Extraction solvents’ influence on the content of bioactive compounds and antioxidant activity of pansies

  • Luana Fernandes -Mountain Research Centre (CIMO) - School of Agriculture, Polytechnic Institute of Bragança~ -Organic Chemistry, Natural Products and Agrifood (QOPNA) – Chemistry Department, University of Aveiro - REQUIMTE/Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, Porto University
  • José Alberto Pereira Mountain Research Centre (CIMO) - School of Agriculture, Polytechnic Institute of Bragança
  • Jorge Saraiva Organic Chemistry, Natural Products and Agrifood (QOPNA) – Chemistry Department, University of Aveiro
  • Susana Casal REQUIMTE/Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, Porto University
  • Elsa Ramalhosa Mountain Research Centre (CIMO) - School of Agriculture, Polytechnic Institute of Bragança
Keywords: pansies, solvents, antioxidant activity, bioactive compounds.


Introduction: Pansies (Viola×wittrockiana) are a rich source of natural antioxidants with beneficial effects on human health.

Objetives: The aim of our study was to investigate solvents’ influence (water, methanol, water:acetone (6:4, v/v)) on the extraction of bioactive compounds and antioxidant activity of pansies extracts.

Methods: The bioactive compounds analyzed were the following: flavonoids, hydrolysable tannins and monomeric anthocyanins, as well as total phenols by the total reducing capacity assay (TRC). The antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and reducing power assays. A Principal Component Analysis (PCA) was performed to differentiate pansies extracts.

Results: The solvents that yielded extracts with the highest contents of hydrolysable tannins and TRC were methanol and water:acetone (6:4, v/v). To extract the highest contents of monomeric anthocyanins, methanol should be used (5.93 mg Cy 3-glu/g flower, d.w), while for flavonoids, water:acetone (6:4, v/v) was the preferred yielding an extract with 115 mg QE/g flower d.w. Water turned out to be the least effective solvent, giving extracts with the lowest antioxidant activity. In addition, methanol or water:acetone extracts were clearly distinguished from aqueous ones through a PCA analysis.

Conclusions: Our results show that the bioactive compounds and antioxidant activity of pansies’ extracts are affected by the solvent used.


Abarca-Vargas, R., Malacara, C.F.P., & Petricevich, V.L. (2016). Characterization of chemical compounds with antioxidant and cytotoxic activities in Bougainvillea x buttiana holttum and standl, (var. rose) extracts. Antioxidants, 5, 2-11. DOI: 10.3390/antiox5040045

Ahmad, N., Anwar, F., Hameed, S., & Boyce, M.C. (2011). Antioxidant and antimicrobial attributes of different solvent extracts from leaves and flowers of akk [Calotropis procera (Ait.) Ait. F.)]. Journal of Medicinal Plants Research, 5, 4879-4887.

Bchir, B., Besbes, S., Karoui, R., Attia, H., Paquot, M., & Blecker, C. (2012). Effect of air-drying conditions on physico-chemical properties of osmotically pre-treated pomegranate seeds. Food and Bioprocess Technology, 5, 1840-1852. DOI: 10.1007/s11947-010-0469-3

Benvenuti, S., Bortolotti, E., & Maggini, R. (2016). Antioxidant power, anthocyanin content and organoleptic performance of edible flowers. Scientia Horticulturae, 199, 170–177. DOI: 10.1016/j.scienta.2015.12.052

Bertan, D.W., Makishi, G.L.A., Arantes, K.S., & Sobral, P.J.A. (2014). Caracterização de extratos de folhas de boldo-do-Chile produzidos com soluções hidroetanólicas. SIICUSP 2014 – 22º Simpósio Internacional de Iniciação Científica e Tecnológica da USP.

Boonsong, P., Laohakunjit, N., & Kerdchoechuen, O. (2011). Detection of pigments and natural colorants from thai herbal plants for possible use as coloring dyes. Hortscience, 46(2), 265-272.

Dai, J., & Mumper, R.J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-7352. DOI: 10.3390/molecules15107313.

Delgado, T., Malheiro R., Pereira, J.A., & Ramalhosa, E. (2010). Hazelnut (Corylus avellana L.) kernels as a source of antioxidants and their potential in relation to other nuts. Industrial Crops and Products, 32, 621-626. DOI: 10.1016/j.indcrop.2010.07.019

Elfalleh, W., Hannachi, H., Tlili, N., Yahia, Y., Nasri, N., & Ferchichi, A. (2012). Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower. Journal of Medicinal Plants Research, 6, 4724-4730. DOI: 10.5897/JMPR11.995

Falcão, A.P., Chaves, E.S., Kuskoski, E.M., Fett, R., Falcão, L.D., & Bordignon-Luiz, M.T. (2007). Total polyphenol index, total anthocyanins and antioxidant activity of a model system of grape jelly. Ciência e Tecnologia de Alimentos, 27, 637-642. DOI: 10.1590/S0101-20612007000300032

Gamsjaeger, S., Baranska,M., Schulz, H., Heiselmayere, P., & Musso, M. (2011). Discrimination of carotenoid and flavonoid content in petals of pansy cultivars (Viola × wittrockiana) by FT-Raman spectroscopy. Journal of Raman Spectroscopy, 42, 1240–1247. DOI: 10.1002/jrs.2860

Guinot, P., Gargadennec, A., Valette, G., Fruchier, A., & Andary, C. (2008). Primary flavonoids in marigold dye: extraction, structure and involvement in the dyeing process. Phytochemical Analysis, 19, 46–51. DOI: 10.1002/pca.1014

González-Barrio, R., Periago, M. J., Luna-Recio, C., Javier, G.F., Navarro-González, I. (2018). Chemical composition of the edible flowers, pansy (Viola wittrockiana) and snapdragon (Antirrhinum majus) as new sources of bioactive compounds. Food Chemistry, 252, 373–380. DOI:10.1016/j.foodchem.2018.01.102

Hagerman, A.E. (1988). Extraction of tannin from fresh and preserved leaves. Journal of Chemical Ecology, 14, 453-461. DOI: 10.1007/BF01013897.

