Elasto-plastic shear behavior of reinforced honeycomb and auxetic reentrant lattices

  • Vitor Carneiro University of Minho
  • José Meireles University of Minho
Keywords: Auxetic, Shear, Elasto-Plastic;, Finite element analysis

Abstract

Introduction: Auxetic materials possess a negative Poisson’s ratio. Even though, the existence of isotropic auxetics is theoretically possible, they seem to be absent in natural states thus, there has been an effort to produce artificial auxetics mostly by the design of inverted (reentrant) honeycombs.

Objetives: This study explores a novel Reinforced Honeycomb Lattices and Auxetic Reentrant lattices to enhance structural elasto-plastic behaviour in shear deformation.

Methods: Finite element analysis (FEA) is used to simulate shear loading in Reinforced Honeycomb and Auxetic Reentrant lattices, while the imposed stress and strains are monitored.

Results: Auxetic transformation promotes an increase in shear modulus, however, it generates plastic strains at lower values of shear deformation. However, the closing effect of auxetic materials, tends to reduce the plastic affected area.

Conclusions: In this study, a novel generation of Reinforced Honeycomb and Auxetic Reentrant Lattices are presented. Even though, the auxetic transformation generates plastic strain for lower shear deformation regimes, it is able to reduce the areas affected by plasticity and elevate shear stiffness.

References

Alderson, A., & Alderson K.L. (2007). Auxetic Materials. Proceedings of the Institution of Mechanical Engineers Part G Journal of Aerospace Engineering, 221, 565-575. https://doi.org/10.1243/09544100JAERO185

Almgren, R.F. (1985). An isotropic three-dimensional structure with Poisson's ratio – 1. Journal of Elasticity, 15, 427-430.

Carneiro, V.H., Meireles J., & Puga H. (2013). Auxetic Materials – A Review. Materials Science – Poland, 31(4), 561-571. Retrieved from: https://link.springer.com/article/10.2478/s13536-013-0140-6.

Fung, Y. (1965). Foundations of solid mechanics. New Jersey, USA: Prentice Hall.

Gatt, R., Wood, M.V., Gatt, A., Formosa, C., Azzopardi, K.M., Casha, A., Agius, T.P., … Grima, J.N. (2015). Negative Poisson’s ratios in tendons: An unexpected mechanical response. Acta Biomaterialia, 24, 201-208. https://doi.org/10.1016/j.actbio.2015.06.018

Gibson, L.J., Ashby, M.F., Schajer, G.S., & Robertson, C.I. (1982). The mechanics of two-dimensional materials. Proceedings of the Royal Society A, 382, 25-42. https://doi.org/10.1098/rspa.1982.0087

Greaves, G.N., Greer, A.L., Lakes, R.S., & Rouxel, T. (2011). Poisson’s ratio and modern materials. Nature Materials, 10 (11), 823-837. Retrieved from: https://www.nature.com/articles/nmat3134.

Hu, L.L., & Deng, H. (2015). Indentation resistance of the re-entrant hexagonal honeycombs with negative Poisson’s ratio. Materials Research Innovations, 19, 441-445. https://doi.org/10.1179/1432891715Z.0000000001588

Jasiuk, I., Chen, J., & Thorpe, M.F. (1994). Moduli of Two Dimensional Materials With Polygonal and Elliptical Holes. Applied Mechanics Reviews, 47, 18-28. https://doi.org/10.1115/1.3122813

Keskar, N.R., & Chelikowsky, J.R. (1992). Negative Poisson ratios in crystalline SiO2 from first-principles calculations. Nature, 358, 222-224. https://doi.org/10.1038/358222a0

Lakes, R.S. (1987). Foam Structures with a Negative Poisson's Ratio. Science, 235, 1038-1040. https://doi.org/10.1126/science.235.4792.1038

Lim, T.C., Cheang, P., & Scarpa, F. (2013). Wave motion in auxetic solids. Physica Status Solidi B, 251, 388-396. https://doi.org/10.1002/pssb.201384238

Malek, S., & Gibson, L. (2015). Effective elastic properties of periodic hexagonal honeycombs. Mechanics of Materials, 91, 226-240. http://dx.doi.org/10.1016/j.mechmat.2015.07.008

Merhagni, F., Desrumaux, F., & Benzeggagh, M.L. (1999). Mechanical behaviour of cellular core for structural sandwich panels. Composites Part A: Applied Science and Manufacturing, 30, 767-779.

Timoshenko, S., & Goodier, J.N. (1951). Theory of Elasticity. New York, USA: McGraw-Hill.

Voigt, W. (1882). Allgemeine Formeln für die Bestimmung der Elasticitätsconstanten von Krystallen durch die Beobachtung der Biegung und Drillung von Prismen. Annalen der Physik, 252, 273-321. https://doi.org/10.1002/andp.18822520607

Published
2018-09-27
Section
Engineering, Technology, Management and Tourism