Inteligência Artificial e Controvérsias Sociocientíficas no Ensino de Ciências no Ensino Superior
Abordagens e Projeções Baseadas numa Revisão da Bibliografia
DOI:
https://doi.org/10.25749/sis.36570Palavras-chave:
ensino superior, controvérsias sociocientíficas, inteligência artificial, processamento de linguagem natural, feedback dos alunosResumo
Esta revisão da literatura explora a implementação da Inteligência Artificial (IA) e do Processamento de Linguagem Natural (PLN) na análise do feedback dos estudantes nas universidades. A metodologia inclui a identificação do tema, a pesquisa sistemática de fontes, a avaliação da relevância e da qualidade dos estudos e a síntese das conclusões. São discutidas as vantagens e os desafios da utilização da IA e do PNL para analisar o feedback dos estudantes, bem como o seu impacto na melhoria da qualidade do ensino. Os estudos de caso desta revisão da literatura fornecem informações valiosas para a integração das controvérsias sociocientíficas (CSC) no ensino das ciências.
Downloads
Referências
Adair, A. (2023). Teaching and Learning with AI: How Artificial Intelligence is Transforming the Future of Education. XRDS: Crossroads, The ACM Magazine for Students, 29(3), 7-9. https://dl.acm.org/doi/fullHtml/10.1145/3589252
Albe V., Barrué C., Bencze L., Byhring A. K., Carter L., Grace M., Knain E., KolstØ D., Reis P., & Sperling E. (2014). Teachers' beliefs, classroom practices and professional development towards socio-scientific issues. In C. Bruguiere, A. Tiberghien & P. Clement (Eds.), Topics and Trends in Current Science Education (pp. 55-69). Springer. https://doi.org/10.1007/978-94-007-7281-6_4
Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: using learning analytics to increase student success. LAK '12: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge (pp. 267-270). https://dl.acm.org/doi/10.1145/2330601.2330666
Bárcena, A., Samaniego, J., Peres, W., & Alatorre, J. E. (2020). La emergencia del cambio climático en América Latina y el Caribe: ¿seguimos esperando la catástrofe o pasamos a la acción? Comisión Económica para América Latina y El Caribe (CEPAL), N°160 (LC/PUB.2019/23P), Santiago de Chile. https://hdl.handle.net/11362/45677
Botelho, A., Baral, S., Erickson, J. A., Benachamardi, P., & Heffernan, N. T. (2023). Leveraging natural language processing to support automated assessment and feedback for student open responses in mathematics. Journal of Computer Assisted Learning, 39(3), 823-840. https://par.nsf.gov/servlets/purl/10470437
Carrasco, P. A., Orellana, N. J., & Quintanilla-Gatica, M. (2022, abril-junio). Argumentación y aprendizaje de la Teoría Ácido-Base. Educación Química, 33(2), 50-63. http://dx.doi.org/10.22201/fq.18708404e.2022.2.78138
Davidson, C. N. (2022). The New Education. Updated Paperback Edition: How to Revolutionize the University to Prepare Students for a World in Flux. Basic Books.
Demszky, D., Liu, J., Hill, H. C., Jurafsky, D., & Piech, C. (2023). Can Automated Feedback Improve Teachers’ Uptake of Student Ideas? Evidence From a Randomized Controlled Trial in a Large-Scale Online Course. Educational Evaluation and Policy Analysis, 46(3), 483-505. https://doi.org/10.3102/01623737231169270
Díaz Moreno, N., & Jiménez Liso, M. R. (2012). Las controversias sociocientíficas: temáticas e importancia para la educación científica. Revista eureka sobre enseñanza y divulgación de las ciencias, 9(1), 54-70. http://hdl.handle.net/10498/14624
Dos Santos, W. L. P., & Mortimer, E. F. (2016). Abordagem de aspectos sociocientíficos em aulas de ciências: possibilidades e limitações. Investigações em Ensino De Ciências, 14(2), 191-218. https://ienci.if.ufrgs.br/index.php/ienci/article/view/355
Equihua, M., Hernández, A., Pérez, O., Benítez, G., & Ibáñez, S. (2016). Cambio Global: El Antropoceno. CIENCIA ergo-sum, 23(1), 67-75. https://cienciaergosum.uaemex.mx/article/view/8115
Farnós, J. D. (2024). Formación de alumnos y docentes en el S XXI (Educación disruptiva & IA)-II. https://juandomingofarnos.wordpress.com/2024/05/07/formacion-de-alumnos-y-docentes-en-el-s-xxi-educacion-disruptiva-ia-ii/
García-Carmona, A., & Criado, A. M. (2017). Enseñanza de la energía en la etapa 6-12 años: un planteamiento desde el ámbito curricular de las máquinas. Enseñanza de Las Ciencias: Revista de Investigación Y Experiencias Didácticas, 31(3), 87-102. https://raco.cat/index.php/Ensenanza/article/view/285796