Hase, N., Matsuura, S., & Yamaguchi, M. (2005). HPLC evaluation of anthocyanins and flavonols in relation to the flower color of pansy (Viola× wittrockiana Gams). Horticultural Research Japan, 4, 125-129. DOI: 10.2503/hrj.4.125

Jun, X. (2013). High-Pressure processing as emergent technology for the extraction of bioactive ingredients from plant materials. Critical Reviews in Food Science and Nutrition, 53, 837-852. DOI: 10.1080/10408398.2011.561380.

Kelley, K.M., Cameron, A.C., Biernbaum, J.A, & Poff, K.L. (2003). Effect of storage temperature on the quality of edible flowers. Postharvest Biology and Technology, 27, 341-344. DOI: 10.1016/S0925-5214(02)00096-0

Kuźma, P., Drużyoska, B., & Obiedzioski, M. (2014). Optimization of extraction conditions of some polyphenolic compounds from parsley leaves (Petroselinum crispum). Acta Scientiarum Polonorum Technologia Alimentaria, 13, 145-154. DOI: 10.17306/J.AFS.2014.2.4

Li, Q., Wang, J., Sun, H.-Y., & Shang, X. (2014a). Flower color patterning in pansy (Viola×wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas. Plant Physiology and Biochemistry, 84, 134-141. DOI: 10.1016/j.plaphy.2014.09.012.

Li, A-N., Li, S., Li, H-B., Xu, D-P., Xu, X-R., & Chen, F. (2014b). Total phenolic contents and antioxidant capacities of 51 edible and wild flowers. Journal of Functional Foods, 6, 319-330. DOI: 10.1016/j.jff.2013.10.022

Liu, S., Lin, J., Wang, C., Chen, H., & Yang, D. (2009). Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chemistry, 114, 577-581. DOI: 10.1016/j.foodchem.2008.09.088

Mueller-Harvey, I. (2001). Analysis of hydrolysable tannins. Animal Feed Science and Technology, 91, 3–20. DOI: 10.1016/S0377-8401(01)00227-9

Naczk, M., & Shahidi, F. (2006). Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41, 1523–1542. DOI: 10.1016/j.jpba.2006.04.002

Rajasekar, D., Akoh, C. C., Martino, K. G., & MacLean, D.D. (2012). Physico-chemical characteristics of juice extracted by blender and mechanical press from pomegranate cultivars grown in Georgia. Food Chemistry, 133, 1383-1393. DOI: 10.1016/j.foodchem.2012.02.025

Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J., & Vabkova, J. (2012). Edible flowers - a new promising source of mineral elements in human nutrition. Molecules, 17, 6672-6683. DOI: 10.3390/molecules17066672.

Shabir, G., Anwar, F., Sultana, B., Khalid, Z. M., Afzal, M.,Khan, Q. M., & Ashrafuzzaman, M. (2011). Antioxidant and antimicrobial attributes and phenolics of different solvent extracts from leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook.) Raf.]. Molecules, 16, 7302-7319. DOI: 10.3390/molecules16097302.

Skowyra, M., Calvo, M.I., Gallego, M.G. Azman, N.A.M. & Almajano, M.P. (2014). Characterization of phytochemicals in petals of different colours from Viola × wittrockiana Gams. and their correlation with antioxidant activity. Journal of Agricultural Science, 6, 93-105. DOI: 10.5539/jas.v6n9p93

Uma, D.B. Ho C.W., & Aida W.M.W. (2010). Optimization of extraction parameters of total phenolic compounds from Henna (Lawsonia inermis) leaves. Sains Malaysiana, 39, 119 -128.

Viuda-Martos, M., Ruiz-Navajas, Y., Fernández-López, J., Sendra, E., Sayas-Barberá, E., & Pérez-Álvarez, J.A. (2011). Antioxidant properties of pomegranate (Punica granatum L.) bagasses obtained as co-product in the juice extraction. Food Research International, 44, 1217-1223. DOI: 10.1016/j.foodres.2010.10.057

Vukics, V., Kery, A., & Guttman, A. (2008). Analysis of polar antioxidants in heartsease (Viola tricolor L.) and garden pansy (Viola × wittrockiana Gams.). Journal of Chromatographic Science, 46, 823-827. DOI: 10.1093/chromsci/46.9.823

Weryszko-Chmielewska, E., & Sulborska, A. (2012). Diversity in the structure of the petal epidermis emitting odorous compounds in Viola × wittrockiana Gams. Acta Scientiarum Polonorum Hortorum Cultus, 11, 155-167.

Agriculture, Food and Veterinary Sciences