from the perspective of teachers. International Journal of Science Education, 39(1), 44-61. https://doi.org/10.1080/09500693.2016.1264644
Torres, N. (2014). Pensamiento crítico y cuestiones socio- científicas: un estudio en escenarios de formación docente. (Tesis Doctoral). Universidad de Valencia, España. https://doi.org/10.5565/rev/ensciencias.1507
Vilouta, N. (2018). Problemas sobre la conceptualización y abordaje de las controversias sociocientíficas en los profesores de ciencias. Educación y Ciencia, 7(50), 77-85. http://www.educacionyciencia.org/index.php/educacionyciencia/article/view/460
Unesco.org. (2025). https://unesdoc.unesco.org/ark:/48223/pf0000385119
Wheeler, S. (2019). Digital learning in organizations. Kogan Page.
Wilson, J. Pollard, B., Aiken, J. M., Caballero, M. D., & Lewandowski, H. J. (2022). Classification of open-ended responses to a research-based assessment using natural language processing. Physical Review Physics Education Research, https://jila.colorado.edu/sites/default/files/2022-06/PhysRevPhysEducRes.18.010141.pdf
Zawacki-Richter, O., Marín, V. I., Bond, M. et al. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? Int. J. Educ. Technol. High Educ., 16, 39. https://doi.org/10.1186/s41239-019-0171-0
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sisyphus — Journal of Education

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) belongs to Sisyphus - Journal of Education. However, we encourage issued articles to be published elsewhere, provided that Sisyphus authorization is asked for and that authors integrate our original source citation and a link to our website.
Author Self-Archiving Policy
Author(s) are permitted to self-archive the final published version in institutional or thematic repositories, and in their personal or institutional websites.
DORA Signer
The Instituto de Educação da Universidade de Lisboa, Sisyphus' Publisher, is a San Francisco Declaration on Research Assessment signer.