Garreaud, R. (2011). Cambio Climático: Bases Físicas e Impactos en Chile. Revista Tierra Adentro – INIA, (93). http://dgf.uchile.cl/rene/PUBS/inia_RGS_final.pdf
Genel, A., & Topçu, M. S. (2016). Turkish preservice science teachers’ socioscientific issues-based teaching practices in middle school science classrooms. Research in Science & Technological Education, 34(1), 105-123. https://doi.org/10.1080/02635143.2015.1124847
González-Gaudiano, E., Meira, P., & Gutiérrez, J. (2020) ¿Cómo educar sobre la complejidad de la crisis climática? Hacia un currículum de emergencia. Revista Mexicana de Investigación Educativa, XXV(87), (NÚMERO TEMÁTICO Educación y comunicación para el cambio climático), 843-872. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-66662020000400843
Guerrero, G., & Sjöström, J. (2024). Critical scientific and environmental literacies: a systematic and critical review. Studies in Science Education, 61(1), 41-87. https://doi.org/10.1080/03057267.2024.2344988
IABAC. (2023, September 13). Ethical Considerations in Data Science - IABAC - Medium. https://iabac.medium.com/ethical-considerations-in-data-science-1453dee88b2
IBM. (2024, June 10). Procesamiento del lenguaje natural. https://www.ibm.com/es-es/topics/natural-language-processing?regionCode=es&languageCode=es&cm-history=es-es
Jiménez Aleixandre, M. P., & Puig, B. (2010). Argumentación y evaluación de explicaciones causales en ciencias: el caso de la inteligencia. Alambique: didáctica de las ciencias experimentales, (63), 11-18. http://hdl.handle.net/11162/24293
Karisan, D., & Zeidler, D. L. (2017). Contextualization of Nature of Science Within the Socioscientific Issues Framework: A Review of Research. International Journal of Education in Mathematics, Science and Technology, 5(2), 139-152. https://files.eric.ed.gov/fulltext/EJ1124953.pdf
Kastrati, Z., Dalipi, F., Imran, A. S., Pireva Nuci, K., & Wani, M. A. (2021). Sentiment Analysis of Students’ Feedback with NLP and Deep Learning: A Systematic Mapping Study. Appl. Sci., 11(9), 3986. https://www.mdpi.com/2076-3417/11/9/3986?type=check_update&version=1
Klucevsek, K. (2017). The Intersection of Information and Science Literacy. Communications in Information Literacy, 11(2), 354-365. https://files.eric.ed.gov/fulltext/EJ1166457.pdf
Kutluca, A. Y., & Aydin, A. (2017). Changes in Pre-service Science Teachers’ Understandings After Being Involved in Explicit Nature of Science and Socioscientific Argumentation Processes. Science & Education, 26(6), 637-668. https://philpapers.org/rec/KUTCIP
Lerma García, L., Rivas Porras, D., Adame Gallegos, J. R., Ledezma Millán, F., López De La Torre, H. A., & Ortiz Palomino, C. E. (2020). Realidad Virtual como técnica de enseñanza en Educación Superior: perspectiva del usuario. Enseñanza & Teaching: Revista Interuniversitaria De Didáctica, 38(1), 111-123. https://doi.org/10.14201/et2020381111123
Lynch, J. (2017). How AI Will Destroy Education. https://medium.com/buzzrobot/how-ai-will-destroy-education-20053b7b88a6
Microsoft Copilot. (2024). Large language model. Retrieved from https://copilot.cloud.microsoft. Access October, 2024 (based on guidelines on citing generative AI in APA style https://apastyle.apa.org/blog/how-to-cite-chatgpt)
Nielsen, J. A. (2013). Delusions about evidence: On why scientific evidence should not be the main concern in socioscientific decision making. Canadian Journal of Science, Mathematics and Technology Education, 13(4), 373-385. https://doi.org/10.1080/14926156.2013.845323
Opertti, R. (2022). Sobre La Disrupción En La Educación - notas Temáticas N°9. UNESCO https://unesdoc.unesco.org/ark:/48223/pf0000382283_spa
Osborne, J., & Patterson, A. (2011). Scientific Argument and Explanation: A Necessary Distinction? Science Education, 95, 627-638. https://doi.org/10.1002/sce.20438
Pitpiorntapin S., & Topçu, M. S. (2016). Teaching Based on Socioscientific Issues in Science Classrooms: A review study. KKU International Journal of Humanities and Social Sciences, 6(1), 119-136. https://rtt.kku.ac.th/ejournal/pa_upload_pdf/229897.pdf
PRISMA-Statement (2020). (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). http://www.prisma-statement.org
Quintanilla-Gatica, M., & Adúriz-Bravo, A. (Eds.) (2024). La actualidad del modelo cognitivo de ciencia escolar. Tributo a Mercè Izquierdo-Aymerich. Editorial Bellaterra Ltda.
