Characterization and within-tree variation of wood anatomy of Acacia melanoxylon

  • Antonio JA Santos
  • Helena Pereira
  • Ofélia Anjos Instituto Politécnico de Castelo Branco
Keywords: Acacia melanoxylon, wood morphology, fibres, vessel, pulp quality indexes


Introduction: A. melanoxylon wood has a large commercial application given its anatomical characteristics and mechanical properties. However studies on the anatomical characterisation of this species grown in Portugal are scarce.

Objectives: To describe the transverse anatomical characteristics and their within-tree variation of A. melanoxylon trees growing in Portugal.

Methods: 20 trees were analysed in transverse section for tree radial position (10%; 50%; 90%) and five height levels (base, 15%; 35%; 65%; 80%) in north and south directions. Measurements included: fibre diameter (m), fibre wall thickness (m), Runkle index; Flexibility index, vessel number (vessel number /mm2), porosity (%) and vessel width (m).

Results: Earlywood fibres have lower wall thickness and higher lumen diameter than latewood fibres. Runkle and flexibility indexes confirm its potential for pulp and paper production. Porosity was lower near the pith as a result of a slight increase of vessel number with smaller size.

Conclusion: Blackwood showed potential as an alternative species to supply the industry.


Alao, O. (2009). Fibre morphology and its extent in pulp and paper making. Unpublished S ’ Industrial Work Experience

Scheme (SIWES) notebook FRIN, Ibadan, Nigeria. Anjos, O., Santos, A., & Simões, R. (2011). Effect of Acacia melanoxylon fibre morphology on papermaking potential. Appita Journal, 64(2), 185-191.

Bektas, I., Tutus, A. & Eroglu, H. (1999). A study of the suitability of Calabrian pine (Pinus brutia Ten) for pulp and paper manufacture. Turkish Journal of Agriculture, 23, 589-599.

Brindha, D., Vinodhini, S., & Alarmelumangai K. (2012). Fiber dimension and chemical contents of fiber from Passiflora foetida L. and their suitability in paper production. Science Research Reporter, 2(3), 210-219. ISSN: 2249-7846

Dadswell, H.E., & Eckersley, A.M. (1935). The identification of the principal commercial Australian timbers other than eucalypts. CSIR (Aust.) Bull. No. 90.

Gominho, J., Lopes, C., Lourenço, A., Simões, R., & Pereira, H. (2014). Eucalyptus globulus stumpwood as a raw Material for pulping. Bioresources, 9(3), 4038-4049.

Griffin, A.R., Midgley, S.J., Bush, D., Cunningham, P.J., & Rinaudo, A.T. (2011). Global uses of Australian acacias – recent trends and future prospects. Diversity and distribution. 17, 837–847. DOI: 10.1111/j.1472-4642.2011.00814.x

Iqbal, M., & Ghouse, A.K.M. (1983). An analytical study on cell size variation in some arid zone trees of India: Acacia nilotica and Prosopis spicigera. IAWA Bulletin, 4(1), 46-52. DOI: 10.1163/22941932-90000775

Jablonski, M., Sedliacik, J., & ž á, E. (2010). Less popular application of trees and bushes growing in Poland and Slovakia. Annals of Warsaw University of Life Sciences – SGGW, Forestry and Wood Technology, 71, 240-244

Kiaei, M., Tajik, M., & Vaysi, R. (2014). Chemical and biometrical properties of plum wood and its application in pulp and paper production. Maderas. Ciencia y tecnología 16(3), 313-322, DOI:10.4067/S0718-221X2014005000024

Machado, J., Louzada, J., Santos, A., Nunes, L., Anjos, O., Rodrigues, J., Simões, R., & Pereira, H. (2014). Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Material and Design, 56, 975–980. DOI: 10.1016/j.matdes.2013.12.016

Miranda, I., & Pereira, H. (2002). Variation pulpwood quality with provenances and site in Eucalyptus globulus. Annals of Forest Science, 59(3): 283-291.

Patt, R., Kordsachia, O., & Fehr, J. (2006). European hardwoods versus Eucalyptus globulus as a raw material for pulping. Wood Science and Technology, 40, 39-48. DOI: 10.1007/s00226-005-0042-9

Pereira, H., Santos, A.J.A., & Anjos, O. (2016). Fibre morphological characteristics of Kraft pulps of Acacia melanoxylon estimated by NIR-PLS-R models. Materials, 9, 8;. DOI:10.3390/ma9010008

Rodrigues, C., Santos, A., Tavares, M., & Anjos, O. (2007). Vessel morphological evaluation of Acacia melanoxylon wood. Proceedings of Wood Science and Engineering in the Third Millennium" - ICWSE 2007. Brasov - June 20 – 22. Romenia, p: 92-99.

Rucha, A., Santos, A., Campos, J., Anjos, O., & Tavares, M. (2011). Two methods for tree volume estimation of Acacia melanoxylon in Portugal. Revista Floresta. 41(1), 169-178.

Runkle, R.O.H. (1952). Pulp from Tropical Woods. Bundesanstalt fur Forst und Holzwirtschaft, ReinbekBez. Hamburg, pp 20-25.

Sahri, M. H., Ibrahim, F. H., & Shukor, N.A. (1993). Anatomy of Acacia mangium grown in Malaysia. IAWA Journal, 4(3), 245-251. DOI: 10.1163/22941932-90001326; ISSN

Santos, A., Amaral, M.E., Gil, N., Anjos, O., Rodrigues, J., Pereira, H. & Simões R. (2012). Influence on pulping yield and pulp properties of wood density of Acacia melanoxylon. Journal of Wood Science, 58(6), 479-486. DOI 10.1007/s10086-012-1286-2

Santos, A., Anjos, O., & Simões, R. (2006). Paper making potencial of Acacia. APPITA journal, 59 (1), 58-64.

Silva, A.C. (1987). Introdução á anatomia da madeira. Manaus: Instituto de Tecnologia da Amazónia.

Sharma, S.K., Rao, R.V., Shukla, S.R., Kuma, P., Sudheendra, R.,

Sujatha, M., Dubey, Y.M. (2005). Wood quality of coppiced Eucalyptus tereticornis for value addition. IAWA Journal 26 (1), 137-147. DOI: 10.1163/22941932-90001608

Tavares, F, Quilhó, T, & Pereira, H. (2011). Wood and bark fiber characteristics of Acacia melanoxylon and comparison to Eucalyptus globules, Cerne, Lavras, 17(1), 61-68.

Wilkins A. P., & Papassotiriou, S. (1989). Wood anatomical variation of Acacia melanoxylon in relation to latitude. IAWA Bulletin, 10 (2), 201-207. DOI: 10.1163/22941932-90000490

Young, J.H. (1981). Fiber preparation and approach flow in pulp and paper. In: Casey JP (eds). Chemistry and chemical technology, Interscience Publishers, New York.

Agriculture, Food and Veterinary Sciences