Análisis Bibliométrico de Estudios sobre la Evaluación de la Madurez de la Industria 4.0 en PYMEs

Autores/as

  • André Guimarães Universidade da Beira Interior, Covilhã, Portugal | Instituto Polítecnico de Viseu, Viseu, Portugal | Universidade da Beira Interior, Covilhã, Portugal | CISE - Electromechatronic Systems Research Centre, Covilhã, Portugal | Centro de Investigação em Serviços Digitais (CISeD), Viseu, Portugal https://orcid.org/0000-0001-6346-5719
  • Pedro Reis Instituto Polítecnico de Viseu, Viseu, Portugal | Centro de Investigação em Serviços Digitais (CISeD), Viseu, Portugal https://orcid.org/0000-0003-1301-6645
  • Antonio J Marques Cardoso Universidade da Beira Interior, Covilhã, Portugal | CISE - Electromechatronic Systems Research Centre, Covilhã, Portugal https://orcid.org/0000-0001-8737-6999

DOI:

https://doi.org/10.29352/mill0216e.34672

Palabras clave:

análisis bibliométrico; industria 4.0; modelos de preparación; PYMEs; VOSviewer; Bibliometrix de R-studio

Resumen

Introducción: Esta investigación tiene como objetivo contribuir a la organización y análisis de la literatura científica relacionada con la Evaluación del Nivel de Madurez Digital de la Industria 4.0 (I4.0) en pequeñas y medianas empresas (PYMEs). Se destaca la continua relevancia de la transformación digital, impactando a las PYMEs y ofreciendo oportunidades de integración en la economía global.

Objetivo: El objetivo principal es utilizar técnicas bibliométricas para analizar y organizar la literatura científica disponible en la evaluación del Nivel de Madurez Digital de la I4.0 en PYMEs. Se busca contribuir a la comprensión de las tendencias de investigación, identificar lagunas de conocimiento y proporcionar orientación para futuras investigaciones.

Métodos: Realización de una revisión exhaustiva de la literatura, abarcando artículos publicados entre 2011 y 2023 en las plataformas Web of Science (WoS) y SciVerse Scopus (Scopus), por su sólida reputación, amplio contenido y citas globales. Empleo de técnicas bibliométricas facilitadas por VOSviewer y el software R-studio´s Bibliometrix R para el procesamiento y análisis de datos.

Resultados: El análisis de la literatura reveló ideas significativas, incluyendo la escasez de investigaciones recientes sobre la evaluación del nivel de madurez digital de las PYMEs en el contexto de la I4.0. Identificación de tendencias de investigación, artículos destacados basados en citas y publicaciones, así como el reconocimiento de autores frecuentemente citados.

Conclusión: La importancia del estudio radica en el análisis exhaustivo de la literatura existente, la evaluación de tendencias clave de investigación y la identificación de lagunas, proporcionando perspicacias valiosas. Las direcciones y prioridades propuestas para futuras investigaciones resaltan la necesidad de investigaciones adicionales sobre el nivel de madurez digital de las PYMEs en el contexto de la I4.0 y áreas como la evaluación del rendimiento y habilidades de gestión.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Amaral, A., & Peças, P. (2021). A Framework for Assessing Manufacturing SMEs Industry 4.0 Maturity. Applied Sciences, 11(13), Article 13. https://doi.org/10.3390/app11136127

Antony, J., Sony, M., & McDermott, O. (2023). Conceptualizing Industry 4.0 readiness model dimensions: An exploratory sequential mixed-method study. TQM Journal, 35(2), 577–596. https://doi.org/10.1108/TQM-06-2021-0180

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Bánhidi, Z., Dobos, I., & Nemeslaki, A. (2020). What the overall Digital Economy and Society Index reveals: A statistical analysis of the DESI EU28 dimensions. Regional Statistics, 10(2). https://www.ksh.hu/statszemle_archive/regstat/2020/2020_02/rs100209.pdf

Bibby, L., & Dehe, B. (2018). Defining and assessing industry 4.0 maturity levels – case of the defence sector. Production Planning & Control, 29(12), 1030–1043. https://doi.org/10.1080/09537287.2018.1503355

