Chemical characterization of pine bark (Pinus pinaster Aiton subsp. atlantica), antioxidant properties and phenolic profile of its extracts

  • Catarina da Silva Vieito Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Viana do Castelo
  • Preciosa Pires Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Viana do Castelo
  • Élia Fernandes Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Viana do Castelo
  • Manuela Vaz Velho Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Viana do Castelo
Keywords: pine bark, antioxidant properties, phenolic compounds, RP-HPLC-UV

Abstract

Introduction: Pine bark is an agroindustrial residue from the timber industry and represents a source of phenolic compounds. These compounds have several beneficial properties being antioxidants, antimicrobial, anti-inflammatory, cardiovascular, among others.

Objetives: The aim of this work was to study the chemical composition of the bark from Pinus pinaster Aiton subsp. atlantica and the phenolic profile of its aqueous, ethanolic and hydroethanolic extracts.

Methods: The moisture content, ash, protein, crude fat and carbohydrates were analysed. The bark was extracted with water, ethanol or a mixture of both in a Soxhlet apparatus and the extraction yield, total phenolic content (TPC), antioxidant activity and phenolic profile by RP-HPLC-UV, in the extracts with higher TPC, were determined.

Results: The results obtained for chemical composition were: 63.43 of carbohydrates, 2.81 of crude fat, 1.60 of proteins and 1.75 of ash, calculated in % w/w of dry bark. The extraction yield was greater for the ethanolic and the hydroethanolic extracts (17.08 and 17.55% w/w dry bark, respectively). The TPC and antioxidant activity were higher in the hydroethanolic extract (73.48 mg GAE/g and 108.74 mg AAE/g dry bark, respectively). Regarding the phenolic profile of the hydroethanolic extract, gallic acid, taxifolin, ferulic acid and quercetin were identified at 280 nm, and catechin was identified in the ethanolic extract at 320 nm.

Conclusion: P. pinaster Aiton subsp. atlantica bark is mainly constituted by carbohydrates and it is rich in hydroethanolic and ethanolic extractives, being that these have high antioxidant activity. The ethanolic extract presents higher catechin amount when compared to the hydroethanolic extract.

References

AOAC. (1995). Official Methods of Analysis of AOAC INTERNATIONAL (16th ed., Vol. II): The Scientific Association Dedicated to Analytical Excellence.

Aspé, E., & Fernandez, K. (2011). The effect of different extraction techniques on extraction yield, total phenolic, and anti-radical capacity of extracts from Pinus radiata Bark. Industrial Crops and Products, 34(1), 838-844. doi: 10.1016/j.indcrop.2011.02.002

Belščak-Cvitanovid, A., Durgo, K., Huđek, A., Bačun-Družina, V., & Komes, D. (2018). Overview of polyphenols and their properties. In C. M. Galanakis (Ed.), Polyphenols: Properties, Recovery, and Applications (pp. 3-44). Cambridge, United Kingdom: Woodhead Publishing.

Braga, M. E. M., Santos, R. M. S., Seabra, I. J., Facanali, R., Marques, M. O. M., & de Sousa, H. C. (2008). Fractioned SFE of antioxidants from maritime pine bark. The Journal of Supercritical Fluids, 47(1), 37-48. doi: 10.1016/j.supflu.2008.05.005

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25-30. doi: https://doi.org/10.1016/S0023-6438(95)80008-5

Chupin, L., Maunu, S. L., Reynaud, S., Pizzi, A., Charrier, B., & Charrier-El Bouhtoury, F. (2015). Microwave assisted extraction of maritime pine (Pinus pinaster) bark: Impact of particle size and characterization. Industrial Crops and Products, 65, 142-149. doi: 10.1016/j.indcrop.2014.11.052

Durkovid-Perica, M., Hrenovid, J., Kugler, N., Goid-Barišid, I., & Tkalec, M. (2015). Antibacterial Activity of Pinus pinaster Bark Extract and its Components Against Multidrug-resistant Clinical Isolates of Acinetobacter baumannii. Croatica Chemica Acta, 88(2), 133-137. doi: 10.5562/cca2548

Deng, Q., Penner, M. H., & Zhao, Y. Y. (2011). Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Research International, 44(9), 2712-2720. doi: 10.1016/j.foodres.2011.05.026