Ratcliffe, M., & Grace, M. (2003). Science education for citizenship: teaching socio-scientific issues. Open University Press. https://www.academia.edu/34522233/Science_Education_For_Citizenship_Teaching_Socio_Scientific_Issues
Sanchez, A., Gil Perez, D., & Martinez Torregrosa, J. (2021). Evaluar no es calificar. La evaluación y la calificación en una enseñanza constructivista de las ciencias. Investigación en la escuela, (30), 15-26. https://revistascientificas.us.es/index.php/IE/article/view/8060
Sandoval, W. A., & Millwood, K. A. (2005). The Quality of Students ’ Use of Evidence in Written Scientific Explanations. Cognition and Instruction, 23(1), 23-55. https://doi.org/10.1207/s1532690xci2301_2
Sanmartí, N. (2007). 10 ideas claves para aprender. Editoral Grao.
Sanmartí, N., & García, P. (1999). Interrelaciones entre los enfoques curriculares CTS y los enfoques de evaluación. Pensamiento Educativo, 25(2), 265-298. https://www.revistadisena.uc.cl/index.php/pel/article/view/26221
Selwyn, N. (2016). Is Technology Good for Education? Polity Press. http://au.wiley.com/WileyCDA/WileyTitle/productCd-0745696465.html
Solbes, J., & Torres, N. Y. (2020). Educación científica basada en pruebas. Praxis & Saber, 11(27), e12287. https://doi.org/10.19053/22160159.v11.n27.2020.12287
Technology Enhanced Learning - Stockholm University. (2024, September 3). www.su.se. https://www.su.se/english/research/research-subjects/computer-and-systems-sciences/technology-enhanced-learning
Tidemand S., & Nielsen J. A. (2016). The role of socioscientific issues in biology teaching: from the perspective of teachers. International Journal of Science Education, 39(1), 44-61. https://doi.org/10.1080/09500693.2016.1264644
Torres, N. (2014). Pensamiento crítico y cuestiones socio- científicas: un estudio en escenarios de formación docente. (Tesis Doctoral). Universidad de Valencia, España. https://doi.org/10.5565/rev/ensciencias.1507
Vilouta, N. (2018). Problemas sobre la conceptualización y abordaje de las controversias sociocientíficas en los profesores de ciencias. Educación y Ciencia, 7(50), 77-85. http://www.educacionyciencia.org/index.php/educacionyciencia/article/view/460
Unesco.org. (2025). https://unesdoc.unesco.org/ark:/48223/pf0000385119
Wheeler, S. (2019). Digital learning in organizations. Kogan Page.
Wilson, J. Pollard, B., Aiken, J. M., Caballero, M. D., & Lewandowski, H. J. (2022). Classification of open-ended responses to a research-based assessment using natural language processing. Physical Review Physics Education Research, https://jila.colorado.edu/sites/default/files/2022-06/PhysRevPhysEducRes.18.010141.pdf
Zawacki-Richter, O., Marín, V. I., Bond, M. et al. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? Int. J. Educ. Technol. High Educ., 16, 39. https://doi.org/10.1186/s41239-019-0171-0
Downloads
Publicado
Edição
Secção
Licença
Direitos de Autor (c) 2025 Sisyphus – Revista de Educação

Este trabalho encontra-se publicado com a Creative Commons Atribuição-NãoComercial 4.0.
O Copyright (c) pertence à Sisyphus – Journal of Education. No entanto, encorajamos que os artigos publicados na revista sejam publicados noutros lugares, desde que seja solicitada a autorização da Sisyphus e os autores integrem a nossa citação de fonte original e um link para o nosso site.
Política de auto-arquivo
É permitido aos autores o auto-arquivo da versão final publicada dos seus artigos em repositórios institucionais, temáticos ou páginas web pessoais e institucionais.
Subscritor DORA
O Instituto de Educação da Universidade de Lisboa, editor da Sisyphus, é um dos subscritores da Declaração de São Francisco sobre Avaliação da Investigação (DORA).