Castelo-Branco, I., Cruz-Jesus, F., & Oliveira, T. (2019). Assessing Industry 4.0 readiness in manufacturing: Evidence for the European Union. Computers in Industry, 107, 22–32. https://doi.org/10.1016/j.compind.2019.01.007

Caviggioli, F., & Ughetto, E. (2019). A bibliometric analysis of the research dealing with the impact of additive manufacturing on industry, business and society. International Journal of Production Economics, 208(C), 254–268. https://doi.org/10.1016/j.ijpe.2018.11.022

Chen, Q., Zhang, W., Jin, N., Wang, X., & Dai, P. (2022). Digital Transformation Evaluation for Small- and Medium-Sized Manufacturing Enterprises Using the Fuzzy Synthetic Method DEMATEL-ANP. Sustainability, 14(20), Article 20. https://doi.org/10.3390/su142013038

Chonsawat, N., & Sopadang, A. (2020). Defining SMEs’ 4.0 Readiness Indicators. Applied Sciences, 10(24), Article 24. https://doi.org/10.3390/app10248998

Chonsawat, N., & Sopadang, A. (2021). Smart SMEs 4.0 Maturity Model to Evaluate the Readiness of SMEs Implementing Industry 4.0. Chiang Mai University Journal of Natural Sciences, 20(2). https://doi.org/10.12982/CMUJNS.2021.027

Çınar, Z. M., Zeeshan, Q., & Korhan, O. (2021). A Framework for Industry 4.0 Readiness and Maturity of Smart Manufacturing Enterprises: A Case Study. Sustainability, 13(12), Article 12. https://doi.org/10.3390/su13126659

Cobo, M. J., Martínez, M. A., Gutiérrez-Salcedo, M., Fujita, H., & Herrera-Viedma, E. (2015). 25 years at Knowledge-Based Systems: A bibliometric analysis. Knowledge-Based Systems, 80, 3–13. https://doi.org/10.1016/j.knosys.2014.12.035

Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

dos Santos, R. N. M., & Kobashi, N. Y. (2009). Bibliometria, Cientometria, Infometria: Conceitos E Aplicações. Tendencias da Pesquisa Brasileira em Ciência da Informação, 2(1), 155-172. https://revistas.ancib.org/index.php/tpbci/article/view/174/174

Du, Y., & Teixeira, A. A. C. (2012). A bibliometric account of Chinese economics research through the lens of the China Economic Review. China Economic Review, 23(4), 743–762. https://doi.org/10.1016/j.chieco.2012.04.009

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26. https://doi.org/10.1016/j.ijpe.2019.01.004

Godina, R., Ribeiro, I., Matos, F., T. Ferreira, B., Carvalho, H., & Peças, P. (2020). Impact Assessment of Additive Manufacturing on Sustainable Business Models in Industry 4.0 Context. Sustainability, 12(17), Article 17. https://doi.org/10.3390/su12177066

Han, X., Zhang, M., Hu, Y., & Huang, Y. (2022). Study on the Digital Transformation Capability of Cost Consultation Enterprises Based on Maturity Model. Sustainability, 14(16), Article 16. https://doi.org/10.3390/su141610038

Haryanti, T., Rakhmawati, N. A., & Subriadi, A. P. (2023). The Extended Digital Maturity Model. Big Data and Cognitive Computing, 7(1), Article 1. https://doi.org/10.3390/bdcc7010017

Hein-Pensel, F., Winkler, H., Brückner, A., Wölke, M., Jabs, I., Mayan, I. J., Kirschenbaum, A., Friedrich, J., & Zinke-Wehlmann, C. (2023). Maturity assessment for Industry 5.0: A review of existing maturity models. Journal of Manufacturing Systems, 66, 200–210. https://doi.org/10.1016/j.jmsy.2022.12.009

Hermann, M., Pentek, T., & Otto, B. (2016). Design Principles for Industrie 4.0 Scenarios. 2016 49th Hawaii International Conference on System Sciences (HICSS), 3928–3937. https://doi.org/10.1109/HICSS.2016.488

Hood, W. W., & Wilson, C. S. (2001). The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics, 52(2), 291–314. https://doi.org/10.1023/A:1017919924342