Fradinho, D. M., Neto, C. P., Evtuguin, D., Jorge, F. C., Irle, M. A., Gil, M. H., & Pedrosa de Jesus, J. (2002). Chemical characterisation of bark and of alkaline bark extracts from maritime pine grown in Portugal. Industrial Crops and Products, 16(1), 23-32. doi: https://doi.org/10.1016/S0926-6690(02)00004-3

Gertenbach, D. D. (2002). Solid-liquid extraction technologies for manufacturing nutraceuticals. In J. Shi, G. Mazza, & M. L. Maguer (Eds.), Functional Foods: Biochemical and Processing Aspects. Boca Raton, Florida, USA: CRC Press.

Gutfinger, T. (1981). Polyphenols in olive oils. Journal of the American Oil Chemists Society, 58(11), 966-968. doi: 10.1007/bf02659771

Jablonsky, M., Nosalova, J., Sladkova, A., Haz, A., Kreps, F., Valka, J., . . . Surina, I. (2017). Valorisation of softwood bark through extraction of utilizable chemicals. A review. Biotechnology Advances, 35(6), 726-750. doi: https://doi.org/10.1016/j.biotechadv.2017.07.007

Lafka, T. I., Sinanoglou, V., & Lazos, E. S. (2007). On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chemistry, 104(3), 1206-1214. doi: 10.1016/j.foodchem.2007.01.068

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426-428. doi: 10.1021/ac60147a030

Packer, L., Rimbach, G., & Virgili, F. (1999). Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radical Biology and Medicine, 27(5-6), 704-724. doi: 10.1016/s0891-5849(99)00090-8

Pereira, D., Valentão, P., Pereira, J., & Andrade, P. (2009). Phenolics: From Chemistry to Biology. Molecules, 14(6), 2202-2211. doi: 10.3390/molecules14062202

Pinelo, M., Rubilar, M., Sineiro, J., & Núñez, M. J. (2004). Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chemistry, 85(2), 267-273. doi: 10.1016/j.foodchem.2003.06.020

Ronda, A., Della Zassa, M., Biasin, A., Martin-Lara, M. A., & Canu, P. (2017). Experimental investigation on the smouldering of pine bark. Fuel, 193, 81-94. doi: https://doi.org/10.1016/j.fuel.2016.12.028

Sáyago-Ayerdi, S. G., Mercado-Mercado, G., Ramos-Romero, S., Torres, J. L., & Pérez-Jiménez, J. (2016). Analysis and Characterization of Polyphenol Extracts. In J. Cuevas Valenzuela, J. R. Vergara-Salinas, & J. R. Perez-Correa (Eds.), Advances in technologies for producing food-relevant polyphenols (pp. 27). Boca Raton, Florida: CRC Press.

Seabra, I. J., Dias, A. M. A., Braga, M. E. M., & de Sousa, H. C. (2012). High pressure solvent extraction of maritime pine bark: Study of fractionation, solvent flow rate and solvent composition. The Journal of Supercritical Fluids, 62, 135-148. doi: 10.1016/j.supflu.2011.10.016

Seraglio, S. K. T., Schulz, M., Nehring, P., Della Betta, F., Valese, A. C., Daguer, H., . . . Costa, A. C. O. (2018). Nutritional and bioactive potential of Myrtaceae fruits during ripening. Food Chemistry, 239, 649-656. doi: https://doi.org/10.1016/j.foodchem.2017.06.118

Tümen, İ., Akkol, E. K., Taştan, H., Süntar, I., & Kurtca, M. (2018). Research on the antioxidant, wound healing, and anti-inflammatory activities and the phytochemical composition of maritime pine (Pinus pinaster Ait). Journal of Ethnopharmacology, 211, 235-246. doi: https://doi.org/10.1016/j.jep.2017.09.009

Vázquez, G., Antorrena, G., & Parajó, J. C. (1987). Studies on the utilization of Pinus pinaster bark - Part 1: Chemical constituents. Wood Science and Technology, 21(1), 65-74. doi: 10.1007/bf00349718

Published
2019-01-31
Section
Agriculture, Food and Veterinary Sciences