Produção de Emulsionantes através da Glicerólise de Óleo de Bagaço de Azeitona Catalisada pela Lipase da Candida Rugosa Imobilizada em Espumas de Poliuretano

Authors

  • A. C. Correia
  • M. M. R. Fonseca
  • S. Ferreira‐Dias

Abstract

Os monoacilgliceróis (MAG) e diacilgliceróis (DAG) são dos emulsionantes mais utilizados na indústria alimentar e farmacêutica.

Neste trabalho pretendeu-se selecionar preparações enzimáticas imobilizadas adequadas à biocatálise da glicerólise do óleo de bagaço de azeitona refinado em nhexano para a produção de glicéridos parciais (MAG e DAG).

Para tal, testaram-se duas preparações enzimáticas da Candida rugosa imobilizadas em espumas de poliuretano (Hypol) com diferentes aquafilicidade (FHP X4300 e FHP 2002).

A modelação e otimização da glicerólise foram efetuadas recorrendo à metodologia das superfícies de resposta. Os ensaios foram realizados em função da razão molar glicerol/triacilgliceróis e o valor da aw inicial.

Os valores mais elevados de MAG (32%, m/m) e DAG (18%, m/m) foram obtidos quando a lipase se encontrava imobilizada em espuma de poliuretano FHP X4300.

Downloads

Download data is not yet available.

References

• Armstrong, D. W., Yamazaki, H. (1986). Natural flavours production: A biotechnological approach. Trends

in Biotechnol., 4: 264-268.

• Balcao, V. M., Paiva, A. L., Malcata, F. X. (1996). Bioreactors with immobilized lipases: state of the art.

Enzyme Microb Technol., 18: 392-416.

• Becher, P. (1957). Emulsions: Theory and Practice. American Chemical Society Monograph, n.º 135,

Reinhold, New York.

• Ferreira-Dias, S., da Fonseca, M. M. R. (1993). Enzymatic glicerolysis of olive oil: a reactional system with

major analytical problems. Biotechnol. Technol., 7 (7): 447-452.

• Ferreira-Dias, S., da Fonseca, M. M. R. (1995). Production of monoglycerides by glycerolysis of olive oil

with immobilized lipases: effect of water activity. Bioprocess Eng., 12 (5): 327-337.

• Ferreira-Dias, S., Correia, A. C., Baptista, F. O. (1999). Activity and batch operational stability of Candida

rugosa lipase immobilized in different hydrophilic polyurethane foams during hydrolysis in a biphasic

medium. Bioprocess Eng., 21: 517-524.

• Fisher, L. R., Parker, N. S. (1988). Effect of surfactants on the interactions between emulsion droplets, In: E.

Dickinson, G. Stainsby (Eds.). Advances in Food Emulsions and Foams. Elsevier Applied Science, London

and New York, pp. 45-90.

• Goderis, H. L., Ampe, G., Feyten, M. P., Fouwé, B. L., Guffens, W. M., Van Cauwenbergh, S. M., Tobback,

P. P. (1987). Lipase-catalyzed ester exchange reactions in organic media with controlled humidity.

Biotechnol. Bioeng. 30 (2): 258-266.

• Heisler, A., Rabiller, C., Hublin, L. (1991). Lipase catalysed isomerisation of 1,2-(2,3)-diglyceride into 1,3-

diglyceride. The crucial role of water. Biotechnol. Lett., 13 (5): 327-332.

• Kazlauskas, R. J, Bornscheuer, U. T. (1998). Biotransformations with Lipases. In: H. J. Rhem, P. Stader

(Eds.), A Multi Comprehensive Treatise Biotechnology, 8: 37-191.

• Kennedy, J. F., Cabral, J. M. S. (1987). Enzyme immobilization in biotechnology. In: H. J. Rhem, G. Reed

(Eds.). Enzyme Technology, 7: 347-404.

• Lowry, R. R., Tinsley, I. J. (1976). Rapid colorimetric determination of free fatty acids. J. Am. Oil Chem.

Soc., 53 (7): 470-472.

• Macrae, A. R. (1985). Interesterification of fats and oils. In: J. Tramper, H.C. van der Plas, P. Linko (Eds.).

Biocatalysis in Organic Syntheses. Elsevier Science Publishers B. V., Amsterdam, pp. 195-208.

• Nandi, S., Gangopadhyay, S., Ghosh, S. (2005). Production of medium chain glycerides from coconut and

palm kernel fatty acid distillates by lipase-catalyzed reactions. Enzyme Microb Technol., 36: 725-728.

• Noureddini, H., Medikonduru, V. (1997). Glycerolysis of Fats and Methyl Esters. J. Am. Oil Chem. Soc., 74

(4): 419-425.

Persson, M., Mladenoska, I., Wehtje, E., Adlercreutz, P. (2002). Preparation of lipases for use in organic

solvents. Enzyme Microb Technol., 31: 833-841.

• Pires-Cabral, P., da Fonseca, M. M. R, Ferreira-Dias, S. (2007). Modelling the production of ethyl butyrate

catalysed by Candida rugosa lipase immobilized in polyurethane foams. Biochem Eng J.., 33 (5): 327-337.

• Rosu, R., Uozaki, Y., Iwasaki, Y., Yamane, T. (1997). Repeated Use of Immobilized Lipase for

Monoacylglycerol Production by Solid-Phase Glycerolysis of Olive Oil. J. Am. Oil Chem. Soc., 74:

-158.

• Shao, P., Meng, X., He, J., Sun, P. (2008). Analysis of immobilized Candida rugosa lipase catalyzed

preparation of biodiesel from rapeseed soapstock. Food Bioprod Process., 86: 283-289.

• Sonntag, N. O. V. (1982). Fat splitting, esterification, and interesterification, In: D. Swern (Ed.). Bailey’s

Industrial Oil and Fat Products, volume 2. 4ª edition. John Wiley & Sons, pp. 97-173.

• Uzzan, A. (1996): Olive Oil, In: A. Karleskind and J. P. Wolff (Eds.). Oils and Fats Manual – A

Comprehensive Treatise. Properties, Production, Applications. Intercept Ltd.: pp. 783-788.

• Vuataz, L. (1986). Response Surface Methodology, In: J. R. Piggott (Ed.). Statistical Procedures in Food

Research. Elsevier Applied Science, London & New York, pp. 101-123.

• Zu-Yi, L., Ward, O. P. (1993). Stability of microbial lipase in alcoholysis of fish oil during repeated enzyme

use. Bioterchnol. Lett. 15 (4): 393-398.

Published

2016-02-03

How to Cite

Correia, A. C., Fonseca, M. M. R., & Ferreira‐Dias, S. (2016). Produção de Emulsionantes através da Glicerólise de Óleo de Bagaço de Azeitona Catalisada pela Lipase da Candida Rugosa Imobilizada em Espumas de Poliuretano. Millenium - Journal of Education, Technologies, and Health, (41), 7‐15. Retrieved from https://revistas.rcaap.pt/millenium/article/view/8204

Issue

Section

Articles