Horváth, D., & Szabó, R. Zs. (2019). Driving forces and barriers of Industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? Technological Forecasting and Social Change, 146, 119–132. https://doi.org/10.1016/j.techfore.2019.05.021

Kırmızı, M., & Kocaoğlu, B. (2022). Digital transformation maturity model development framework based on design science: Case studies in manufacturing industry. https://doi.org/10.1108/JMTM-11-2021-0476

Kljajić Borštnar, M., & Pucihar, A. (2021). Multi-Attribute Assessment of Digital Maturity of SMEs. Electronics, 10(8), Article 8. https://doi.org/10.3390/electronics10080885

Lassnig, M., Müller, J. M., Klieber, K., Zeisler, A., & Schirl, M. (2021). A digital readiness check for the evaluation of supply chain aspects and company size for Industry 4.0. Journal of Manufacturing Technology Management, 33(9), 1–18. https://doi.org/10.1108/JMTM-10-2020-0382

Manriquez, J., Andino-Navarrete, R., Cataldo-Cerda, K., & Harz-Fresno, I. (2015). Bibliometric characteristics of systematic reviews in dermatology: A cross-sectional study through Web of Science and Scopus. Dermatologica Sinica, 33(3), 154–156. https://doi.org/10.1016/j.dsi.2014.12.007.

Merdin, D., Ersöz, F., & Taşkın, H. (2023). Digital Transformation: Digital Maturity Model for Turkish Businesses. Gazi University Journal of Science, 36(1), Article 1. https://doi.org/10.35378/gujs.982772

Müller, J. M., Buliga, O., & Voigt, K.-I. (2018). Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0. Technological Forecasting and Social Change, 132, 2–17. https://doi.org/10.1016/j.techfore.2017.12.019

Oliveira, O. J. de, Silva, F. F. da, Juliani, F., Barbosa, L. C. F. M., Nunhes, T. V., Oliveira, O. J. de, Silva, F. F. da, Juliani, F., Barbosa, L. C. F. M., & Nunhes, T. V. (2019). Bibliometric Method for Mapping the State-of-the-Art and Identifying Research Gaps and Trends in Literature: An Essential Instrument to Support the Development of Scientific Projects. In Scientometrics Recent Advances. IntechOpen. https://doi.org/10.5772/intechopen.85856

Pech, M., & Vrchota, J. (2020). Classification of Small- and Medium-Sized Enterprises Based on the Level of Industry 4.0 Implementation. Applied Sciences, 10(15), Article 15. https://doi.org/10.3390/app10155150

Pirola, F., Cimini, C., & Pinto, R. (2019). Digital readiness assessment of Italian SMEs: A case-study research. Journal of Manufacturing Technology Management, 31(5), 1045–1083. https://doi.org/10.1108/JMTM-09-2018-0305

Pritchard, A. (1969). Statistical bibliography or bibliometrics. Journal of documentation, 25, 348.

Rafael, L. D., Jaione, G. E., Cristina, L., & Ibon, S. L. (2020). An Industry 4.0 maturity model for machine tool companies. Technological Forecasting and Social Change, 159, 120203. https://doi.org/10.1016/j.techfore.2020.120203

Rahamaddulla, S. R. B., Leman, Z., Baharudin, B. T. H. T. B., & Ahmad, S. A. (2021). Conceptualizing Smart Manufacturing Readiness-Maturity Model for Small and Medium Enterprise (SME) in Malaysia. Sustainability, 13(17), Article 17. https://doi.org/10.3390/su13179793

Rauch, E., Unterhofer, M., Rojas, R. A., Gualtieri, L., Woschank, M., & Matt, D. T. (2020). A Maturity Level-Based Assessment Tool to Enhance the Implementation of Industry 4.0 in Small and Medium-Sized Enterprises. Sustainability, 12(9), Article 9. https://doi.org/10.3390/su12093559

Safar, L., Sopko, J., Dancakova, D., & Woschank, M. (2020). Industry 4.0—Awareness in South India. Sustainability, 12(8), Article 8. https://doi.org/10.3390/su12083207

Sanders, A., Elangeswaran, C., & Wulfsberg, J. (2016). Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing. Journal of Industrial Engineering and Management, 9(3), Article 3. https://doi.org/10.3926/jiem.1940

Sándor, Á., & Gubán, Á. (2021). A Measuring Tool for the Digital Maturity of Small and Medium-Sized Enterprises. Management and Production Engineering Review, 4 (12). http://dx.doi.org/10.24425/mper.2021.140001

Santos, R. C., & Martinho, J. L. (2020). An Industry 4.0 maturity model proposal. Journal of Manufacturing Technology Management, 31(5), 1023–1043. https://doi.org/10.1108/JMTM-09-2018-0284

Sehlin, D., Truedsson, M., & Cronemyr, P. (2019). A conceptual cooperative model designed for processes, digitalisation and innovation. International Journal of Quality and Service Sciences, 11(4), 504–522. https://doi.org/10.1108/IJQSS-02-2019-0028

Soomro, M. A., Hizam-Hanafiah, M., Abdullah, N. L., & Jusoh, M. S. (2021). Change readiness as a proposed dimension for Industry 4.0 readiness models. Logforum, 17(1), 83–96. https://doi.org/10.17270/J.LOG.2021.504

Sriram, R. M., & Vinodh, S. (2020). Analysis of readiness factors for Industry 4.0 implementation in SMEs using COPRAS. International Journal of Quality & Reliability Management, 38(5), 1178–1192. https://doi.org/10.1108/IJQRM-04-2020-0121

Teichert, R. (2019). Digital Transformation Maturity: A Systematic Review of Literature. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(6), 1673–1687. https://doi.org/10.11118/actaun201967061673

Treinta, F. T., Farias Filho, J. R., Sant’Anna, A. P., & Rabelo, L. M. (2014). Metodologia de pesquisa bibliográfica com a utilização de método multicritério de apoio à decisão. Production, 24, 508–520. https://doi.org/10.1590/S0103-65132013005000078

Tricco, A. C., Lillie, E., Zarin, W., O’Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850

Tripathi, S., & Gupta, M. (2021). A holistic model for Global Industry 4.0 readiness assessment. Benchmarking: An International Journal, 28(10), 3006–3039. https://doi.org/10.1108/BIJ-07-2020-0354

Trischler, M. F. G., & Li-Ying, J. (2022). Exploring the relationship between multidimensional digital readiness and digital transformation outcomes. International Journal of Innovation Management, 26(3). https://doi.org/10.1142/S136391962240014X

Ünal, C., Sungur, C., & Yildirim, H. (2022). Application of the Maturity Model in Industrial Corporations. Sustainability, 14(15), Article 15. https://doi.org/10.3390/su14159478

Van Eck, N. J., & Waltman, L. (2018). Manual for VOSviewer version 1.6. 8. CWTS meaningful metrics & Universiteit Leiden.

Wagire, A. A., Joshi, R., Rathore, A. P. S., & Jain, R. (2021). Development of maturity model for assessing the implementation of Industry 4.0: Learning from theory and practice. Production Planning & Control, 32(8), 603–622. https://doi.org/10.1080/09537287.2020.1744763

Xiao, Y., & Watson, M. (2019). Guidance on Conducting a Systematic Literature Review. Journal of Planning Education and Research, 39(1), 93–112. https://doi.org/10.1177/0739456X17723971

Ziaei Nafchi, M., & Mohelská, H. (2020). Organizational Culture as an Indication of Readiness to Implement Industry 4.0. Information, 11(3), Article 3. https://doi.org/10.3390/info11030174

Zupic, I., & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), 429–472. https://doi.org/10.1177/1094428114562629

Descargas

Publicado

2024-12-16

Cómo citar

Guimarães, A., Reis, P., & Cardoso, A. J. M. (2024). Análisis Bibliométrico de Estudios sobre la Evaluación de la Madurez de la Industria 4.0 en PYMEs. Millenium - Journal of Education, Technologies, and Health, (16e), e36472. https://doi.org/10.29352/mill0216e.34672

Número

Sección

Ingenierías, Tecnología, Gestión y Turismo